
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE

ICT International Doctoral School

Planning and Scheduling in

Temporally Uncertain Domains

Andrea Micheli

Advisor
Dr. Alessandro Cimatti
Head of Embedded Systems Unit,
Fondazione Bruno Kessler, Trento

Co-Advisor
Dr. Marco Roveri
Fondazione Bruno Kessler, Trento

January 2016

Abstract

Any form of model-based reasoning is limited by the adherence of the model

to the actual reality. Scheduling is the problem of finding a suitable tim-

ing to execute a given set of activities accommodating complex temporal

constraints. Planning is the problem of finding a strategy for an agent

to achieve a desired goal given a formal model of the system and the en-

vironment it is immersed in. When time and temporal constraints are

considered, the problem takes the name of temporal planning.

A common assumption in existing techniques for planning and schedul-

ing is controllability of activities: the agent is assumed to be able to control

the timing of starting and ending of each activity. In several practical ap-

plications, however, the actual timing of actions is not under direct control

of the plan executor.

In this thesis, we focus on this temporal uncertainty issue in scheduling

and in temporal planning: we propose to natively express temporal uncer-

tainty in the model used for reasoning. We first analyze the state-of-the-art

on the subject, presenting a rationalization of existing works. Second, we

show how Satisfiability Modulo Theory (SMT) solvers can be exploited to

quickly solve different kinds of query in the realm of scheduling under un-

certainty. Finally, we address the problem of temporal planning in domains

featuring real-time constraints and actions having duration that is not un-

der the control of the planning agent.

Keywords

[Temporal Planning with Uncontrollable Durations, Scheduling under Un-

certainty, Temporal Problems with Uncertainty, Temporal Uncertainty,

Satisfiability Modulo Theory]

Acknowledgments

Many people deserve my gratitude for their support and their contribution

to this thesis.

First of all, I want to thank my advisor, Alessandro Cimatti, and my co-

advisor, Marco Roveri, for the help, the guidance and the support they

always provided me during the PhD. They taught me what good research

is and how to do it, how to approach a problem and how to think critically.

I will never thank them enough for these lessons and their friendship.

Then, I would like to thank David E. Smith for giving me the possibility

of working in a thrilling environment such as NASA Ames for six months;

it has been a wonderful and enriching experience. I am deeply thankful to

him, to Minh Do and to Jeremy Frank for all the interesting discussions

and the inputs they provided.

I have to thank all my close friends from the Embedded Systems Unit

in FBK, their support and their glee brightened my days: Marco Gario,

Alessandro Mariotti, Cristian Mattarei, Sergio Mover and Gianni Zampedri.

Thanks to Daniela, Jessica, Marta, Matteo and Samuel for being my closest

friends and always encouraging me and listening to me during our Saturday

nights.

Finally, this thesis is dedicated to my family: I am who I am thanks only

to their example and love. To my mother for her everyday courage, to

my father for his wisdom, to my brother for his jokes and glee and to my

girlfriend Silvia for her love.

Ringraziamenti

Devo ringraziare molte persone per il loro supporto e il loro contributo a

questa tesi.

Prima di tutto, voglio ringraziare il mio supervisore, Alessandro Cimatti,

e il mio co-supervisore, Marco Roveri, per l’aiuto, la guida e il supporto

che mi hanno sempre dato durante questo periodo di dottorato. Mi hanno

insegnato cos’è e come si fa la buona ricerca, come approcciare un problema

e come pensare criticamente. Non li ringrazieró mai abbastanza per queste

lezioni e per la loro amicizia.

Vorrei inoltre ringraziare David E. Smith per avermi dato la possibilitá di

lavorare in un ambiente elettrizzante come NASA Ames per sei mesi; è stato

un periodo meraviglioso e un esperienza arricchente. Sono profondamente

grato a lui, a Minh Do e a Jeremy Frank per tutte le interessanti discussioni

e gli stimoli che mi hanno dato.

Ringrazio tutti i miei amici dell’ unitá di Embedded Systems in FBK, il loro

supporto e la loro allegria hanno illuminato le mie giornate: Marco Gario,

Alessandro Mariotti, Cristian Mattarei, Sergio Mover e Gianni Zampedri.

Grazie a Daniela, Jessica, Marta, Matteo e Samuel per essere i miei migliori

amici e per incoraggiarmi ed ascoltarmi sempre durante le nostre serate.

Infine, questa tesi è dedicata alla mia famiglia: io sono chi sono solo grazie

al loro esempio e al loro amore. A mia madre per il suo coraggio che

dimostra ogni giorno, a mio padre per la sua saggezza, a mio fratello per i

suoi scherzi e la sua allegria e a Silvia per il suo affetto.

Contents

1 Introduction 1

1.1 Contributions and Publications 3

1.2 Experimental Evaluations 5

1.3 Structure of the Thesis . 6

2 Background 9

2.1 Technical Preliminaries . 9

2.2 Satisfiability Modulo Theories 11

2.2.1 SMT Notation . 13

2.2.2 Quantifiers in LRA 14

Fourier-Motzkin Elimination 14

Loos-Weispfenning Elimination 15

2.3 Timed Game Automata 16

2.4 Clocks and Time Regions 20

I State-of-the-Art Survey 25

3 Execution Model 29

3.1 Plant Interface . 30

3.2 Plan Executor . 32

3.3 Formal Model . 33

3.4 Plant Classification . 38

i

3.5 Plan Executor Classification 39

3.6 Discussion . 44

3.6.1 Partial Observability 44

3.6.2 Weak Executors and Predictions 45

4 Scheduling Classification 47

4.1 Qualitative Scheduling . 48

4.1.1 Point Algebra . 48

4.1.2 Allen Algebra . 49

4.2 Temporal Networks . 50

4.2.1 Temporal Networks and Consistency 53

Simple Temporal Network 53

Disjunctive Temporal Network 55

Temporal Constraint Satisfaction Networks 56

Minimal Networks 57

4.2.2 Temporal Uncertainty 57

Simple Temporal Networks with Uncertainty 60

TCSNU and DTNU 62

4.2.3 Discrete Non-Determinism 68

Conditional Temporal Networks 69

Conditional STNU 71

5 Planning Classification 73

5.1 Temporal Planning without Uncertainty 74

5.1.1 Temporal Plans . 75

5.1.2 Planning Language Classification 76

5.1.3 State Space Temporal Planning 79

5.1.4 Plan Space Temporal Planning 84

5.1.5 Planning as Satisfiability 87

5.1.6 Planning Graph Derivations 88

ii

5.2 Beyond Temporal Planning 88

6 Extensions 91

6.1 Flexibility . 91

6.2 Resources and Continuous Change 92

6.3 Optimality . 94

6.4 Temporally Extended Goals 95

II Disjunctive Scheduling under Temporal Uncertainty 99

7 Temporal Networks Formalization 105

8 Consistency 111

8.1 Consistency Encodings . 112

8.1.1 Näıve Encoding . 112

8.1.2 Switch Encoding 114

8.1.3 Switch Encoding with Mutual Exclusion 115

8.1.4 Hole Encoding . 116

8.2 Experimental Evaluation 118

8.2.1 Results . 122

9 Strong Controllability 125

9.1 Encoding Strong Controllability in SMT 127

9.1.1 Encodings into Quantified LRA 128

9.1.2 Encodings into Quantifier-Free LRA 133

9.2 Related Work . 136

9.2.1 The PVYS Algorithm 137

9.2.2 Polyhedra-Based Approach 137

9.3 Experimental Evaluation 138

9.3.1 Implementation . 138

iii

9.3.2 Experimental Set-Up 139

9.3.3 Results for Strong Controllability 140

9.3.4 Comparison with PVYS 144

10 Weak Controllability 147

10.1 Weak Controllability Definition 150

10.2 Deciding Weak Controllability 151

10.3 Strategies for Weak Controllability 155

10.3.1 Implicit Strategies 156

10.3.2 Explicit Strategies 157

10.4 Synthesis of strategies for Weak Controllability 170

10.4.1 Linear Strategies for STNU 170

Vertex Encoding 171

Incremental Weakening 174

10.4.2 Piecewise-Linear Strategies for STNU 176

Simplexes Decomposition 176

Lazy Expansion . 180

10.4.3 Linear Strategies for DTNU 182

10.4.4 Piecewise-Linear Strategies for DTNU 184

Skin Crawler . 184

Convex Region Enumerator 185

10.5 Experimental Evaluation 189

10.5.1 Decision Problem 190

10.5.2 STNU Strategy Synthesis 191

10.5.3 DTNU Strategy Synthesis 191

10.5.4 Strategy Execution 192

11 Dynamic Controllability 199

11.1 Formalization of Dynamic Controllability 200

11.1.1 Timestrict and Immediate-Reaction Semantics . . . 206

iv

11.2 Strategy Representation and Validation 208

11.2.1 Strategy Language 209

11.2.2 Validation . 212

Additional Constraints for Timestrict Semantics . . 214

11.3 Reducing Dynamic Controllability to TGA Reachability . . 216

11.3.1 STNU to TGA . 217

11.3.2 DTNU to TGA . 221

Disjunctive Normal Form 223

Negation Normal Form 224

11.3.3 TGA Strategies . 226

11.3.4 Addressing the Timestrict Semantics 227

11.4 Synthesizing Dynamic Strategies 229

11.4.1 Ordered and Unordered states 236

11.4.2 Pruning Unfeasible States 237

11.5 Experimental Evaluation 239

III Strong Temporal Planning with Uncontrollable Dura-

tions 245

12 Action-Based STPUD 249

12.1 The STPUD Problem . 251

12.1.1 Syntax . 251

12.1.2 Semantics . 253

12.1.3 Example . 257

12.1.4 Discussion . 259

12.2 Overview of the Proposed Approaches 260

12.3 STPUD via Forward State-Space Search 263

12.3.1 FSSTP . 264

12.3.2 Handling Uncontrollable Durations 267

v

Total Order Encoding 269

Last Achiever Deordering Encoding 271

Disjunctive Reordering Encoding 272

12.4 Compiling STPUD in Temporal Planning 275

12.4.1 Formal Compilation 275

Uncertain Variables 276

Disjunctive Conditions 277

Uncertain Temporal Intervals 277

Uncontrollable Actions 278

Controllable Actions 279

Initial State I . 280

Timed Initial Literals 280

Goal Conditions . 281

12.4.2 Example . 281

12.4.3 Discussion . 282

12.5 Simplification . 283

12.5.1 Maximal-Duration Simplification 283

12.5.2 Minimal-Duration Simplification 285

12.5.3 Discussion . 287

12.6 Experimental Evaluation 287

12.6.1 Experimental Set-Up 288

12.6.2 Intermediate Effects 290

12.6.3 Overall Results . 294

12.6.4 Impact of Simplifications 296

13 Timelines with temporal uncertainty 299

13.1 Problem Definition . 300

13.2 Bounded Encoding in FOL 308

13.3 Discussion . 311

vi

14 Thesis Conclusion 315

14.1 Future Work . 316

Bibliography 319

A Scheduling Proofs 331

A.1 Consistency Proofs . 331

A.2 Strong Controllability Proofs 333

A.3 Weak Controllability Proofs 335

A.4 STNU Execution Semantics 337

A.5 STNU to TGA Formal Correctness 351

A.6 Dynamic Controllability Proofs 355

B Planning Proofs 357

B.1 Proof of DR Approach Completeness 357

B.2 STPUD Formal Compilation Proof 359

B.2.1 Plan Mapping . 359

B.2.2 Plan Execution . 359

vii

List of Tables

3.1 Plant Types Classification 40

3.2 Formal Classification Table 43

4.1 Scheduling State-Of-The-Art 48

4.2 PA Composition Table . 49

4.3 Allen Algebra Overview 51

4.4 Allen’s Algebra Composition Table 52

5.1 Planning State-Of-The-Art 74

6.1 Resources Classification 93

9.1 Static QE for TCSNU . 135

10.1 Weak Strategy Synthesis Portfolio Overview 170

12.1 STPUD Sub-Classes . 261

12.2 STPUD Planning Techniques Overview 263

A.1 Outcomes Table . 342

ix

List of Figures

2.1 Timed Automaton Example 18

2.2 Sample TGA . 19

3.1 Plat-Executor Interface . 30

3.2 Execution Model Timing Example 32

5.1 Architecture of a Forward State Space Temporal Planner . 81

7.1 Activity View . 106

7.2 TNU Example . 108

8.1 Hole Encoding Example 117

8.2 Consistency Experimental Flow 118

8.3 STN Consistency Results 119

8.4 TCSN Consistency Results 120

8.5 DTN Consistency Results 121

9.1 Activity View of Running Example 129

9.2 Encoding of the Example 130

9.3 Strong Controllability Experimental Flow 139

9.4 STNU Strong Controllability Results 140

9.5 TCSNU Strong Controllability Results 141

9.6 DTNU Strong Controllability Results 142

9.7 TCSNU Strong Controllability Scatter Plot 143

9.8 PVYS Results for STNU and TCSNU 145

xi

9.9 PVYS DTNU Results . 146

10.1 Weakly Controllable STNU Example 151

10.2 Encoding of the Running Example 152

10.3 Inverted and Assumption-Extraction Encodings 154

10.4 Implicit Strategy Mechanism 156

10.5 Modified Weak Controllability Running Example 162

10.6 Feasibility Region Visualization 163

10.7 Simplex Decomposition Visualization 178

10.8 Weak Controllability Decision Problem Plots 195

10.9 STNU Linear Strategy Extraction Results 196

10.10DTNU Strategy Extraction Results 197

10.11Weak Strategy Execution Results 198

11.1 Dynamic Controllability Running Example 202

11.2 Immediate Reaction Example 207

11.3 Dynamic Controllability Validation Space 213

11.4 Example Encoded in TGA 219

11.5 Dynamically Controllable DTNU Example 221

11.6 DNF Encoding of Guards 224

11.7 NNF Encoding of Conjunction 225

11.8 NNF Encoding of Disjunction 225

11.9 NNF Encoding of Running Example 226

11.10Example Encoded in TGA Using Time-Strict Semantics . . 229

11.11Dynamic Controllability Results 241

11.12Dynamic Controllability Scatter Results 242

12.1 STPUD Running Example 258

12.2 Strong Plan Example . 260

12.3 TO and LAD Incompleteness Example 270

12.4 Compilation Example . 280

xii

12.5 Complete Compiled Example 281

12.6 Clip Action Construction 292

12.7 Container Action Construction 293

12.8 Overall STPUD Cactus Plot 295

12.9 STPUD Scatter Plots . 296

12.10STPUD Simplification Cactus Plot 297

12.11STPUD Simplification Scatter Plots 298

13.1 Timeline Running Example 300

13.2 Timeline Execution Example 307

A.1 Deriving Outcome from a Partial Schedule 341

xiii

List of Algorithms

1 PVYS Algorithm . 66

2 ALL-PATHS-SC . 67

3 SATISFY-Ce . 68

4 FSSTP . 82

5 PSTP . 85

6 Implicit-SMT-Incremental 158

7 Vertex Encoding . 172

8 Incremental Weakening . 175

9 Simplexes Decomposition 179

10 Lazy Extraction . 181

11 Skin-Based Strategy Extraction for DTNU 184

12 GetFaceStrategies . 186

13 ConvexRegionEnumerator 188

14 Dynamic Strategy Validation Procedure 215

15 Synthesis Algorithm . 232

16 Flat Strategy Extraction Algorithm 234

17 Strategy Extraction Algorithm 235

18 The FSSTP Framework 265

19 FSSTP for STPUD . 268

xv

Chapter 1

Introduction

Model-based reasoning is a powerful and well-developed area of Artificial

Intelligence that is concerned with automatic techniques for synthesizing

some knowledge from a formal model of the reality. AI Planning is one

of the oldest and most studied forms of model-based reasoning: given a

mathematical model of the initial world state and of the applicable actions

to change it, the objective is to synthesize a strategy (a plan), to drive the

system and the world in a desired goal state. Planning is arguably one of

the most fundamental forms of intelligence: devising strategies to achieve

desired goals is a basic behavior common to all intelligent forms.

Model-based techniques are very powerful, because complex knowledge

can be elaborated from very simple models, but there is an intrinsic limi-

tation: the quality of the result for a real-world situation is always limited

by the adherence of the model to the reality. In fact, formal models are

always abstractions of the real world, and such an abstraction can be more

or less coarse. Clearly, the more fine-grained and detailed a model is, the

more complex and intractable the reasoning problem becomes.

The focus of this thesis is on temporal planning and scheduling tech-

niques, that are AI planning algorithms that can deal with models having

real-time constraints (such as synchronizations and deadlines) and that

1

consider the precise timing of the activities. A lot of research has been

devoted to these issues over the years, but many planning systems still

assume that the duration of each activity as well as all the constraints are

under control of the planning system that can freely schedule its activities,

without any uncertainty.

In real world situations, however, the duration of an activity is not

always controllable. For example, the duration of a car trip from San Fran-

cisco to Los Angeles is not under the complete control of the driver, because

it also depends on the traffic and the weather conditions. In this kind of

situation, different approaches are possible for planning. One possibility is

to disregard uncertainty, estimating beforehand the duration of the trip; if,

during execution, the trip is taking longer or shorter than expected, a new

plan needs to be generated. Another idea is to come up with a plan that

does not commit to a specific duration of the trip, but tries to be as general

as possible in either a formal or a best-effort way. In this thesis, instead, we

focus on a dedicated modeling of the uncertainty in the trip. We explicitly

model the trip as an activity that has uncontrollable duration, assuming

that minimal and maximal bounds for the trip duration are given. This

amounts to decide a strategy for the journey that is guaranteed to achieve

the goal regardless of the traffic conditions, assuming that the duration of

the trip will stay in the modeled bounds. Differently from other works, we

are not interested in the probability distribution of the trip duration, as

we want to provide a plan that is guaranteed to work for every possible

duration of the trip within the given bounds, not to maximize probabilistic

expectation.

Dealing with temporal uncertainty, guaranteeing that the synthesized

plan is valid for every possible concrete execution of uncontrollable enti-

ties, is useful in various applications domains, in particular where safety

of the controlled system is a primary concern and where no fail-safe con-

2

CHAPTER 1. INTRODUCTION

dition exist. In particular, this kind of issues have been studied for space

applications such as satellites and exploration rovers.

The thesis addresses the problem of temporal uncertainty from a schedul-

ing and a planning point of view. We consider scheduling as a special form

of a planning problem in which the set of actions to be executed is known

a-priori and only the timing needs to be synthesized. On the contrary, plan-

ning in its generality is concerned with the problem of synthesizing both

the actions needed to achieve a desired goal and their timing. Throughout

the thesis we consider techniques that deal with a continuous and dense

model of time: durations and time instants are modeled as real numbers

assuming no quantization of time, unless explicitly specified.

1.1 Contributions and Publications

This thesis contributes the state-of-the-art in different directions. We de-

vise efficient techniques to schedule activities in presence of temporal uncer-

tainty as well as planning techniques for temporal planning with uncertain

durations. In this section, we give a high-level overview of the thesis con-

tributions and for each of them we list our peer-reviewed publications that

are relevant for the presented work.

1. We survey the relevant state-of-the-art, proposing a novel categoriza-

tion schema for the different approaches. At the time of writing, this

part of the thesis is unpublished.

2. We approach the problem of strong controllability for disjunctive tem-

poral networks with uncertainty and we propose a set of novel encod-

ings of the problems in the framework of Satisfiability Modulo The-

ory. We empirically show that these encodings can effectively solve

the problem faster than dedicated techniques, leveraging recent ad-

3

1.1. CONTRIBUTIONS AND PUBLICATIONS

vances in the SMT technology. This part of the work has been ini-

tially published in [CMR12a] and an extended journal version appears

in [CMR14].

3. We tackle the weak controllability problem for disjunctive temporal

networks with uncertainty. We propose a novel characterization of the

notion of strategy for a given network and we describe a number of

algorithms for strategy synthesis that exploit SMT solvers for quan-

titative reasoning. We also demonstrate encodings for deciding if a

given network is weakly controllable. This has been initially published

in [CMR12b] and an extended journal version appears in [CMR15a].

4. We discuss the open problem of dynamic controllability for disjunctive

temporal networks with uncertainty. We show a reduction from the

dynamic controllability problem of temporal networks to a reachabil-

ity game in a Timed Game Automaton. Since complete algorithms

exist for the latter problem, we obtain the first sound and complete

dynamic controllability algorithm for disjunctive temporal networks

with uncertainty as well as several other kinds of networks that the

reduction can accommodate. This research line has been presented

in [CHMR14] and in [CHM+14]. Moreover, an extended journal pa-

per appears in [CHM+16]: we consider non-determinism in disjunctive

temporal networks and propose an extension of the Timed Game Au-

tomata reduction to solve the dynamic controllability problem. We

also present native algorithms for the validation and the synthesis of

dynamic strategies that appear in [CMR16].

5. In the planning context, we deal with the problem of Strong Tempo-

ral Planning with Uncontrollable Durations, proposing a portfolio of

techniques to deal with the landscape of sub-classes of the problem.

First, we extend an existing temporal planner to deal with temporal

4

CHAPTER 1. INTRODUCTION

uncertainty, leveraging our previous contribution on the strong con-

trollability of disjunctive temporal networks with uncertainty. This

research has been published in [CMR15b]. Then, we present a general

translation from a very expressive language with uncertainty in the

duration of actions to a temporal planning problem without uncer-

tainty. The compilation is such that each plan in the target model

corresponds to a strong plan and vice-versa. This research appears

in [MDS15].

6. Finally, we focus on the strong temporal planning problem for timeline-

based planning, providing a novel formalization of the problem and a

theoretical formalization of a bounded-horizon solution. This formal-

ization is described in [CMR13].

7. As a side-product of the work on this thesis, we contributed in the defi-

nition of the ANuML language, that extends the syntax and semantics

of the Action Notation Modeling Language (ANML) to express several

kinds of uncertainty. This extension is currently part of the official

draft of the ANML manual.

1.2 Experimental Evaluations

Throughout the thesis, we present several empirical evaluations of the pro-

posed techniques and approaches. In order to allow for experiment repli-

cation and for future comparison, all the experimental data is available.

All the software we developed and the benchmark instances are available

online at http://www.mikand.net/thesis.

Almost all the tools we developed are written in the Python program-

ming language and leverage the use of SMT solvers. For this reason, we

started an open-source project with some colleagues to develop an effective

5

http://www.mikand.net/thesis

1.3. STRUCTURE OF THE THESIS

library in Python for simplifying the development of SMT-based programs.

The project, currently running and used by many people around the world,

is called PySMT [GM15] and can be found at http://www.pysmt.org.

The tools we developed for this thesis are based on this library.

1.3 Structure of the Thesis

The thesis is structured as follows. The next chapter introduces the logical

notations and the notions needed to understand the rest of the thesis. The

thesis is divided in three Parts, each dealing with one aspect of the general

problem at hand.

In part I, we survey and organize the state-of-the-art in scheduling and

in planning with a focus on temporal uncertainty. We propose a general

model that theoretically subsumes and categorizes all the analyzed works.

In part II, we formally introduce the family of temporal networks that

have been developed to model and reason about temporal uncertainty when

the set of activities to be carried on is bounded and known a-priori. We

then propose several SMT encodings to efficiently solve the strong con-

trollability problem for disjunctive temporal networks, several SMT-based

algorithms to solve the weak controllability problem. Finally, we propose

a new, general framework that accommodates a wide range of temporal

networks and we present a reduction from the dynamic controllability for

such networks to Timed Game Automata (TGA). Thanks to this reduction

we can solve a previously open problems and synthesize a dynamic strategy

in a closed-form.

In part III, we analyze the problem of planning in presence of tempo-

ral uncertainty. We first present a formal planning language to express

temporal uncertainty in the duration of the actions: we develop a number

of techniques to address the problem of Strong Temporal Planning with

6

http://www.pysmt.org

CHAPTER 1. INTRODUCTION

Uncontrollable Durations. We experimentally evaluate the merits of each

technique on a number of benchmark problems. Then, we apply a similar

idea to the world of timeline-based planning, proposing a formalization of

the problem in first order logic.

Finally, in chapter 14 we conclude the thesis drawing our conclusions

and highlighting directions for future work.

7

1.3. STRUCTURE OF THE THESIS

8

Chapter 2

Background

In this chapter, we introduce the basic notation and notions that are used

throughout the rest of the thesis. In section 2.1 we introduce a basic

first-order logic language and notation, while in section 2.2 we present

a quick overview of the modern Satisfiability Modulo Theory framework.

Then, in section 2.3 we introduce the Timed Game Automata framework

and, finally, in section 2.4 we discuss ways to canonically represent and

manipulate time regions using Difference Bound Matrices and Federations.

2.1 Technical Preliminaries

Our setting is standard first order logic [Kle67]. The first-order signature

is composed of constants, variables, function symbols, Boolean variables,

and predicate symbols. A term is either a constant, a variable, or the

application of a function symbol of arity n to n terms. A theory constraint

(also called a theory atom) is the application of a predicate symbol of arity

n to n terms. An atom is either a theory constraint or a Boolean variable.

A literal is either an atom or its negation. A clause is a finite disjunction

of literals. A formula is either true (>), false (⊥), a Boolean variable, a

theory constraint, the application of a propositional connective (¬, ∧, ∨,

→,↔) of arity n to n formulae, or the application of a quantifier (∀, ∃) to an

9

2.1. TECHNICAL PRELIMINARIES

individual variable and a formula. If t1 and t2 are terms, and φ is a formula,

an if-then-else (ITE) term is ite(φ, t1, t2). The semantics of an ITE term is

the usual if-then-else semantics from programming languages. For example,

the term ite(x > y, x, y) where x and y are numeric variables, corresponds

to the maximum between x and y. An ITE term ite(φ, t1, t2) occurring in

a formula ψ can be rewritten by substituting each occurrence with a fresh

variable v and by conjoining (¬φ ∨ (v = t1)) ∧ (φ ∨ (v = t2)). See [KSJ09]

for a thorough discussion. We use x, y, v, . . . for variables, and ~x, ~y,~v, . . .

for vectors of individual variables. Terms and formulae are referred to as

expressions. Formulae are denoted with Greek letters: φ, ψ, Let ~x be a

vector of variables, we indicate the i-th variable in the vector with xi. We

write φ(x) to highlight the fact that x occurs in φ, and φ(~x) to highlight

the fact that the free variables of φ are variables in ~x. We indicate with

Q~x.φ(~x) the formula Qx1.Qx2. . . . Qxn.φ(x1, . . . , xn), where Q ∈ {∀,∃}.
Let φ(~x) =̇

∧
i φi(~xi) be a conjunction of formulae. We write φ(~x)|~y to

represent the conjunction of the φi(~xi) in which at least one variable of ~y

occurs in ~xi.

Substitution is defined in the standard way [Kle67]. We write φ[s/t] for

the substitution of every occurrence of term t in φ with term s. Let ~t and ~s

be vectors of terms having the same length, we write φ[~s/~t] for the parallel

substitution of every occurrence of ti in φ with si.

We use the standard semantic notions of interpretation and satisfiability.

We call satisfying assignment or model of a formula φ(~x) a total function

µ that assigns to each xi an element of its domain such that the formula

φ[µ(~x)/~x] evaluates to > provided an interpretation of function symbols.

A formula φ(~x) is satisfiable if and only if it has a satisfying assignment

and an interpretation.

Following standard naming, we say that a formula is in Conjunctive

Normal Form (CNF) if it is expressed as a conjunction of disjunctions of

10

CHAPTER 2. BACKGROUND

atoms or negations of atoms:
∧h
i=1

∨k
j=1 l, l being an atom or the negation

of an atom (usually called literal). Each disjunction in a CNF formula is

called a clause. It is well known that each formula can be reduced to an

equi-satisfiable CNF formula of linear size [dlT90].

Another important normal form is the Disjunctive Normal Form (DNF):

a formula is in DNF if it is expressed as a disjunction of conjunctions of

literals:
∨h
i=1

∧k
j=1 l, l being an atom or the negation of an atom. Each

formula can be reduced to a DNF formula; however, the size of the DNF

formula is in general exponential.

Finally, we consider the Negation Normal Form (NFF). A formula is

in NNF if the negation operator (¬) is only applied to atoms, and the

only other Boolean operators present in the formula are conjunctions and

disjunctions. Any quantifier-free formula can be reduced to an equivalent

linear-size NNF formula.

2.2 Satisfiability Modulo Theories

Given a formula φ, satisfiability is the problem of finding a satisfying as-

signment for φ and an interpretation for the functional symbols in φ. This

problem is approached in propositional logic with enhancements of the

DPLL algorithm [DLL62]: the formula is converted into an equi-satisfiable

one in Conjunctive Normal Form (CNF); then, a satisfying assignment is

incrementally built, until either all the clauses are satisfied, or a conflict

is found, in which case back-jumping takes place (i.e. certain assignments

are undone). Keys to efficiency are heuristics for the variable selection,

and learning of conflicts [MMZ+01].

Given a first-order formula ψ expressed in a decidable background the-

ory T, Satisfiability Modulo Theory (SMT) [BSST09] is the problem of

deciding whether ψ is satisfiable. For example, consider the formula (x ≤

11

2.2. SATISFIABILITY MODULO THEORIES

y)∧((x+3 = z)∨(z ≥ y)) in the theory of real arithmetic (x, y, z ∈ R, and

the symbols ≤, +, = and ≥ are interpreted in the usual way). The for-

mula is satisfiable and a satisfying assignment is {x := 5, y := 6, z := 8}.
The theory of real arithmetic interprets “3” as the real number 3 and

+,=, <,>,≤,≥ as the usual mathematical functions and relations.

There exist several theories of practical interests: Equality and Unin-

terpreted Functions, Linear Arithmetic over the Reals and the Integers,

Non-Linear Arithmetic, Difference Logic, Bit Vectors, Arrays and others.

In this thesis, we concentrate on the theory of linear arithmetic over the

real numbers (LRA) because it offers a natural and convenient way to

model continuous, dense time. A formula in LRA is an arbitrary Boolean

combination, a universal (∀) or an existential (∃) quantification, of atoms

in the form
∑

i aixi ./ c where ./∈ {>,<,≤,≥, 6=,=}, every xi is a real

variable, every ai is a real constant and c is also a real constant. For brevity,

given two real constants l, u such that l ≤ u, we denote with t ∈ [l, u] the

formula l ≤ t∧ t ≤ u. With a slight abuse of notation, we allow l or u to be

−∞ or +∞, respectively. The semantics is obtained by simply removing

the constraint containing ∞ as it is tautological. For example, t ∈ [2,∞]

simply becomes t ≥ 2; t ∈ [−∞, 5] simply becomes t ≤ 5 and t ∈ [−∞,∞]

becomes >.

Real Difference logic (RDL) is the fragment of LRA where all the atoms

have the form xi − xj ./ c. We denote with QF LRA and QF RDL the

quantifier-free fragments of LRA and RDL, respectively.

An SMT solver [BSST09] is a decision procedure which solves the satisfi-

ability problem for a formula expressed in a decidable subset of First-Order

Logic. The most efficient implementations of SMT solvers use the so-called

“lazy approach”, where a SAT solver is tightly integrated with a T-solver,

that is demanded to decide conjunction of constraints in the theory T.

The role of the SAT solver is to enumerate the truth assignments to the

12

CHAPTER 2. BACKGROUND

Boolean abstraction of the first-order formula. The Boolean abstraction

has the same Boolean structure of the first-order formula, but “replaces”

the predicates which contain theory information with fresh Boolean vari-

ables. The Boolean abstraction of (x ≤ y) ∧ ((x + 3 = z) ∨ (z ≥ y)) is

a∧(b∨c), where a, b, c are fresh Boolean variables. The T-solver is invoked

when the SAT solver finds a satisfying assignment for the Boolean abstrac-

tion: the satisfying assignment to Boolean abstraction maps directly to a

conjunction of T atoms, which the T-solver can handle. If the conjunc-

tion is satisfiable also the original formula is satisfiable. Otherwise the T-

solver returns a conflict set which identifies a reason for the unsatisfiability.

Then, the negation of the conflict set is learned by the SAT solver in order

to prune the search. Examples of solvers based on the “lazy approach”

are MathSAT [BCF+08, CGSS13], Z3 [dMB08], Yices [DdM06b] and

OpenSMT [BPST10]).

2.2.1 SMT Notation

In this thesis, we present algorithms that use different features provided by

modern SMT solvers, such as optimization [ST12]. In the algorithm pseud-

code, we indicate with the prefix “SMT.” the functions that are related

with SMT solving. In particular, the function SMT.declareRealVar(v)

declares an SMT variable named v of real type. SMT.solve(φ(~x)) is

a function that checks the satisfiability of the formula φ(~x) and returns

“SAT” if and only if the formula is satisfiable, otherwise the function re-

turns “UNSAT”. SMT.getModel() returns a satisfying assignment to

the formula that was checked using SMT.solve if the answer was “SAT”.

Finally, the function SMT.solveMaximizing(φ(~x), h(~x)) behaves like

SMT.solve(φ(~x)) but generates the model that maximizes the evalua-

tion of the function h(~x).

In an incremental setting [CGSS13, dMB08], we assume a stateful SMT

13

2.2. SATISFIABILITY MODULO THEORIES

solver that has the following capabilities. SMT.assert(φ(~x)) conjoins

the formula φ(~x) to the state of the SMT solver, without performing any

solving operation. SMT.push() records a backtrack point in the sate of

the SMT solver in a stack. The last recorded state can be restored by

calling the SMT.pop() function. Finally, when using incrementality we

assume that the SMT.solve function can be called without arguments to

check the satisfiability of the conjunction of the currently asserted set of

formulae.

2.2.2 Quantifiers in LRA

Traditionally, SMT solvers have been focused on solving quantifier-free for-

mulae, but recently techniques to deal with quantifiers on selected theories

have been developed and implemented. For the sake of this thesis we are

interested in dealing with quantifiers in the LRA theory. Some solvers

(e.g. Z3) natively support LRA quantifiers, but others (e.g. MathSAT)

are still limited to the quantifier-free fragment.

The LRA theory admits quantifier elimination1, this means that from

any LRA formula it is possible to derive a logically-equivalent, quantifier-

free LRA formula (in QF LRA).

Several automated techniques for quantifier elimination exist for the

LRA theory: Fourier-Motzkin [Sch98] and Loos-Weispfenning [LW93] are

two well-known examples that we will use in this thesis.

Fourier-Motzkin Elimination

In order to decide the satisfiability of a conjunction of constraints in linear

real arithmetic, we can apply the Fourier-Motzkin elimination (FME) tech-

1A theory T is said to admit quantifier elimination, if for every quantified formula φ in T, there exist a

quantifier-free formula φ′ that is logically equivalent to φ. It has been proven that LRA admits quantifier

elimination [Sch98].

14

CHAPTER 2. BACKGROUND

nique. The method was discovered in 1826 by Fourier and re-discovered

by Motzkin in 1936.

Consider the following formula where {x1, ..., xn} is a set of real variables

(xi ∈ R) and ai,j, bi ∈ R are real coefficients.

∃xe.
∧m
i=1(
∑n

j=1 ai,jxj) ≤ bi

The elimination method allows the elimination of the variable xe and

obtain a new system without xe that is equi-satisfiable with respect to the

original one.

The basic principle of the method consists in the projection onto the xe

dimension of the polytope described by the system

m∧
i=1

(
n∑
j=1

ai,jxj) ≤ bi.

A detailed description of the method is beyond the scope of this thesis;

the interested reader can consult Schrijver’s thorough description [Sch98]

and Kessler’s efficient implementation [Kes96].

If we are given a general formula ∃xe.φ(~X), we can näıvely apply this

technique by computing the Disjunctive Normal Form of φ(~X) and apply

the Fourier-Motzkin technique on each disjunct separately, because the

existential quantification distributes over the ∨. More advanced approaches

are also possible [Mon08]. The computational cost of quantifier elimination

id doubly exponential.

Loos-Weispfenning Elimination

Another effective approach for LRA quantifier elimination is the Loos-

Weispfenning technique [LW93], named after Rüdiger Loos and Volker

Weispfenning. The technique solves the same problem of FME but is

based on a completely different mechanism. The idea behind Loos and

15

2.3. TIMED GAME AUTOMATA

Weispfenning elimination (LWE) approach is that an existentially quanti-

fied formula

∃x.φ(x, ~y)

with free variables ~y = y1, ..., yn can be replaced by a formula ψ(~y)

ψ(~y) = φ(x̄1, ~y) ∨ ... ∨ φ(x̄m, ~y)

where x̄1, ..., x̄m are expressed as functions of ~y. In the case of Loos-

Weispfenning elimination the number of produced disjuncts is linear, but

the overall complexity bound is still doubly exponential in the number of

disjuncts of ψ(~y).

2.3 Timed Game Automata

We now consider a formal framework for the modeling of two-players timed

games, namely the Timed Game Automata framework.

A finite automaton [LP98] comprises a finite set of locations and a finite

set of labeled transitions (or actions). One of the locations is called initial

(or starting); a distinguished subset of locations are marked as final. Each

labeled transition specifies a legal move from one location to another.

A Timed Automaton(TA) [AD94] augments a finite automaton includ-

ing constraints on non-negative, real-valued variables called clocks. To

differentiate clocks from regular variables we use the over-line writing: we

indicate variables with letters (e.g. x) and clocks with over-lined letters

(e.g. x). Each transition in a TA may include temporal constraints, called

guards, that disable the transition if the current clock values do not satisfy

those constraints. Each transition may also include clock resets that cause

specified clocks to be reset to 0 whenever the transition is taken. Finally,

each location may include an invariant: a constraint specifying the condi-

tions under which the automaton may stay in that location. Definition 1

16

CHAPTER 2. BACKGROUND

formalizes this structure.

Definition 1 (Timed Automaton). A Timed Automaton (TA) is a tuple,

A = (L, l0,Act ,X , E, Inv), where:

• L is a finite set of locations;

• l0 ∈ L is the initial location;

• Act is a set of actions;

• X is a finite set of real-valued clocks;

• E ⊆ L×H∩k (X)× Act × 2X × L is a finite set of transitions; and

• Inv : L→ H∩k (X) associates an invariant to each location.

Elements in H∩k (X) are conjunctions of constraints2 of the form, x ./ k or

y − x ./ k, where x, y ∈ X , k ∈ R, and ./ is one of <,≤,=, > or ≥.

A state of a TA is a pair 〈l, v〉, where l ∈ L and v : X → R|X | is a total

assignment for the clocks.

A transition in a TA is either discrete or timed. A discrete transition

〈l1, v1〉
a−→ 〈l2, v2〉 is such that a ∈ Act , (l1, g, a, R, l2) ∈ E, v1 |= g, v2 |=

Inv(l2), v2(x) = v1(x) if x /∈ R and v2(x) = 0 if x ∈ r. Essentially,

a discrete transition makes a move in the automaton according with the

transition relation E. The move is possible if the guard is satisfied by the

starting state and the resulting state is obtained by changing the location

and resetting the clocks in R. A timed transition is obtained by letting a

certain amount of time to pass: 〈l1, v1〉
δ−→ 〈l1, v1+δ

|X |〉. However, we cannot

violate the location invariant: if 〈l1, v1〉
δ−→ 〈l1, v2〉, then v2 |= Inv(l1). A

TA is a formalism that models a set of traces (called “runs”). A run is

a sequence of states 〈〈l0,~0〉, s1, s2, · · ·〉 where ~0 indicates the assignment of

all the clocks to 0, si
δ−→ si+1 if i is even and si

a−→ si+1 if i is odd.
2Essentially, guards are expressed as purely-conjunctive (convex) QF RDL formulae.

17

2.3. TIMED GAME AUTOMATA

X Y

〈c ≥ 1; pass; {c}〉

〈c ≥ 5; gain; {c}〉

c ≤ 3

Figure 2.1: A sample timed automaton. The bold arrow with no predecessor indicates the initial

location X, while other arrows are the transitions.

Figure 2.1 shows a sample timed automaton. The timed automaton

has one clock, c. X is the initial location. X’s invariant is c ≤ 3. Each

transition has a label, 〈φ; s; R〉, where φ is the guard, s is a name for the

transition, and R is the set of clocks it resets. A run starts in the initial

location, X, with c = 0. X’s invariant, c ≤ 3, and the guard, c ≥ 1, on

the pass transition, together ensure that the timed automaton must take

the transition from X to Y at some time when 1 ≤ c ≤ 3. When taken,

that transition resets c to 0. Afterwards, the gain transition, whose guard

is c ≥ 5, could be taken back to X at any time for which c ≥ 5. If taken,

the gain transition also resets c to 0. However, since Y has no invariant,

the timed automaton could instead remain at Y forever.

In turn, a Timed Game Automaton(TGA) generalizes a Timed Au-

tomaton by partitioning the set of transitions into controllable and uncon-

trollable. A TGA can be used to model a two-player game between an

agent and the environment, where the agent controls the controllable tran-

sitions, and the environment controls the uncontrollable transitions. TGA

are formally defined in definition 2.

Definition 2 (Timed Game Automaton). A Timed Game Automaton

(TGA) is a Timed Automaton whose set of actions, Act, is partitioned

into controllable (Act c) and uncontrollable (Actu) actions.

Figure 2.2 shows a TGA with three locations: ctrl, env and goal,

18

CHAPTER 2. BACKGROUND

envctrlgoal
〈c < γ; win; ∅〉

〈>; pass; {δ}〉

〈δ > 0; gain; ∅〉

〈c = γ ∧ a < γ; exC; {c}〉
〈a = γ; exA; {a}〉

Figure 2.2: A sample Timed Game Automaton. Controllable transitions (belonging to Actc) are

solid, while uncontrollable transitions (belonging to Actu) are dashed. Transitions are labeled

with triplets representing the guard, the action label and the set of clocks to be reset.

where env is the initial location. It has four clocks: a, c, γ and δ. The solid

arrows represent controllable transitions; the dashed arrow represents the

one uncontrollable transition. For example, the transition from ctrl to

itself has the label, 〈a = γ; exA; {a}〉, which specifies that it can only be

taken if a and γ have the same value; and that taking this transition resets

a to 0. Consider the following possible run of this TGA. It begins at the

initial location env, with all clocks set to 0. Five units of time later, when

all clocks read 5, the agent takes the gain transition to ctrl. (The guard

is satisfied; and no clocks are reset.) Then, at time 6, the agent takes the

exA transition, which causes a to be reset to 0. Then, at time 7, the agent

takes the pass transition back to env, which resets δ back to 0. At this

point, δ = 0; a = 1; and c = γ = 7. Thus, the environment can take the

exC transition from env to itself, resetting c to 0. Then, at time 10, the

agent takes the gain transition back to ctrl, and at 11 the win transition

to the goal location.

We adopt the common practice of labeling certain locations as urgent.

An urgent location is one in which players are prevented from waiting.

Making a location ` urgent is equivalent to: (1) introducing a new, fresh

clock c that is reset by every transition entering `; and (2) conjoining a

new invariant, c = 0, to `.

19

2.4. CLOCKS AND TIME REGIONS

For any TGA, different kinds of games can be modeled [CDF+05]. In a

reachability game, the controller (or agent) seeks to move the TGA into one

of the winning locations within a finite amount of time. In the avoidance

game, the controller seeks to prevent the TGA from entering a certain set

of locations in a valid infinite run.

In the context of TGA games, a strategy is, in general, a mapping from

partial runs to transitions: each partial run represents a history of the game

that has an associated transition to be taken to win the game, each time

such history is encountered. A strategy is winning if it allows the controller

to invariably win the game no matter which counter-move the opponent

takes. We consider memory-less strategies, since they have been shown

to be sufficient for reachability and avoidance games [MPS95, CDF+05].

Intuitively, a memory-less strategy associates a state of the system to either

an action to be executed or a special symbol λ that stands for “wait” (i.e.,

do nothing; wait until something changes).

Definition 3. For a TGA, (L, l0,Act ,X , E, Inv), a memory-less strategy

is a mapping f : L× R|X |>=0 → Actc ∪ λ.

Further details on the TGA semantics are available in [MPS95].

2.4 Clocks and Time Regions

In order to reason on TGA and to solve any kind of query on this formalism,

we need ways to represent and manipulate constraints in H∩k (X). The set

H∩k (X) is defined as the set of all possible formulae φ generated by the

following grammar:

φ ::= > | ⊥ | x ./ k | x− y ./ k | φ ∧ φ

Essentially, each of these formulae is just a conjunction ofQF RDL atoms.

20

CHAPTER 2. BACKGROUND

In fact, some approaches use SMT-based algorithm to analyze Timed

Automata [BL11, KJN12]. Analogously to the classical Bounded Model

Checking approach for Finite Automata [BCC+03], these techniques work

by representing paths in the TA by means of SMT formulae.

Another way of dealing with the time constraints in TA and TGA, is by

using specialized data structures called Difference Bound Matrices (DBM),

that have been devised to canonically represent and to manipulate the

elements of H∩k (X).

We first define a special clock c0 that always has value 0. Now, given

the set of clocks X , any constraint H∩k (X) can be equivalently rewritten as

a conjunction of terms in the form xi−xj ≺ k where each xi, xj ∈ X ∪{c0},
k ∈ R and ≺∈ {<,≤}. Clearly, when both xi − xj ≺ k1 and xi − xj ≺ k2

constraints are present, we can simplify the formulation by taking only

xi − xj ≺ min(k1, k2). Notably, this simplification always yields a formula

with no more than (|X| + 1) ∗ (|X| + 1) constraints, independently of the

input formula size.

In this simplified form, we can represent the whole constraint using a

matrix Z of cardinality |X|+ 1× |X|+ 1 defined as follows.

Z[i, j] =

〈k,≺〉 if xi − xj ≺ k appears in the simplified form

〈0,≤〉 if i = 0 or i = j

∞ otherwise

A pivotal property of DBMs is the existence of a canonical form. Given

any DBM Z we can always derive a canonical DBM χ(Z) that is identical

for each logically equivalent DBM Z ′. Hence, given any two formulae

φ, ψ ∈ H∩k (X) having DBMs Zφ and Zψ respectively, if φ ↔ ψ is valid,

then χ(Zφ) = χ(Zψ). The normal form of a DBM can be computed in

polynomial time in the size of the DBM; we refer the reader to [Ben02] for

a thorough description of DBMs and their efficient normalization.

21

2.4. CLOCKS AND TIME REGIONS

For the sake of this thesis, we just need to say that efficient and canon-

ical implementation of DBM exists [Bul12] and that several manipulation

operations for canonical DBM are supported. In particular, we will use the

following operations.

• Conjunction (φ ∧ ψ)

• Time elapse (φ1 =̇ ∃δ ≤ 0.φ[x→ (x+ δ) | x ∈ T])

• Time rewind (φ$ =̇ ∃δ ≥ 0.φ[x→ (x+ δ) | x ∈ T])

• Clock Reset (ρ(φ, x) =̇ (∃x.φ) ∧ x = 0)

Given a time constraint φ, φ1 is the result of letting time pass indefi-

nitely, while φ$ is the time region from which it is possible to reach φ by

letting time pass. The ρ(φ, x) operation unconditionally assigns the x clock

to value 0 (clock reset). These are common operations in Timed Automata

analysis. In addition, it is possible to check a DBM for emptiness (check

if there exists at least one assignment to the clocks that satisfy the time

constraint).

One last feature we exploit is the possibility of using and manipulating

sets of DBM representing finite disjunctions. We call “time region” a dis-

junction of constraints in H∩k (X): given a set of clocks X, the set of all

possible time regions is given by all the possible formulae expressed by the

following grammar:

φ ::= > | ⊥ | x ./ k | x− y ./ k | φ ∧ φ | φ ∨ φ | ¬φ

where ./∈ {<,≤, >,≥,=}.
Analogously to QF RDL formulae, time regions can be expressed as

finite disjunctions of polihedra, and in particular, they can be expressed

as disjunctions of DBMs. In fact a simple, yet effective way of manipu-

lating time regions is to represent them as sets of DBMs. Such a data

22

CHAPTER 2. BACKGROUND

structure [Ben02] is called “Federation” (of DBMs). The same operations

defined for DBMs are also defined for Federations and dedicated software

packages exists [Bul12].

23

2.4. CLOCKS AND TIME REGIONS

24

Part I

State-of-the-Art Survey

Introduction

The literature in model-based temporal planning and scheduling is vast

and diverse. Several variations and declinations of the problems have been

defined and studied. As a result, the landscape is quite scattered: different

modeling frameworks, assumptions and execution models make it difficult

to see the unifying picture, and to understand what has been done and

what needs further research.

The goal of this Part is to survey the field of scheduling and planning

under uncertainty: we classify existing works discriminating different as-

sumptions and different underlying models. We first propose a general

framework that can be used to classify a number of planning and schedul-

ing techniques. Our framework assumes a generic plan is given: we do

not define the plan structure at this stage, we intend a plan as a general

prescription provided by a planner. An executor is demanded to send ap-

propriate commands to a plant following the plan. The plant represents

the controlled system, it receives the commands, and provides readings of

its state by notifying the executor. We identified five main characteristics

that can be used to classify each situation:

• Fixed or open set of actions to be executed (Scheduling vs. Planning)

• Presence or absence of non-determinism in the outcome of activities

• Full or no observability of the domain variables at run-time

• Presence or absence of temporal uncertainty

27

• Full or no observability of the duration of actions

Depending on these execution assumptions we can provide a classification

of a wide area of planning and scheduling tasks. In this survey part, we only

consider “synthesis” techniques, that are techniques to produce a schedule

or a plan for a given problem, disregarding other types of problems such

as schedule/plan validation or model validation. For each technique in the

literature, we provide a short description surveying the major characteris-

tics.

There are other surveys covering various aspects of AI planning and

scheduling. The closest to what we discuss in this Part is the paper by

Ingrand and Malik [IG14]. Its focus is on aspects of temporal reasoning and

planning that are specifically important for robotics with a wide overview

of the different components of a deliberation system. Compared to this

Part, the survey has some works in common, but our focus is on temporal

uncertainty in general and we do not limit ourselves to robotic deliberation

planning.

Structure of this part. This Part of the thesis is structured as follows. In

chapter 3 we describe and formalize our execution model. The abstract

model yields a classification table that we use throughout the Part. We

then survey existing works in the realm of scheduling (chapter 4) and of

temporal planning (chapter 5). In chapter 6 we discuss relevant exten-

sions of the problem that are orthogonal to the discussed model, but are

important for their literature coverage or for the practical applicability of

planning and scheduling techniques. Finally, in section 6.4 we summarize

the part, highlighting several possible lines of research.

28

Chapter 3

Execution Model

In this section, we provide a unifying framework in which different flavors

of scheduling and temporal planning problems can be mapped.

The framework is designed to abstract a wide range of real-world appli-

cations and to subsume many views of what a planning system is supposed

to do. We identify a number of features that can be enabled or disabled

yielding different classes of problems. This will in turn result in a clas-

sification table that we use in the rest of the Part to classify the various

problems and techniques.

Our theoretical execution model is composed of two interacting compo-

nents: a plant and a plan executor. The plant represents the physical agent

together with the environment it is immersed in, while the plan executor

is the component demanded to send commands to the plant and (possibly)

receive observations of the plant status and events.

At an abstract level, the plant is an open system that can evolve in many

possible ways, it can be (partially) controlled by specifying commands in

time. It can be configured to provide interrupt-style signals to the executor

when something of interest changes. For example, it can be instructed to

raise a signal whenever the temperature surpasses a given threshold.

In the following, we detail the two components and we derive a classifi-

29

3.1. PLANT INTERFACE

Plant

Plan Executor

sta
rt(a

)

en
d
(a
c)en

d
(a
u
)

ch
a
n
g
ed

(~p
)

Figure 3.1: Visualization of the interface between the plant and the executor.

cation of the plan kinds that are sensible for this model.

3.1 Plant Interface

First, we describe the interface between the Plant and the Executor. Fig-

ure 3.1 provides a pictorial representation of the interface.

We assume that the plant has an embedded concept of “activity”. An

activity is a process that must be initiated using a starting command and

runs for a certain amount of time. It can produce effects on the plant

and it may require some conditions during its executions to be correctly

executed. The effects of an activity can be non-deterministic: the changes

on the plant can be expressed as relations (not functions) of the plant

state. For example, an activity “roll a dice” has an outcome that is a-priori

unknown regardless of our complete knowledge of the state of the plant.

However, it might be possible to observe the outcome of the activity (after

its termination). More practically, many activities can have a nominal

outcome or several fault conditions that can non-deterministically arise

and yield diverse consequences.

30

CHAPTER 3. EXECUTION MODEL

A first distinction between activities is embodied in our framework. In

fact, we differentiate controllable and uncontrollable activities: a control-

lable activity can be started and ended by dedicated commands, while an

uncontrollable activity can be started, but its duration is not under the

control of the plant and therefore it is terminated by the environment.

The plant can accept in input two possible commands:

• start(a). Meaning that an activity a must be immediately started

• end(ac). Meaning that the started controllable activity ac must be

immediately terminated.

We disallow the possibility of terminating an uncontrollable activity by a

command.

The plant generates a number of stimuli for the executor. In partic-

ular, the plant wakes up the executor each time an uncontrollable activ-

ity terminates, providing the information about which activity terminated

(end(au)). Moreover, the plant can be configured to interrupt the executor

each time a Boolean expression expressed on the plant variables changes its

truth value. For example, the plant can wake up the scheduler each time

the temperature of the room goes below a certain threshold. We call these

stimuli predicates. The number of predicates must be finite and expressed

as computable functions of the plant state. We indicate with ~p the set of

predicates. Each time a predicate changes its value, all the new predicate

values are transmitted to the executor (indicated with a changed(~p) event).

This feature provides a mean for the partial observation of the plant state:

while it may prevent the full observation of the internal plant state, it al-

lows the executor to be notified each time something relevant for the plan

changes in order to react accordingly.

We highlight that the interaction between the plant and the executor

happens in real time, there is no possibility of delaying a command in the

31

3.2. PLAN EXECUTOR

Time

@
0

Executor Decision
st
ar
t(
α
) end(α

)

Executor Decision

ti
m
eo
ut

(1
5.

5) changed(~p)

Executor Decision

st
ar
t(
β) @

22.5

Executor Decision

0 7 15 22.5

Figure 3.2: Visualization of the timing of a possible execution. The x axis represents time. Each

time the executor is woken up by a signal from the plant the computation happens in no time

and a command for the plant is produced, or a timeout alarm is set, so that the executor will

wake up at a specific time.

plant nor any anticipation or delay in the observation. The executor must

take care of accommodating the prescriptions in the plan given this limited

capabilities.

At this stage, we do not detail the goal of the plan, limiting ourselves

to consider it a checkable condition on a finite trace of the plant.

3.2 Plan Executor

The plan executor is demanded to send to the plant the commands in

time following the prescription of the plan, possibly taking into account

the observations coming from the plant. Internally, the executor can be

seen as any program or function, mapping a history of the observation into

a stream of commands for the plant. We do not consider the computa-

tion time of the executor, for this reason we imagine an execution schema

as depicted in figure 3.2, in which the time flow is interleaved with the

computation time of the executor.

We assume that the executor can send commands only when it receives

a stimulus either from the plant or from a timer. The latter, can be seen

as an internal alarm clock that wakes up the system when a pre-specified

deadline is met. For example, at time 3 the executor can decide to sleep

for 5 time units. At this point, if no stimulus is produced by the plant,

32

CHAPTER 3. EXECUTION MODEL

at time 8 the executor wakes up and can send a command. If no wake up

deadline is set by the executor, it sleeps until a stimulus is received by the

plant (an uncontrollable activity terminates or a predicate transitions from

one truth value to another).

We define a number of classes also for the executor depending on whether

it is allowed to observed past events or if it has a complete knowledge of

the future of the plant.

3.3 Formal Model

We formalize the Plant P as a set of traces over a set of variables V .

This formalization keeps the whole generality of a plant evolution, without

committing to a specific model.

We assume the set of variables V of the plant is given, and for each

variable v ∈ V we define the domain of v (written Dom(v)) as the set of

possible values for v.

We first define a trace as a function that maps a variable f and a

non-negative real number representing a time into a value v for f (with

v ∈ Dom(f)). We also employ a special value: .

Definition 4 (Timed Trace). Given a set of variables V , a timed trace is

a function T : V ×R+ →
⋃
v∈V Dom(v)∪{ } such that for any v ∈ V and

any t ∈ R+, T (v, t) ∈ Dom(v). We write T (t) with t ∈ R+ to indicate the

assignment {v = T (v, t) | v ∈ V }.

In this setting, a plant is a (possibly infinite) set of traces. In fact,

each trace represent a possible temporal evolution. In this view, we clearly

subsume branching time; in fact, a temporal situation that can evolve

in different ways is simply represented as the collection of possible paths

having a common prefix.

33

3.3. FORMAL MODEL

Definition 5 (Plant). A plant P defined over a set of variables V is a set

of traces over V .

The plant can evolve by itself (for example, exogenous events and non-

determinism are instances of this behavior) but it can also be controlled

via activities.

We assume that for each possible activity a, a special variable va ∈ V
exists with Boolean domain: {>,⊥}. This variable is set to > the moment

activity a is started and is reset to ⊥ when it ends. In this way, we can

monitor each activity in a timed trace. Activities may change the status

of the plant deterministically or non-deterministically.

We consider an interface of the plant that allows the executor to start

any activity at any time and to terminate a controllable activity at any

time. Moreover, the plant will provide some observations to the executor.

In particular, it provides an instantaneous notification of the termination

of an uncontrollable activity and a notification whenever a finite and pre-

defined set of predicates ~p defined over V changes its value.

Definition 6 (Interface). The interface of a plant P over V is a tuple

〈Ac, Au, ~p〉, where Ac is a set of controllable activities, Au is a set of un-

controllable activities and ~p is a finite set of predicates over V .

A command is then an input to the interface, and we define a history

of commands as a set of time-stamped commands.

Definition 7 (Command). Given a plant interface 〈Ac, Au, ~P 〉, a command

C is either start(a) with a ∈ Ac ∪ Au or end(ac) with ac ∈ Ac.

Definition 8 (Command History). Given a plant interface 〈Ac, Au, ~p〉, a

command history HC is a finite set of tuples 〈C, t〉, where C is a command

for the interface and t ∈ R+.

Similarly, an observation is a possible output of the interface, and we

define a history of observations as a set of time-stamped observations.

34

CHAPTER 3. EXECUTION MODEL

Definition 9 (Observation). Given a plant interface 〈Ac, Au, ~p〉, an obser-

vation O is either changed(~p) or end(au) with au ∈ Au.

Definition 10 (Observation History). Given a plant interface 〈Ac, Au, ~p〉,
an observation history HO is a finite set of tuples 〈O, t〉, where O is an

observation for the interface and t ∈ R+.

Given a history of observations, the set of traces characterizing the plant

can be pruned to be limited to the one matching the history of observation.

Similarly, given a history of commands.

Definition 11 (Restricted Observation Traces). Given a plant interface

〈Ac, Au, ~p〉 for plant P and an observation history HO, we define the traces

restricted to HO as a subset TP(HO) of P where each timed trace T ∈
TP(HO) is such that:

• For each 〈end(a), t〉 ∈ HO, T (va, t) = > and T (va, t+ k) = ⊥ for any

k ∈ [0, ε] with a sufficiently small ε > 0.

• For each 〈changed(~p), t〉 ∈ HO, T (t) |= ~p and T (t − k) 6|= ~p for any

k ∈ [0, ε] with a sufficiently small ε > 0.

• For each t ∈ R+ and each a ∈ Au such that T (va, t) = > and T (va, t+

k) = ⊥ for any k ∈ [0, ε] with a sufficiently small ε > 0, 〈end(a), t〉 ∈
HO.

• For each time t ∈ R+ in which the predicates ~p have truth values ~x

(T (t) |= ~pi if and only if ~xi is true), and at time t − k have truth

values ~y, ~x 6= ~y for any k ∈ [0, ε] with a sufficiently small ε > 0,

〈changed(~p), t〉 ∈ HO.

Definition 12 (Restricted command traces). Given an interface 〈Ac, Au, ~p〉
for plant P and a command history HC, we define the traces restricted to

HC as a subset TP(HC) of P where each timed trace T ∈ TP(HC) is such

that:

35

3.3. FORMAL MODEL

• For each 〈end(a), t〉 ∈ HC, T (va, t) = > and T (va, t+ k) = ⊥ for any

k ∈ [0, ε] with a sufficiently small ε > 0.

• For each 〈start(a), t〉 ∈ HC, T (va, t) = > and T (va, t − k) = ⊥ for

any k ∈ [0, ε] with a sufficiently small ε > 0.

• For each t ∈ R+ and each a ∈ Ac such that T (va, t) = > and T (va, t+

k) = ⊥ for any k ∈ [0, ε] with a sufficiently small ε > 0, 〈end(a), t〉 ∈
HC.

• For each t ∈ R+ and each a ∈ Ac ∪ Au such that T (va, t) = > and

T (va, t − k) = ⊥ for any k ∈ [0, ε] with a sufficiently small ε > 0,

〈start(a), t〉 ∈ HC.

Intuitively, a trace yields an observation history if the observations of

that trace in time exactly produce the elements of the observation history

(each activity termination and each predicate change happen exactly at

times indicated in the observation history and no other event is present in

the trace nor in the observation history). Analogously, a command history

is compatible with a trace if each activity start or end in the trace coincides

with a start command in time and no other command is present in the trace

nor in the command history.

We assume that an impossible input infers a trace that always assigns
for each variable after the first inconsistent point, so restricted traces are

never empty sets.

We can now define the executor as a function that is invoked each time

the plant signals a change through the interface to produce a command to

be immediately executed. Such a function takes in input a plan and maps

a prefix of the observation history into a command. Intuitively, this is a

way of modeling an “infinite recall”: the plan executor never forgets the

past observations and can always rely on them for taking decisions. We

36

CHAPTER 3. EXECUTION MODEL

also model the possibility of having in input a “prediction” representing a

knowledge on the future happenings of the system.

We start by defining an observation history slice as an observation his-

tory that is limited up to a specific point in time.

Definition 13 (Observation History Slice). Given an observation his-

tory HO and a real number k ∈ R+, the slice of HO up to k is the set

HO[k] =̇ {〈x, t〉|〈x, t〉 ∈ HO, t ≤ k}.

Next, we formalize a prediction. A prediction represents knowledge on

the future outcomes of the plant: given any command history, it returns

a (possibly complete) observation history that are the predicted future

observations of the plant, if the provided command history will be imposed

on the plant. An example where such a prediction is needed is when

before executing an estimation on the activity duration is provided and

the reasoner assumes the estimation is correct. The executor can query

the prediction to project possible futures and pick the most favorable one.

Definition 14 (Prediction). A prediction is a function ρ that maps a com-

mand history HC in an observation history HO.

We can now define the executor as follows.

Definition 15 (Plan Executor). The plan executor is a function exec that

maps a plan π, an observation history HO, a prediction ρ and a time t ∈ R+

into a command C or in timeout(k) with k ∈ R+.

For every plan π, each prediction ρ, each time t ∈ R+ and each pair

of observation histories H1
O, H

2
O if H1

O[t] = H2
O[t] then exec(π,H1

O, ρ, t) =

exec(π,H2
O, ρ, t).

Intuitively, a plan executor exec(π,HO, ρ, t) is a function that is invoked

each time the executor is woken up. The function takes the observation

37

3.4. PLANT CLASSIFICATION

history to “remember” past happenings, a prediction ρ as additional knowl-

edge on the future outcomes of the plant and the absolute time t. The

function produces a command C to be immediately executed in the plant

(via the interface) or a timeout(k) decision, that signals the execution to do

nothing for k time units and then re-invoke the executor, unless a predicate

changes in the plant or an uncontrollable activity terminates.

The condition in the definition ensures that the executor ignores any

observation in HO later than t, hence the only future knowledge that is

available to the executor comes from the prediction ρ.

3.4 Plant Classification

Given this plant-executor abstraction, we are now able to define two di-

mensions of interest that we use to classify the different kinds of planning

and scheduling problems.

First, we define a deterministic plant as a plant that, given a command

history, exhibits exactly one trace. Intuitively, a deterministic plant is a

plant that can be completely controlled via the interface input.

Definition 16 (Determinism). A plant is said to be deterministic if and

only if for every possible command history HC, |TP(HC)| = 1.

If the plant is non-deterministic, we define two sub-classes of uncertainty.

A plant is said to be duration-only uncertain if the only thing that is not

under the control of the executor are the duration of activities: this means

that once a duration for each activity is fixed, the behavior of the plant is

completely deterministic.

Definition 17 (Duration uncertainty). Given a command history HC, we

define the duration uncertainty of HC as the set U(HC) =̇ {〈au, t〉 | au ∈
Au, 〈start(au), t〉 ∈ HC}.

38

CHAPTER 3. EXECUTION MODEL

Definition 18 (Duration-only uncertainty). A plant is said to be duration-

only uncertain if Au 6= ∅ and there exists a deterministic plant P ′ such that

for every possible command history HC and each T ∈ TP(HC), TP ′(Hc ∪
{〈end(au), t+ δ〉 | 〈au, t〉 ∈ U(HC), δ ∈ R+}) = {T}.

If the plant is non-deterministic, but all the activities are controllable,

then we say it is discrete-only uncertain, because the uncertainty comes

from exogenous effects or from non-deterministic activity effects.

Definition 19 (Discrete-only uncertainty). A plant is said to be discrete-

only uncertain if it is not deterministic and Au = ∅.

By complement, we say that a plant is fully uncertain if it is neither

duration-only nor discrete-only uncertain, but is non-deterministic.

Definition 20 (Fully uncertain). A plant is said to be fully uncertain if

it is not deterministic and it is neither duration-only nor discrete-only

uncertain.

Table 3.1 shows a first classification of plant types based on the cate-

gories we formalized so far. We titled the two dimensions “Activity Dura-

tion”, representing the temporal uncertainty on the duration of activities,

and “Plant Evolution” representing the discrete uncertainty.

3.5 Plan Executor Classification

At this point, we introduce a second dimension in our classification. We

consider the plant interface (Ac, Au, ~p) and we distinguish different assump-

tions on the executor capabilities. In particular, we classify executors by

their dependence or independence from the observations and the observa-

tion kind.

An executor as per definition 15 is a function that maps an observa-

tion history, a prediction and an absolute time into a command (or in a

39

3.5. PLAN EXECUTOR CLASSIFICATION

Activity Duration

Controllable Uncontrollable

P
la

n
t

E
v
o
lu

ti
o
n

Deterministic Deterministic Duration-only

Non Deterministic Discrete-only Fully uncertain

Table 3.1: Classification of plant types.

timeout(k) wait decision). As such, it is in principle possible to feed the

executor with a prediction that completely predicts the future happenings

in the plant. This models the fact that in some cases the executor has

an estimator or a sensor that “projects-away” the uncertainty before the

actual execution. In this way, the executor has access to a prediction of

the consequences of its choices on the plant and can reason accordingly.

However, this kind of prediction is not always available, therefore we first

discriminate situations where this is available from situations where it is

not. Formally, we impose this discrimination on the executor dependence

or independence on the prediction ρ instead of defining a class of executors

that do not take ρ in input, because this simplifies the formalism.

Definition 21 (Dynamic Executor). A plan executor exec is said to be

dynamic if for every plan π, every observation history HO, every time

t ∈ R+ and for each pair of predictions ρ1 and ρ2, exec(π,HO, ρ
1, t) =

exec(π,HO, ρ
2, t).

The definition imposes that no matter what is the input to the executor,

the prediction ρ is always ignored. We call “weak” an executor that is not

dynamic and has access to a complete knowledge of the future happenings

through ρ.

40

CHAPTER 3. EXECUTION MODEL

In the following, we discriminate three cases for the executor, namely

time-strong, time-dynamic and time-weak. We define a time-strong execu-

tor as an executor that does not observe the duration of uncontrollable

activities (it ignores the end(au) signal).

Definition 22 (Time-Projection). Given an observation history HO, its

time projection λt(HO) is an observation history {〈x, t〉|〈x, t〉 ∈ HO, x =

end(au)}. Given a prediction ρ its projection λt(ρ) is the function ρ ◦ λt.

Intuitively, the time projection of an observation history masks all the

predicate changed events from the history leaving only the uncontrollable

action end. Similarly, also the prediction is projected by removing discrete

events from the function images.

Definition 23 (Discrete-Projection). Given an observation history HO, its

discrete projection λd(HO) is an observation history {〈x, t〉|〈x, t〉 ∈ HO, x =

changed(~p)}. Given a prediction ρ its projection λd(ρ) is the function ρ◦d.

Analogously, the discrete projection leaves only predicate change informa-

tion, removing all the uncontrollable ends timings.

Definition 24 (Time-Strong Executor). A plan executor exec is said to

be time-strong if for every plan π, each observation history HO, each pre-

diction ρ and each time t, exec(π,HO, ρ, t) = exec(π, λd(HO), λd(ρ), t).

Intuitively, a time-strong executor ignores any end(au) observation, con-

sidering only discrete events.

On this line, we can define an executor that “remembers” all the past

observations and is able to exploit this knowledge to take decisions as

follows.

Definition 25 (Time-Dynamic Executor). A plan executor exec is said

to be time-dynamic if for every plan π, each observation history HO, each

41

3.5. PLAN EXECUTOR CLASSIFICATION

time t and each pair of predictions ρ1 and ρ2 such that λd(ρ
1) = λd(ρ

2),

exec(π,HO, ρ
1, t) = exec(π,HO, ρ

2, t).

Intuitively, a time-dynamic executor is allowed to depend on past hap-

pening (stored in HO) of any kind, but it cannot use any information on the

future timing of actions. Nonetheless it is allowed to use future information

on the predicates (stored in λd).

It is easy to see that any time-strong executor is also time-dynamic.

Proposition 3.1. Any time-strong executor exec is time-dynamic.

Proof. Consider any two predictions ρ1, ρ2 such that λd(ρ
1) = λd(ρ

2). Since

exec is a time-strong executor, exec(π,HO, ρ
1, t) = exec(π,HO, ρ

2, t) for

any π, HO, and t; hence exec is time-dynamic.

These two definitions split the landscape of duration-uncertain plants

in three classes: time-strong, time-dynamic and time-weak. The last class

is the one in which we do not impose any particular assumption on the

executor, allowing for the “clairvoyance” of the observations.

Analogously to the temporal uncertainty case, we define three classes

that split the landscape of non-deterministic plants. We define an undet-

strong executor as an executor that makes no use of the discrete observa-

tions changed(~p).

Definition 26 (Undet-Strong Executor). A plan executor exec is said to

be undet-strong if for every plan π, each observation history HO, each pre-

diction ρ and each time t, exec(π,HO, ρ, t) = exec(π, λt(HO), λt(ρ), t).

We define an undet-dynamic executor as an executor that only observe past

predicate observation, without observing the future discrete happenings.

Definition 27 (Undet-Dynamic Executor). A plan executor exec is said

to be time-dynamic if for every plan π, each observation history HO, each

42

CHAPTER 3. EXECUTION MODEL

Activity Duration

Controllable

Uncontrollable

No Observation
Dynamic

Observation

Future

Observation

P
la

n
t

E
v
o
lu

ti
o
n

Deterministic Deterministic Plant

Duration-only Plant,

Time-Strong

Executor

Duration-only Plant,

Dynamic Executor

Duration-only Plant,

Weak Executor

N
o
n

-D
e
te

rm
in

is
ti

c

No Observation

Discrete-only Plant,

Undet-Strong

Executor

Fully-Uncertain

Plant, Undet-Strong

Time-Strong

Executor

Fully-Uncertain

Plant, Undet-Strong

Time-Dynamic

Executor

Fully-Uncertain

Plant, Undet-Strong

Time-Weak Executor

Dynamic

Observation

Discrete-only Plant,

Undet-Dyanmic

Executor

Fully-Uncertain

Plant,

Undet-Dyanmic

Time-Strong

Executor

Fully-Uncertain

Plant,

Undet-Dyanmic Time

Dyanmic Executor

Fully-Uncertain

Plant,

Undet-Dyanmic

Time-Weak Executor

Future

Observation

Discrete-only Plant,

Undet-Weak Executor

Fully-Uncertain

Time-Strong Plant,

Undet-Weak Executor

Fully-Uncertain

Plant, Undet-Weak

Time Dynamic

Executor

Fully-Uncertain

Plant, Undet-Weak

Time-Weak Executor

Table 3.2: Classification table showing the landscape of possible classes of plants end executors.

The table reports the name of each class obtained by combining the plant type and the executor

type.

time t and each pair of predictions ρ1 and ρ2 such that λt(ρ
1) = λt(ρ

2),

exec(π,HO, ρ
1, t) = exec(π,HO, ρ

2, t).

Also in this case, it is easy to see that any undet-strong executor is also

undet-dynamic.

Proposition 3.2. Any undet-strong executor exec is undet-dynamic.

Proof. Consider any two predictions ρ1, ρ2 such that λt(ρ
1) = λt(ρ

2). Since

exec is a undet-strong executor, exec(π,HO, ρ
1, t) = exec(π,HO, ρ

2, t) for

any π, HO, and t; hence exec is time-dynamic.

Given these definitions, we can now introduce a new dimension in our

classification by distinguishing executor assumptions as shown in table 3.2.

We distinguish situations in which uncontrollable activity duration is not

43

3.6. DISCUSSION

observed from situations in which it is observed dynamically from situ-

ations in which it is observed without constraints (time-strong vs. time-

dynamic vs. non time-dynamic). Similarly, we have three classes for undet-

strong vs. undet-dynamic vs non undet-dynamic. For the rest of this thesis

we will use this schema to classify planning and scheduling problems.

3.6 Discussion

3.6.1 Partial Observability

An important issue arising when non-determinism of any kind is consid-

ered is partial observability. In a real system, not all the relevant variables

are directly observed by appropriate sensors, either for cost and implemen-

tation reasons or simply because some quantities are not measurable in a

sufficiently small time. Partial observability limits the entities that can

be observed and forces the execution to take decision with incomplete in-

formation. In our model, we handles this concept in the non-determinism

formalization: the configurable set of predicates limits the amount of infor-

mation available to the executor on the discrete state of the system. Also

for timing information a similar idea is applicable: we could divide uncon-

trollable activities in observable and non-observable and provide only the

observable durations to the executor.

For the sake of this thesis, partial observability is not needed: we limit

ourselves to the complete observability of both the discrete and timed in-

formation of the system. We only discriminate on the timing when the in-

formation becomes available to the executor. Nonetheless, we believe that

an extension of this formal model in the direction of partial-observability

is important and interesting, and we consider this as future work.

44

CHAPTER 3. EXECUTION MODEL

3.6.2 Weak Executors and Predictions

For the sake of the classification summarized in table 3.2, we do not need

to impose any constraint on predictions, we simply discriminate executors

(and plans) that make use or ignore such information. In fact, the predic-

tion formalization in definition 14, simply gives a syntax without imposing

the plant to actually adhere to the knowledge stored in the prediction itself.

In practical applications and problems, however, the prediction is usu-

ally assumed to be aligned with the plant evolution. For example, in chap-

ter 10 we discuss the weak controllability problem and we assume to know

in advance the action uncontrollable durations. This has theoretical rele-

vance, but also practical applications: durations can be seen as parameters

of the problem that get instantiated before starting the execution.

The prediction definition we gave is very general and comprehensive;

for example, it allows the modeling of an executor that knows about the

future outcomes of activities depending on their starting time and ordering.

In existing formalisms and applications, however, the “weak” information

is much more limited. In weak controllability, the information is a fixed

and total assignment of durations and of non-deterministic outcomes to

uncontrollable activities. In the planning case, no formalisms exist in the

literature, but we imagine that also in that case it make more sense to

assume that the executor is given a prediction of the action durations and

outcome that is independent of the command history (i.e. the duration

of each activity, even if repeated, is independent of the followed plan).

Nonetheless, the classification table and the formalization accommodate

even more complex cases.

45

3.6. DISCUSSION

46

Chapter 4

Scheduling Classification

The landscape of scheduling problems and techniques for planning is wide

and diverse. We focus on models and techniques used in AI temporal

reasoning disregarding resource constraints (we briefly discuss the modeling

and use of resources in section 6.2).

In general, a scheduling problem is expressed as a finite set of entities

(usually activities or time points) subject to constraint of various nature

that needs to be allocated in time. This is fully compatible with our

execution model: the plant is demanded to execute the activities and to

observe their outcome or duration. The plan executor sends the command

to the plant according to a plan that is the outcome of a scheduler. In this

view, a scheduler is a specialized kind of planner that can reason only on

a pre-fixed set of activities instead of generating the set of activities from

a theoretical model.

In this Chapter, we analyze several kinds of scheduling problems with

a particular focus on temporal networks. We highlight that this survey of

the scheduling literature is not intended to be comprehensive: we focus

on models and techniques relevant for AI temporal planning. For each

formalism under analysis, we will provide a description of the most suc-

cessful reasoning techniques. Table 4.1 provides an overview of this survey

47

4.1. QUALITATIVE SCHEDULING

Activity Duration

Controllable

Uncontrollable

No Observation
Dynamic

Observation

Future

Observation

P
la

n
t

E
v
o
lu

ti
o
n

Deterministic

Consistency of TNs,

Point Algebra, Allen

Algebra

Strong Controllability

of TNUs

Dynamic

Controllability of

TNUs

Weak Controllability

of TNUs

N
o
n

-D
e
te

rm
in

is
ti

c No Observation
Strong Consistency of

CTNs

Dynamic

Observation

Dynamic Consistency

of CTNs

Dynamic

Controllability of

CTNUs

Future

Observation

Weak Consistency of

CTNs

Table 4.1: Overview of the surveyed scheduling problems.

according to the classification table we introduced in chapter 3.

4.1 Qualitative Scheduling

Two types of temporal reasoning problems emerged over time: qualitative

and quantitative. Qualitative scheduling deals with precedence and rel-

ative timing of intervals but it cannot express metric constraints such as

deadlines and absolute time, that are considered in quantitative scheduling.

4.1.1 Point Algebra

Point Algebra (PA) [SV98] is a formalism that models relative timing of

events. The basic elements of this algebra are time points: a time point

is a time-valued variable that represent an event such as the starting or

the termination of an activity. Given a pair of time points a and b, either

of three relations are possible: a before b (a < b), a after b (a > b) or a

equals b (a = b). Let ./PA =̇ {<,>,=} be the set of such relations, and

let R =̇ 2./PA be the set of qualitative constraints.

48

CHAPTER 4. SCHEDULING CLASSIFICATION

◦ < > =

< < {<,>,=} <

> {<,>,=} > >

= < > =

Table 4.2: PA composition table.

In this setting, ./PA is the tautological constraint and ∅ is the unsatisfi-

able constraint; the other elements of R are interpreted as the disjunction

of the constraints appearing in each set.

We can define the composition of the relations in ./PA as shown in

table 4.2.

Definition 28 (Point Algebra). The Point Algebra is defined as 〈R,∪, ◦〉.
It is an algebra because:

• it is closed under ∪ and under ◦

• ∪ is associative and commutative with ∅ as identity element

• ◦ is associative with {=} as identity

• ∪ and ◦ are distributive

Given any set of constraints expressed in PA, we can check if it is sat-

isfiable in polynomial time by applying path consistency on the network

induced by the set of constraints [GNT04].

4.1.2 Allen Algebra

Allen’s algebra [All83] is a different formalism that is based on intervals

instead of time points. The basic constrained elements are variables repre-

49

4.2. TEMPORAL NETWORKS

senting right-open intervals. The algebra is constructed from the 13 basic

relations listed in table 4.3.

Similarly to PA, Allen’s algebra is defined on the power-set of the ba-

sic relations that are interpreted disjunctively. For example, A{m,<}B}
means that A either meets or comes before B. Also Allen’s algebra needs

a composition operation (◦) that is defined according to table 4.4.

Formally, the algebra can be defined as follows.

Definition 29 (Allen’s Algebra). Allen’s algebra is a tuple 〈R,∪, ◦〉, where

./AA =̇ {<,>,=,m,mi, s, si, f, fi, d, di, o, oi} and R =̇ 2./AA.

Allen’s algebra is strictly more expressive than PA, and the satisfiability

problem is NP-hard [SV98]. Nonetheless, the algebra is limited by its

qualitative nature: it is not possible to express metric constraints such

as quantitative deadlines or duration constraints. In more recent works,

especially in planning applications, Allen algebra has been extended to

support metric constraints and employed as basic constraint formalism for

domain description languages [FJ03, CCF+09]. However, the use of metric

temporal networks is far more common in AI planning systems.

4.2 Temporal Networks

Another model for expressing time constraints and knowledge is the Tem-

poral Network1 (TN). Differently from Allen’s algebra, the basic unit for

the temporal network modeling framework are time points (instead of in-

tervals), but differently from PA, Temporal Networks allow for the use of

metric constraints. Different kinds of constraints have been introduced

1Some authors use the term “Temporal Problem” instead of “Temporal Network”. We think this is

confusing as it mixes the model of the temporal knowledge with the query to be answered. Hence, we

take the following view: “Temporal Network” is used to indicate the modeling of the temporal knowledge,

while the word“problem” is used to indicate the query (or queries) that is asked on the temporal network.

50

CHAPTER 4. SCHEDULING CLASSIFICATION

Timeline representation Relation Relation symbol

A

B

A before B A < B

B after A B > A

A

B

A meets B AmB

A met-by B B mi A

A

B

A started-by B A si B

B starts A B s A

A

B

A contains B A di B

B during A B d A

A

B

A overlaps B A o B

B overlapped-by A B oi A

A

B

A finished-by B A fi B

B finishes A B f A

A

B

A equals B A = B

Table 4.3: Symbolic notation for Allen relations.

51

4.2. TEMPORAL NETWORKS

◦ < > d di o oi m mi s si f fi

< < ∅
< o

m d s
< <

< o

m d s
<

< o

m d s
< <

< o

m d s
<

> ∅ >

> oi

mi d

f

>
> oi

m d f
>

> oi

mi d

f

>

> oi

mi d

f

> > >

d < > d ∅
< o

m d s

> oi

mi d

f

< > d

> oi

mi d

f

d
< o

m d s

di

< o

m di

fi

> oi

di mi

si

o oi d

di =
di

o di

fi

oi di

si

o di

fi

oi di

si

di fi

o
di

di si

oi
di

o <

> oi

di mi

si

o d s

< o

m di

di

< o

m

o oi d

di =
<

oi di

si
o

di fi

o
d s o

< o

m

oi

< o

m di

fi

> oi d f

> oi

mi di

si

o oi d

di =

> oi

mi

o di

fi
> oi d f

oi >

mi
oi

oi di

si

m <

> oi

di mi

si

o d s < < o d s <
f fi

=
m m d s o <

mi

< o

m di

fi

> oi d f > oi d f > s si = > d f oi > mi mi

s < > d

< o

m di

fi

< o

m
oi d f < mi s s si = d

< m

o

si

< o

m di

fi

> oi d f di
o di

fi
oi

o di

fi
mi s si = si oi di

f < > d

> oi

mi di

si

o d s
> oi

mi
m > d

> oi

mi
f

f fi

=

fi <

> oi

di mi

si

o d s di o
oi di

si
m

si oi

di
o di

f fi

=
fi

Table 4.4: Composition table for Allen’s algebra (excluding equality).

52

CHAPTER 4. SCHEDULING CLASSIFICATION

in the formalism to accommodate a wide range of characteristics in the

model, but the common characteristic of all the formalism is the use of

metric constraints. In fact, temporal networks offer a viable solution for

modeling and reasoning on situations where deadlines and durations are

involved.

4.2.1 Temporal Networks and Consistency

Many applications require the scheduling of a set of activities over time,

subject to constraints of various nature. In Artificial Intelligence, and in

particular in planning, this kind of temporal knowledge is often expressed

as a Temporal Network (TN), where each activity is associated with two

time points, representing the start time and the end time, and time points

are subject to constraints.

The first class of temporal networks we analyze models knowledge of a

temporal situation in which a set of homogeneous time points are subject

to some metric temporal constraints.

Simple Temporal Network

The first Temporal Network model was proposed by Dechter et al. in

[DMP91a]. The paper presents the notorious Simple Temporal Network

formalism in which a finite set of time points is subject to binary difference

constraints.

Definition 30 (STN [DMP91a]). A Simple Temporal Network (STN) is

a tuple 〈T , C〉 where T is a finite set of time points and C is a finite

set of constraints of the form t1 − t2 ∈ [l, u], with t1, t2 ∈ T and l, u ∈
R ∪ {+∞,−∞}.

Intuitively, an STN represents a set of time-valued variables that need

to be scheduled fulfilling all the constraints in C. STNs are very popular

53

4.2. TEMPORAL NETWORKS

in Temporal Planning as a way to represent the temporal constraints of a

selected sequential plan. A common way of encoding a problem naturally

expressed as intervals into an STN is by exploding each interval into its

starting and its termination time points. An STN is a way of encoding a

piece of knowledge on a set of time points. Given such a knowledge base,

the network can be queried for consistency.

An STN is consistent if there exists an assignment µ : T → R, such

that each constraint c ∈ C is satisfied by substituting each time point t ∈ C
with µ(t) in c. An assignment µ that witnesses consistency is called “con-

sistent schedule”. Consistency corresponds to the first column in table 3.2,

because no temporal uncertainty is present in plain temporal networks.

Intuitively, an STN can be seen as a region in the space R|T |, and a

consistent schedule is a point belonging to such a region. The problem is

consistent if the region is non-empty. Moreover, it is easy to see that such

a region is convex: the problem admits no disjunction and each constraint

corresponds to the intersection of two half-spaces; therefore, the resulting

region is the intersection of finitely many half-spaces.

The popularity of STN is given by two main factors. First, many use-

ful scheduling problems can be accommodated in this framework. Second,

checking the consistency of an STN is a tractable problem and efficient

algorithms have been devised for both the decision problem and the con-

sistent schedule synthesis problem.

As explained in the original paper that introduced STNs [DMP91a], the

consistency problem can be stated as an all-pair-shortest path problem in

a graph G =̇ 〈V,E〉, where V =̇T and E ⊆ V ×R×V is defined as follows.

• 〈x, u, y〉 ∈ E if (y − x ∈ [l, u]) ∈ C and u 6=∞.

• 〈x,−l, y〉 ∈ E if (y − x ∈ [l, u]) ∈ C and l 6= −∞.

G is called the distance graph of the STN. If G has no negative cycles, then

54

CHAPTER 4. SCHEDULING CLASSIFICATION

the STN is consistent, otherwise it is not. A consistent schedule can be

extracted from the all-pairs shortest paths by fixing an arbitrary time point

z ∈ T to 0 and computing all the others assignments as the length of the

path from z to each other node. Any all-pair shortest path algorithm (sup-

porting negative edges) can be used to solve the problem, common choices

are the classical Floyd-Warshall and the Johnson’s algorithms [CSRL01],

but other specialized techniques have been devised [XC03, PdWvdK12].

These techniques can efficiently solve the problem in a monolithic set-

ting, in which a single STN is given and a single solution must be returned.

However, the STN can be also solved in an incremental setting, in which

network constraints can be added or removed and the network is queried

for consistency multiple times in different states [CO96].

Disjunctive Temporal Network

A popular extension of STN, still belonging to the topmost leftmost cell of

table 4.1, is the Disjunctive Temporal Network [SK00].

Definition 31 (DTN [SK00]). A Disjunctive Temporal Network (DTN) is

a tuple 〈T , C〉 where T is a finite set of time points and C is a finite set

of constraints of the form
∨h
j=1 t1,j − t2,j ∈ [lj, uj], with t1,j, t2,j ∈ T and

lj, uj ∈ R ∪ {+∞,−∞}.

A DTN extends an STN by allowing disjunctions in the set of con-

straints. Similarly to STN, also for DTN the relevant query is consistency

defined analogously to STN, but in this case the region represented by the

network is no longer guaranteed to be convex. This is because we allowed

disjunctions, hence it is possible to describe regions with “holes” and even

disjoint solution spaces.

Since the solution space for a DTN is no longer convex, the complexity of

the problem immediately jumps to NP-hardness. In fact, all the efficient

55

4.2. TEMPORAL NETWORKS

algorithms for STN rely on the convexity to quickly check consistency;

given a DTN, instead, search is needed to deal with the Boolean structure

of the constraints. Several techniques have been presented in the literature

to solve the DTN consistency problem, that is relevant for many appli-

cations thanks to the high expressiveness of the formalism. A dedicated

approach is implemented in the Epilitis solver [TP03] that uses a number of

constraint propagation techniques to solve the DTN consistency problem.

The TSAT++ solver [ACG99]. is a highly specialized SMT-solver for the

QF RDL logic that is suitable to solve this problem.

Temporal Constraint Satisfaction Networks

There exists a third class of Temporal Networks that stays in between STNs

and STNs. Temporal Constraint Satisfaction Problems (TCSN) have been

introduced in [DMP91a] as a disjunctive generalization of STNs. Differ-

ently from DTN, a TCSN does not allow arbitrary disjunctions, but is

limited to “binary” disjunctions, meaning that the variables appearing in

each disjunctive constraint must be exactly two. It is thus impossible to

express disjunctions involving three or more time points.

Definition 32 (TCSN [DMP91a]). A Temporal Constraint Satisfaction

Problems (TCSN) is a tuple 〈T , C〉 where T is a finite set of time points

and C is a finite set of constraints of the form
∨h
i=0 t1 − t2 ∈ [li, ui], with

t1, t2 ∈ T and li, ui ∈ R ∪ {+∞,−∞}.

Intuitively each TCSN constraint requires the temporal distance be-

tween two variables to lie within a disjunction of intervals. Even this

restricted form of a DTN is NP-hard [DMP91a]. The consistency prob-

lem for TCSN is the same as for STN and for DTN: decide the existence

(or find) an assignment to all the time points that fulfills all the problem

constraints.

56

CHAPTER 4. SCHEDULING CLASSIFICATION

Minimal Networks

Apart for consistency, a common operation to be performed on temporal

networks is the construction of the so-called minimal network.

Definition 33 (Minimal Network). A Temporal Network is minimal if C
contains exactly one constraint for each pair of time points t1, t2 ∈ T . Each

constraint c is such that for pair of values v1, v2 satisfying c, there exists a

consistent schedule for the problem that assigns t1 = v1 and t2 = v2.

Intuitively, a minimal network is a formulation of the problem that

allows the scheduling of a time point in a backtrack-free manner, re-

quiring only a minimal propagation of information between two succes-

sive executions of time points. We do not enter in the details of mini-

mal networks definitions and computation, we refer the interested reader

to [DMP91a, PdWvdK12] for the STN case, to [DMP91a] for the TCSN

case and to [BD11] for the DTN case.

4.2.2 Temporal Uncertainty

The temporal networks we presented so far and Allen’s algebra have in

common the determinism of the plant and of the scheduler. In fact, no

uncertainty is modeled in the formalism nor in the problem being solved.

For these reason, these formalisms all correspond to the deterministic-plant

cell in table 4.1.

Despite the success of “plain” Temporal Networks, many interesting

and hard problems are beyond the expressive power of STNs, TCSNs and

even DTNs. In fact, all these networks rely on the assumption that all

the time points are controllable: meaning that we can assign a time value

to each of them. In real applications, however, some points might not be

under the control of the scheduler, because they represent, for example, the

termination of an activity having an uncontrollable duration. This scenario

57

4.2. TEMPORAL NETWORKS

is common in planning, where time points are used to mark starting and

termination times of activities. For example, the car trip time between two

cities is an activity that can be started at any time, but whose duration

significantly depends on the amount of traffic and the weather conditions.

In order to reason in this kind of situations, Temporal Networks with

Uncertainty (TNU) have been presented [VF99a, PVYS07].

TNUs are TNs in which the time points are divided in two classes: con-

trollable (also called “free”) (Tf) and uncontrollable (Tu); and constraints

are divided in requirements (free constraints) and assumptions (contingent

links).

Intuitively, controllable time points are used to represent time instants

that are decided by the scheduler, while uncontrollable time points repre-

sent events that can only be observed. Similarly, free constraints are the

requirements that the scheduler aims to fulfill, while contingent links are

the assumptions under which the uncontrollable time points might happen.

Differently from plain temporal networks, consistency is not the only

query that can be asked for a TNU. In the literature, three different kinds of

“controllability”2 have been presented: strong, weak and dynamic [VF99b].

A network is strongly controllable if there is a solution that consists of

a fixed, unconditioned, non-reactive assignment to each controllable time

point that is guaranteed to satisfy the free constraints in the network re-

gardless of how the uncontrollable time points turn out while respecting the

contingent links. Such a solution corresponds to a time-triggered program,

where activities are started at fixed times that are determined in advance

of execution. This problem corresponds to the second column in table 3.2,

characterized by the time-strong executor. In strong controllability, in fact,

the executor is not allowed to depend on the activity duration in any way.

2In the CTN [TVP03] literature, they are called strong, weak and dynamic consistency, but the concept

is the same.

58

CHAPTER 4. SCHEDULING CLASSIFICATION

In sharp contrast, a network is weakly controllable if there is a solution

strategy that assigns values to the controllable time points as a function of

the uncontrollable time points. Although the values for the uncontrollable

time points need not be known when solving the problem, this version

of controllability presumes that all such information is provided to the

executor in advance of execution. In some sense, we can see a weak strategy

as a clairvoyant program that schedules the controllable time points given a

forecast of the uncontrollables outcome. Weak controllability corresponds

to the fourth column in table 3.2, characterized by the time-weak executor.

In weak controllability, in fact, the executor is informed a-priori of the

duration of all the activities, and it can depend on such prediction.

Finally, a network is dynamically controllable if it has a dynamic exe-

cution strategy that can react to uncontrollable time points observations,

but only those that have occurred in the past. In other words, the values

that the execution strategy assigns to the controllable time points may

depend on uncontrollable events, but only if that information has already

been observed in real time. It cannot depend on advance knowledge of

future uncontrollables. Typically, the execution strategy must be able to

deal with the branching that derives from delays, and may interleave the

start times of activities with the observation of uncontrollable time points.

Dynamic controllability is the third column of the classification table, be-

cause the executor can depend on past observation (the observation history

HO in our formalism), but has no access to any prediction.

In the following we present three classes of TNU that are extensions of

the STN, TCSN and DTN networks. For each class we present existing

techniques for solving the controllabilities problems we explained.

59

4.2. TEMPORAL NETWORKS

Simple Temporal Networks with Uncertainty

A Simple Temporal Networks with Uncertainty (STNU) is a data structure

for representing and reasoning about temporal knowledge in domains where

some time points are controlled by the executor (or agent) while others

are controlled by the environment3. Analogously to STNs, all temporal

constraints in an STNU are binary and convex.

Definition 34 (STNU [VF99a]). An STNU is a tuple 〈T , C,L〉 where:

1. T is a set of real-valued variables, called time points, that is partitioned

into the sets, Tc and Tu, of controllable and uncontrollable time points;

2. C is a set of binary constraints, each of the form, t1 − t2 ∈ [l, u], for

some t1, t2 ∈ T and l, u ∈ R ∪ {+∞,−∞}; and

3. L is a set of contingent links, each of the form, 〈b, l, u, e〉, where b ∈ Tc,
e ∈ Tu, and l, u ∈ R with 0 < l < u.

A contingent link, 〈b, l, u, e〉, represents a temporal interval from b to e

whose duration is uncontrollable, but bounded by e− b ∈ [l, u]. b is called

the activation time point of the uncontrollable time point e and ins indi-

cated with α(e).

STNUs have been successfully used in many application contexts [GL94,

MMV01, CYF+15]; in general, they are useful to model a fixed set of

activities or tasks (some of which having uncontrollable duration) subject

to constraints. For example, STNUs can be used to represent temporal

plans in AI planning.

The STNU framework has been presented in [VF99a], where the authors

prove that the strong controllability problem is tractable and give an al-

gorithm for reducing any given STNU to an STN having only controllable

3The agent and environment are not part of the formal STNU semantics; they are used here for

expository convenience.

60

CHAPTER 4. SCHEDULING CLASSIFICATION

time points, in such a way that any consistent schedule for the STN is a

solution for the strong controllability problem. This approach (that we

indicate as FargierVidal) is based on removing all the uncontrollable

time points and all the contingent links, and to substitute each occurrence

of an uncontrollable time points in the free constraints according to a sub-

stitution table.

Given an STNU 〈T , C,L〉, the method returns an STN 〈Tc, C ′〉 where

the rewritten constraints C ′ are defined as follows. Given an uncontrollable

time point e, we write le to indicate l and ue to indicate u if 〈α(e), l, u, e〉 ∈
L.

C ′ =̇ {ρ(c) | c ∈ C}

where:

• ρ(t1 − t2 ∈ [l, u]) =̇ t1 − t2 ∈ [l, u] if t1, t2 ∈ Tc;

• ρ(t1 − t2 ∈ [l, u]) =̇ α(t1)− t2 ∈ [l − lt1, u+ ut1] if t1 ∈ Tu and t2 ∈ Tc;

• ρ(t1 − t2 ∈ [l, u]) =̇ t1 − α(t2) ∈ [l + ut2, u+ lt2] if t2 ∈ Tu and t1 ∈ Tc;

• ρ(t1−t2 ∈ [l, u])=̇α(t1)−α(t2) ∈ [l+ lt1−ut2, u− lt2 +ut1] if t1, t2 ∈ Tu.

The intuition is that each uncontrollable time point is substituted by

enlarging the bounds of the constraints it is involved into by considering

the worst-case situations.

Concerning weak controllability, [VF99a] gives a co-NP algorithm for

deciding the problem, but no synthesis algorithm for weak strategies is

present in the literature. The algorithm follows from the following theo-

rem (proven in [VF99a]) that gives an exponential way of checking weak

controllability: it suffices to check the consistency of all the possible com-

binations of extreme values of contingent links.

Theorem 4.1 (Weak Controllability on Bounds). An STNU 〈T , C,L〉 is

weakly controllable if and only if for any ω ∈ {l1, u1} × · · · × {ln, un} with

61

4.2. TEMPORAL NETWORKS

L =̇ {〈b1, l1, u1, e1〉, · · · , 〈b1, l1, u1, e1〉}, the STN 〈T , C ∪ {ei − bi ∈ [ωi, ωi] |
i ∈ [1, n]}〉 is consistent.

Finally, dynamic controllability has been widely studied for the STNU

class. Starting from the original formulation in [VF99a] that proposed an

exponential game-based solution, Morris, Muscettola and Vidal showed a

pseudo-polynomial algorithm in [MMV01]. Then, Morris and Muscettola

refined the idea into a polynomial algorithm [MM05] that has been further

optimized by Morris in [Mor06] obtaining an O(n4) algorithm. The seman-

tics of dynamic controllability has been studied by Hunsberger [Hun09]

that proposed a view in which the solution strategy cannot react to un-

controllable decisions in zero time, but needs a non-null time to elaborate

and react to the observation. These works are based on the definition of

enriched networks of constraints that are propagated till a fixed point is

reached following carefully designed rules. If the network does not enter

in an inconsistent state, then the problem is provably dynamically control-

lable but no strategy synthesis is performed by these algorithms. [Mor06]

and [Hun14] show how to write a reasoning algorithm that takes in input a

propagated network and decides when to execute controllable time points

at run-time. The problem with such algorithms is that they propagate

constraints at run-time each time a time point is scheduled or observed.

The complexity of the technique is polynomial.

Finally, we mention [Mor14] in which Morris proposed an algorithm

for transforming a dynamically controllable STNU in an executable form

(called dispatchable) that can be used for on-line execution with a minimal

reasoning effort.

TCSNU and DTNU

Analogously to DTN, an important way of extending STNUs is to in-

clude disjunctive constraints. Disjunctions frequently arise in practice.

62

CHAPTER 4. SCHEDULING CLASSIFICATION

For example, workflows in the healthcare domain frequently involve ac-

tivities whose executions cannot overlap due to conflicting requirements.

An STNU cannot accommodate such disjunctive constraints. However,

similarly to the Disjunctive Temporal Network (DTN) [SK00], Disjunctive

Temporal Networks with Uncertainty (DTNUs) [PVYS07] can accommo-

date arbitrary disjunctions in the free constraints and binary disjunctions

in the contingent links.

Definition 35 (DTNU [PVYS07]). A DTNU is a tuple 〈T , C,L〉, where:

1. T is a set of time points, partitioned into controllable (Tc) and uncon-

trollable (Tu);

2. C is a set of free constraints: each constraint ci is of the form,∨Di

j=1 t1,j − t2,j ∈ [li,j, ui,j], for some t1,j, t2,j ∈ T and li,j, ui,j ∈ R ∪
{+∞,−∞}; and

3. L is a set of contingent links: each li ∈ L is of the form, 〈bi,Bi, ei〉,
where bi ∈ Tc, ei ∈ Tu, and Bi is a finite set of pairs 〈li,j, ui,j〉 such that

0 < li,j < ui,j < ∞, j ∈ [1, Ei] (Ei being |Bi|); and for any distinct

pairs, 〈li,j, ui,j〉 and 〈li,k, ui,k〉 in Bi, either li,j > ui,k or ui,j < li,k.

Generalizing the contingent links in an STNU, a contingent link 〈A,B, C〉
in a DTNU represents a temporal interval from A to C whose duration,

C − A, is uncontrollable, but guaranteed to lie within a union of disjoint

intervals. In particular, if B = {〈l1, u1〉, · · · , 〈ln, un〉}, then C − A is guar-

anteed to fall somewhere within the set [l1, u1] ∪ · · · ∪ [ln, un]. Although

contingent durations in a DTNU can be disjunctive in this way, the ex-

ecution semantics ensures that the choices made by the environment for

distinct contingent durations are independent.

This is useful to model periodic activities whose windows of opportunity

have certain degrees of uncertainty. An STNU is the particular case of

63

4.2. TEMPORAL NETWORKS

DTNU in which all the B sets are singletons and Di = 1 for each constraint

belonging to C.
An important subclass of DTNU (apart for STNU) is the Temporal

Constraints Satisfaction Networks with Uncertainty (TCSNU), that anal-

ogously to TCSN limits the free constraints to be binary. Each free con-

straint in a TCSNU is in the form
∨Di

j=0 t1 − t2 ∈ [li,j, ui,j].

Strong controllability. The strong controllability problem for DTNU has

been addressed in [PVYS07]. The PVYS algorithm4 can be described in

terms of two nested enumerations. At the highest level, it explicitly enu-

merates every possible way (hereafter refereed to as contingent choice) to

satisfy the contingent constraints. Intuitively, a contingent choice corre-

sponds to picking, for each contingent link, one disjunct. For each contin-

gent choice, PVYS obtains a simple-natured DTNU. In turn, the solution

space (i.e. the set of strong schedules) of each simple-natured DTNU is

represented as a DTN. The DTNs thus obtained are intersected, and result

into a DTN that represents the solution space for the original DTNU. The

innermost enumeration is used to convert each simple-natured DTNU, as-

sociated with the contingent choice µc, to the corresponding DTN. More

specifically, PVYS explicitly enumerates every possible free choice, i.e. ev-

ery possible way to satisfy each free constraint. Each free choice µf , in

combination with µc, yields an STNU, which can be efficiently reduced

to an STN by FargierVidal. All the STNs are then combined, by dis-

junction, into the DTN representing the solution space for the contingent

choice µc.

Consider the following DTNU example, with L =̇ {cl1, cl2, cl3} and

4The name PVYS is formed from the initials of the authors, and is used to refer to this algorithm

throughout the thesis.

64

CHAPTER 4. SCHEDULING CLASSIFICATION

C =̇ {cf1, cf2, cf3}.

cl1 =̇ 〈b1, {〈10, 20〉, 〈30, 40〉, 〈70,80〉}, e1〉

cl2 =̇ 〈b2, {〈5,8〉}, e2〉

cl3 =̇ 〈b3, {〈1, 5〉, 〈10,15〉}, e3〉

cf1 =̇ (x1 − x2 ∈ [10,30]) ∨ (x1 − x3 ∈ [3, 4])

cf2 =̇ (x3 − x5 ∈ [10,∞))

cf3 =̇ (x2 − x4 ∈ [20, 20]) ∨ (x1 − x4 ∈ [10,10])

A possible contingent choice of contingent links is shown in blue, and a free

choice is highlighted in red. A logical characterization of the algorithm is

given below. Given a DTNU (T , C,L), the algorithm computes the final

DTN as follows. ∧
µc∈Choice(L)

∨
µf∈Choice(C)

FargierVidal(T , µf , µc)

where the two calls to Choice are used to produce the free and contin-

gent choices, and embody the two enumerations. Intuitively, the external

conjunction iterates over the “blue” choices, while the internal disjunction

iterates over the “red” ones.

The pseudo-code of PVYS, reported in algorithm 1 (continued in al-

gorithms 2 and 3 for space constraints), has several optimizations with

respect to the high-level view proposed above.

The top-level function DTNU-SC considers the problem constraints

divided into three sets: CS contains the simple constraints (i.e. constraints

not containing disjunctions), and the disjunctive constraints that are de-

fined over controllable variables only; CC contains the disjunctive contin-

gent links; CE contains the other disjunctive free constraints. The proce-

dure makes use of four additional data structures: the STN A, the STNU

Ac, and the DTNs G and H.

65

4.2. TEMPORAL NETWORKS

Algorithm 1 PVYS algorithm (taken from Peintner et al. [PVYS07])

1: procedure DTNU-SC(A, AC , CS, CC , CE)

2: S := ∅
3: if CS = ∅ then

4: G := MinimalNetwork(A)

5: S := ALL-PATHS-SC(A, AC , CC , CE, G)

6: else

7: Ci := SelectVariable(CS)

8: C ′S := CS − {Ci}
9: for cij ∈ Disjuncts(Ci) do

10: A′C := AC ∪ cij
11: A′ := A ∧ SCTransform(A′C , cij)

12: if IsConsistent(A′) then

13: S := DTNU-SC(A′, A′C , C ′S, CC , CE)

14: if S 6= ∅ then

15: return S

16: end if

17: end if

18: end for

19: end if

20: return S

21: end procedure

In procedure DTNU-SC, the algorithm selects a combination of one

disjunct for each constraint in CS and accumulates the result in A. The

constraints are rewritten one by one, using the approach by Fargier and

Vidal: the function SCTransform takes a constraint and a STNU, and

rewrites that constraint with respect to the STNU eliminating uncontrol-

lable time points.

For each combination of disjuncts, the function ALL-PATHS-SC checks

if the choice of free disjuncts satisfies all the contingent constraints by con-

sidering each possible combination of contingent disjuncts separately. For

each combination, it accumulates the rewriting in the STN A and invokes

66

CHAPTER 4. SCHEDULING CLASSIFICATION

Algorithm 2 ALL-PATHS-SC sub-procedure of PVYS algorith

1: procedure ALL-PATHS-SC(A, AC , CC , CE, G)

2: if CC = ∅ then

3: G := G ∧ SATISFY-Ce(A, AC , CE)

4: else

5: Ci := SelectVariable(CC)

6: C ′C := CC − {Ci}
7: for cij ∈ Disjuncts(Ci) do

8: A′C := AC ∪ cij
9: A′ := A ∧ SCTransform(A′C , cij)

10: if IsConsistent(A′) then

11: G := ALL-PATHS-SC(A′, A′C , C ′C , CE, G)

12: if G = ∅ then

13: return ∅
14: end if

15: else

16: return ∅
17: end if

18: end for

19: end if

20: return G

21: end procedure

the function SATISFY-Ce that computes a DTN with all the possible so-

lutions for the remaining free constraints. All the DTNs are accumulated

by conjunction in G until either G becomes empty, meaning that there

exist no solution that works for all the contingent disjunct combinations,

or it contains at least on solution that is compatible with all the combina-

tions and is returned. The algorithm terminates when a solution is found,

or when all the combinations of CS have been explored. The intermedi-

ate checks for consistency (via the function IsConsistent) are used for

early-termination.

67

4.2. TEMPORAL NETWORKS

Algorithm 3 SATISFY-Ce sub-procedure of PVYS algorithm

1: procedure SATISFY-Ce(A, AC , CE)

2: H = ∅
3: if CE = ∅ then

4: H := MinimalNetwork(A)

5: else

6: Ci := SelectVariable(CE)

7: C ′E := CE − {Ci}
8: for cij ∈ Disjuncts(Ci) do

9: A′ := A ∧ SCTransform(A′C , cij)

10: if IsConsistent(A′) then

11: H := H ∨ SATISFY-Ce(A′, A′C , C ′E)

12: end if

13: end for

14: end if

15: return H

16: end procedure

Weak and dynamic controllability. No algorithms or techniques exist in the

literature for solving the dynamic controllability problem of the DTNU

problem class. [VVPYS10] presents an algorithm for dynamic controlla-

bility that is limited to the TCSNU class and is based on a Meta-CSP

exploration and a decision procedure for the weak controllability of DT-

NUs. Both these approaches are mainly theoretical and are limited to the

decision problem. This means that they are not concerned with the syn-

thesis of a strategy (in our execution model, a plan) for scheduling the time

points, but only in verifying that such a plan exists at all.

4.2.3 Discrete Non-Determinism

Following the classification in table 4.1, we covered the deterministic row,

and we are now left with the non-deterministic one. In scheduling, activ-

ities are often decoupled from their effect as the constraints are used to

68

CHAPTER 4. SCHEDULING CLASSIFICATION

express them. If the effect of an activity is non-deterministic, however, we

need ways to reason on the possible outcomes and their impact on future

activities. In this section we discuss the existing literature on network with

and without temporal uncertainty having support for non-deterministic

outcomes.

Conditional Temporal Networks

Conditional Temporal Networks have been introduced to model situations

in which part of the constraints are activated or de-activated depending on

a Boolean, non-deterministic run-time observation [TVP03].

CTNs extend Temporal Networks by introducing Boolean conditions

that are attached to special time points, called observation nodes. A sce-

nario specifies the truth values of the Boolean conditions that have been

observed so far. Propositional labels comprising conjunctions of (positive

or negative) propositional letters can be attached to time points and tem-

poral constraints in a CTN. A time point with a propositional label ` is

only executed in scenarios where ` is true; a constraint labeled by ` only

applies in scenarios where ` is true.

Definition 36 (Labels [TVP03]). Given a set P of propositional letters, a

label is any (possibly empty) conjunction of (positive or negative) literals

from P . The label universe of P , denoted by P ∗, is the set of all labels

with literals drawn from P .

Definition 37 (CSTN [TVP03]). A Conditional Simple Temporal Network

(CSTN) is a tuple, 〈T , C, L,OT ,O, P 〉, where:

1. P is a set of propositional letters;

2. T is a set of time points;

3. OT ⊆ T is a set of observation time points;

69

4.2. TEMPORAL NETWORKS

4. O : P → OT is a bijection that assigns observation time points to

propositional letters;

5. L : T → P ∗ is a function assigning labels to time points; and

6. C is a set of labeled temporal constraints of the form, 〈t1 − t2 ∈
[l, u], `〉, where t1, t2 ∈ T , l, u ∈ R ∪ {∞,−∞}, and ` ∈ P ∗.

Intuitively, a CSTN is an STN in which each temporal constraint may

be associated with a Boolean label and labels are observed by some specific

time points. The idea is that constraints are enabled (and shall be satisfied)

only in scenarios where the constraint label is satisfied. Using feature,

we can enable or disable part of the temporal network depending on the

scenario.

Analogously to the uncontrollable durations for a TNU, the scenario

defines the non-deterministic part of the problem and may or may not be

observable. Three possible queries are defined for a given CSTN.

Strong consistency is the problem of finding a single, fixed schedule

that fulfills all the constraints in every possible scenario. This means that

without observing the Boolean labels we want to find an assignment to the

time points that fulfills all the constraints in every possible scenario. It is

possible to prove [TVP03] that a CTN is strongly consistent if and only

if the corresponding STN without uncertainty (obtained by disregarding

the labels of each constraint) is consistent. The intuition is that strong

consistency is essentially the problem of fulfilling all the constraints because

we assume to have no observation on the labels. Hence, this means that

we want a single assignment that fulfills all the constraints (a consistent

schedule).

Weak consistency is the problem of finding a strategy for scheduling all

the time points assuming given any possible scenario. This is the analogous

of weak controllability of temporal networks.

70

CHAPTER 4. SCHEDULING CLASSIFICATION

Similarly to dynamic controllability, a CSTN is dynamically consistent

if there is a runtime strategy for scheduling the time points fulfilling all

the constraints in every scenario, assuming that only the past part of the

scenario is known.

Apart for proving that strong consistency coincides with plain con-

sistency, [TVP03] presents algorithms for weak and dynamic consistency

checking: weak consistency is checked by considering every possible sce-

nario and solving the consistency problem for each of them. Instead, dy-

namic controllability is reduced to an exponential-size DTN that represents

the space of all the solutions. The problem is dynamically consistent if and

only if the resulting DTN is consistent, and a propagation algorithm is pre-

sented to execute the CSTN dynamic strategy at runtime, but this requires

runtime propagation of constraints on a DTN. No explicit synthesis tech-

nique is available in the CSTN literature.

In addition to CSTNU, it is easy to extend definition 37 to add dis-

junctive constraints analogously to TCSN and DTN, obtaining CTCSN

and CDTN. The algorithms presented in [TVP03] are general enough to

cover also these disjunctive cases, but no other work in the literature covers

them.

Conditional STNU

Recently, some research has been devoted to combine the expressiveness of

CTN with TNU. The resulting formalisms natively express both temporal

uncertainty and discrete non-determinism in a single, compact temporal

reasoning problem.

A CSTNU augments an STNU to include propositional letters that rep-

resent Boolean conditions whose truth values are observed in real time,

during execution (analogously to CSTN).

Definition 38 (CSTNU [HPC12]). A Conditional Simple Temporal Net-

71

4.2. TEMPORAL NETWORKS

work with Uncertainty (CSTNU) is a tuple, 〈T , C, L,OT ,O, P,L〉, where:

1. 〈T , C, L,OT ,O, P 〉 is a CSTN, and

2. ignoring any labels, 〈T , C,L〉 is an STNU.

The CSTNU formalism is useful when the modeled situation has multi-

ple evolution scenarios depending on some observation at runtime. While

STNUs are suitable for representing temporal plans, CSTNUs can be used

to model temporal conditional plans.

In principle, 9 possible queries can be checked on a CSTNU as shown

in table 4.1 derived from our execution model. In fact, we could check if a

CSTNU is dynamically controllable but strongly consistent, meaning that

we would look for a solution that is fixed and unobserving in the space of

the label scenario, but dynamic in the uncontrollable durations.

However, the only problem definition in the literature is in [HPC12] that

defines “dynamic controllability” of CSTNU as the problem of checking the

existence of a runtime strategy for both the durations and the labels. The

paper defines the problem and introduces a solution technique based on

constraint propagation that is sound but incomplete.

The other eight queries can be obtained by combining strong, weak and

dynamic consistency and controllability, but to best of our knowledge they

are not defined in the literature.

72

Chapter 5

Planning Classification

Temporal planning is the problem of synthesizing a plan for achieving a

specified goal given a formal description of the domain and the initial

situation. Intuitively, planning is an abstract reasoning task that involves

a mathematical representation of the plant and is devoted to the synthesis

of a strategy for bringing the plant in a desired state in time. Differently

from the scheduling problems we presented so far, the planning problem

instances do not specify the set of actions to be executed a-priori, it is

the task of the planner to find a suitable set of actions and to find a good

schedule to achieve the high-level goal.

The planning literature is vast and heterogeneous: different planning

languages and representation formalisms exists. In this chapter we sur-

vey the existing planning techniques for temporal and non-deterministic

domains.

Also, the domain of planning can be partitioned using the same schema

we introduced in table 3.2: depending on the model of the domain and the

type of plan that needs to be generated we recognize the various features we

discussed in chapter 3. The resulting classification is reported in table 5.1

where we list the problems that have been addressed in the literature in

the realm of temporal planning.

73

5.1. TEMPORAL PLANNING WITHOUT UNCERTAINTY

Action Duration

Controllable

Uncontrollable

No Observation
Dynamic

Observation

Future

Observation

P
la

n
t

E
v
o
lu

ti
o
n

Deterministic Temporal Planning

Dynamic Temporal

Planning with

Duration Uncertainty

N
o
n

-D
e
te

rm
in

is
ti

c No

Observation

Dynamic

Observation

Probabilistic

Temporal Planning

Future

Observation

Table 5.1: View of the currently available approaches with respect to discrete non-determinism

and temporal actions.

In the following, we survey existing techniques for the problems reported

in table 5.1.

5.1 Temporal Planning without Uncertainty

A vast amount of work has been devoted in the development of techniques

for temporal planning. In its simpler form, temporal planning can be

seen as the extension of classical planning in which actions are no longer

assumed to be instantaneous. In fact, while classical planning models ac-

tions as atomic, instantaneous changes of the world, temporal planning

takes into account the duration of such actions. This extension is every-

thing but trivial: an action having a non-zero duration can be subject to

a range of issues that are not present in classical planning.

The first issue arises in the context of this extension is concurrency:

while in a classical setting two actions can be executed at the same time

if they are not interfering, in a temporal setting, the possible situations

are much more diverse. Two actions can be executed simultaneously or

(partially) overlap, effects can happen at the beginning, at the end or

74

CHAPTER 5. PLANNING CLASSIFICATION

even during an action execution. All of this, yields a complex interaction

between different actions during execution.

A second issue concerns the executability of actions. While in classical

planning actions have preconditions that must be true in order to allow

the correct execution, the situation is more complex in a temporal setting.

An action may require some condition to be started, another condition to

terminate and can also require to maintain a condition for an interval (or

a sub-interval) of time during the action execution. Clearly, it is possible

to check a condition before starting an action, but if the action requires a

condition to be terminated, the execution is committed on a future con-

dition before starting an action. This is problematic for both reasoning

and execution: the conditions are not “local” to the starting of actions,

but need to be represented and verified in time, and the executor needs to

monitor conditions to ensure the plan constraints are respected.

Finally, since actions are immersed in time, temporal constraints be-

tween actions may be required. For example, an action may require an-

other action to be executed after 10 time units or to be executed during

a specified period. This requires the scheduling of the actions; in fact

temporal planning is also called planning and scheduling.

The rest of this section is organized as follows: we first discuss what a

plan is in a temporal setting, then we present the major temporal planning

languages and finally we survey the techniques that arose in the literature

for solving the temporal planning problem.

5.1.1 Temporal Plans

The solution of a classical planning problem is a sequence of actions. Simi-

larly, a possible solution for a temporal planning problem is a set of actions

with an associated duration and starting time. This kind of temporal plans,

called time-triggered, are simple to represent and to simulate, but are lim-

75

5.1. TEMPORAL PLANNING WITHOUT UNCERTAINTY

ited in the actual applicability. This is because they require the ability to

start an action exactly at a given time and to terminate it exactly at a

given duration: if one of this events is subject to a delay, the entire plan

could be invalidated.

Definition 39. A time-triggered plan is a finite set of triples 〈t, a, δ〉 where:

t, δ ∈ R and a is an action.

Other types of temporal plans are also possible: flexible temporal plans

are temporal plans in which the set of actions is fixed, while starting times

and duration are not. The temporal constraints for ensuring plan validity

are encoded as a Temporal Network that needs to be executed at run-time.

This kind of plans are common in timeline-based planners and often used

in practice. However, the execution of a flexible plan requires an executor

able to efficiently solve STNs at run-time to decide which action should be

started and when.

5.1.2 Planning Language Classification

In this thesis we focus on domain-independent planning, that is planning

when the domain description is provided as input and is not hard-coded

in the planner itself. In order to have a domain-independent planner, a

planning language is needed: in fact, we need ways to express the available

actions to modify the world, the constraints that are required to hold, the

initial state, the goal and any other relevant information for the planning

reasoning.

Two main families of temporal planing languages and techniques exist,

namely action-based and timeline-based. Action-based languages use the

concept of action as a primitive operator available to the agent to change

the state of the system or the world. These languages are rooted in the

traditional classical planning formalisms deriving from STRIPS [FN71].

76

CHAPTER 5. PLANNING CLASSIFICATION

Timeline-based languages are more similar to a sequential generalization of

a Constraint Satisfaction Problem: a set of constraints describe the possible

evolution of the system and the environment and no explicit concept of

action or state is present.

In this section, we survey the planning languages available for temporal

planning.

PDDL. The Planning Domain Definition Language (PDDL) is the action-

based language of the International Planning Competition (IPC) and was

first conceived by Drew McDermott [McD00]. The language builds upon

STRIPS [FN71] and ADL [Ped89]. In its original version, PDDL is only

concerned with classical planning.

Over the years, several variations and improvements of PDDL have been

presented. A famous and widely-used extension is PDDL 2.1 [FL03] that,

among other innovations, introduced the support for temporal planning

and a limited form of continuous change. PDDL 2.1 models actions that

have non-instantaneous duration: effects can happen at the beginning or at

the ending of a durative action, and conditions can be expressed as instan-

taneous requirements for starting and for terminating an action. Moreover,

PDDL 2.1 also supports overall conditions, that are conditions that are

required to hold during the entire execution of an action.

Another version of PDDL, PDDL 2.2 [EH04], added support for Timed

Initial Literals (TIL). A TIL is a proposition (or its negation) annotated

with a timestamp. The intuitive semantics is that the proposition will

become true at the time indicated by the timestamp. This construct is

particularly useful to express predictable exogenous events such as the

visibility window of a satellite, the day/night alternation and so on.

Finally, PDDL 3 [GHL+09] is another relevant update of the PDDL lan-

guage that introduced timed goals and preferences. While in other PDDL

77

5.1. TEMPORAL PLANNING WITHOUT UNCERTAINTY

versions goals are just conditions to be eventually reached by the plant,

PDDL 3 allows time intervals associated to each goal, in order express

conditions that must be reached during specific portions of time.

NDDL. The New Domain Definition Language (NDDL) is a language

for temporal planning developed by NASA [BWMB+05]. The philosophy

behind NDDL is profoundly different from PDDL. NDDL considers state

variables that evolve in time and are (temporally) constrained by a set

of rules. In this setting, no distinction is made between conditions and

effects, nor between facts and goals: the problem is given by a set of rules

that model the possible behaviors and a set of temporally-instantiated

assertions that are the facts and the goals. The task of the planner is to fill

the gaps finding a suitable evolution that has no contradictions. NDDL is

the language of the EUROPA [FJ03] planning and scheduling framework.

The Advanced Planning and Scheduling Infrastructure (APSI) [CCF+09]

is a planner having a language very similar to NDDL, that is in use by the

European Space Agency.

ANML. The Action Notation Modeling Language (ANML) is the de-

signed successor of NDDL, and it is also developed by NASA [SFC08].

ANML is a modern, user-friendly language that tries to bridge the gap

between PDDL and the timeline languages such as NDDL. ANML is an

action-based, variable-value language that allows high-level modeling, com-

plex conditions and effects, HTN decomposition and timeline-like temporal

constraints. Compared to PDDL 2.1, ANML allows for conditions and ef-

fects to be specified in any sub-interval of an action and general formulae

are allowed as conditions.

78

CHAPTER 5. PLANNING CLASSIFICATION

5.1.3 State Space Temporal Planning

State-space planning is the current de-facto standard for solving classical

planning problems in the context of PDDL. This technique typically involve

a best-first search (usually A* or IDA*) in the domain explicit state space.

Two flavors of the technique are possible: forward and backward. In a

forward search, the starting node is the initial state and the objective is

to construct a sequence of states linked by actions that yield to a goal

state. In the backward approach, the search is rooted in the goal state

and proceeds by applying the actions in reverse order. The key ingredient

to obtain good performance from this approach is the heuristic guiding

the search process. In the literature, an impressive amount of work has

been devoted to find effective heuristics for the classical planning problem

yielding fast and robust planners.

Lifting the state-space idea to the temporal planning case, is not trivial

as it may look like. In fact, while the search space for a classical planning

problem is finite (but exponential in the number of propositions), the search

space for a temporal planning problem is infinite due to the density of time:

an action can be started at any time and even a small change in the starting

time or the duration can yield a significant alteration of the plant state.

Two lines of research arose in the literature in this context.

SAPA [DK03] is a temporal planner that is able to reason on a limited

notion of time and resources efficiently. The idea of the approach is to

extend the concept of state adding time-stamps. A state is composed

of a complete assignment to the problem fluents, an absolute time t and

an “event queue” of events and conditions imposed by actions that have

been started at time t but that have not terminated yet. Searching in

the space of such states is similar to the search in classical planning, with

some modifications. In fact, once a durative action is applied, the starting

79

5.1. TEMPORAL PLANNING WITHOUT UNCERTAINTY

conditions are checked and the starting effects are immediately applied in

the generated state, but the overall conditions and the ending conditions

and effects are added to the event queue as they are seen as commitments

on the future.

In order to allow for the advancement of time, a special action “ad-

vanceTime” is added. The purpose of such an action is to increment the

absolute time of the state without changing the fluent values. In theory,

one could advance the time of any real value, but SAPA takes the view

that actions can be started only in “decision epochs” that are time points

in which something changes. In practice, SAPA advances the time to the

earliest event in the events queue. This behavior yields a great advantage,

as it removes the need to represent and reason on an infinity of possible

time points where actions can be started, but surrenders completeness.

In fact, as shown in [CKMW07] the approach used by SAPA (and the

other “decision epoch” planners) is able to find plans with limited forms

of concurrency.

Another line of research studying the integration of classical state-space

planning and scheduling is polarized toward the use of a symbolic repre-

sentation of time and temporal constraints with an explicit representation

of the discrete state of the system. In particular, the key idea in this con-

text is to explode each durative action in two instantaneous actions (called

“snap actions”) representing the starting and ending time points of the

original activity1. The overall approach is depicted in figure 5.1.

The general idea is to abstract away temporal information from the

domain, leaving only the snap actions (with an implicit constraint that the

ending action must be executed after the starting one). This abstraction,

1This approach is rooted in the PDDL 2.1 formalism that only allows effects at the starting and ending

time points of an action; for this reason only two time points for each action are needed. In ore expressive

formalisms, we need one snap action for each time point in which an effect can happen or a durative

condition starts or ends.

80

CHAPTER 5. PLANNING CLASSIFICATION

Planning Problem

Abstarct Planning Problem
Forward

Search
Scheduler Solution Plan

χ =̇ (a1, . . . , an)

Reject ordering

“snap acti
on” abstr

acti
on

durations

No plan exists

Figure 5.1: High-level architecture of a Forward State Space Temporal Planner. The original

planning problem (above) is abstracted in a classical planning problem that is fed into a planner.

Each time a plan χ is generated by the forward search, it must be enriched by adding the

duration and precedence constraints and checked for schedulability. If it is schedulable, the plan

is returned, otherwise the forward search is asked for another plan. If no plan remains in the

abstract space, then no temporal plan is possible.

leaves us with a classical planning problem that can be solved by a forward

search planner. However, each time a discrete plan χ is generated from the

forward search, it must be checked for temporal feasibility. This is done

in two steps, as detailed in algorithm 4. Each action in χ is considered a

time point, then each pair of snap actions is constrained to the duration

of their original activity. Moreover, we need to ensure that the ordering

between the time points is such that no cause-effect relation established by

the forward search is violated incompatibly with the domain description.

For this reason, a set of precedence constraints are added to the Simple

Temporal Network representing the plan. The network is then checked for

consistency. If it is found consistent, then a plan based on the consistent

schedule of the network, is created and returned; otherwise, the discrete

plan χ is rejected and the forward search is required to find another plan. If

no plans are left in the discrete space, then no plan exists for the temporal

81

5.1. TEMPORAL PLANNING WITHOUT UNCERTAINTY

planning problem.

Algorithm 4 The Forward State Space Temporal Planning (FSSTP) Framework

1: procedure FSSTP(P)

2: for all abstract plan χ generated while solving abstract(P) do

3: D := Durations(χ, P)

4: P := Precedences(χ, P)

5: if µ := TP.Solve((χ,D ∪ P)) then

6: if IsComplete(χ) then

7: return BuildTemporalPlan(µ, χ)

8: else

9: continue()

10: end if

11: else

12: reject(χ)

13: end if

14: end for

15: return ⊥
16: end procedure

The general schema resembles a typical abstraction-refinement loop, but

for this planning problem we need to be careful on some details. First of

all, the forward search must be slightly adapted with respect to the one

employed in a classical planner. In fact, the states cannot be cached as

simple assignments of values to the propositions, but the plan leading to

the state must be also part of the state representation. This is to avoid

problems when a state is reached by a plan that is not schedulable first,

but can also be reached by a schedulable plan. Another point is termina-

tion: this schema is guaranteed to find a temporal plan if it exists assuming

that all the plans of any length are eventually generated by the forward

search, but it is not guaranteed to terminate if no plan exists. In fact,

there could be infinitely many plans of increasing length leading to a goal

and it might be the case that none of them is schedulable, yielding an

infinite loop. Another customization of the search, implicitly imposes the

82

CHAPTER 5. PLANNING CLASSIFICATION

overall conditions (that must be kept from the starting to the ending

of a durative action) without explicitly stating them as axioms in the ab-

stracted planning problem. This guarantees faster reasoning on this kind

of constraints.

Finally, there is an interesting point about the precedence constraints.

The forward search produces a total order on the snap actions that lead

to a discrete state fulfilling the goal. The job of the scheduler is to relax

this total order without invalidating any action condition. For doing so,

the scheduler encodes a set of needed precedence constraints in the STN

that is then checked for consistency. This order lifting is an interesting

point of the approach that can be done in different ways. The simplest

approach is to keep the total order intact, but this can cause a high number

of rejections. Another possibility is to analyze the plan and add only

the needed precedence constraints for keeping the causal-effect relation

produced by the forward search intact: this yields a partial order in the

STN.

A series of planners implements these ideas. Crikey [CFH+09] was the

first implementation of this approach, it uses a peculiar three-actions rep-

resentation (one action was used for the overall constraint) and a partial

order lifting derived from [VPC90]. Its successor, Crikey3 [CFLS08] em-

ploys a total order lifting instead.

TEMPO [CKMW07] uses an approach similar to Crickey, but avoids the

explicit snap-actions encoding by keeping a record of the started actions

in the state representation as an “agenda” of started actions.

POPF [CCFL10] also uses a partial order lifting, but has many opti-

mizations on the heuristic for the abstract search and used two snap actions

only. Finally, COLIN [CCFL12] uses a total order lifting for the time points

and a linear programming problem instead of an STN to accommodate lin-

ear continuous change of fluents in addition to temporal constraints.

83

5.1. TEMPORAL PLANNING WITHOUT UNCERTAINTY

Other temporal planners can be classified as state-space.

TALPlanner [KD00] (Temporal Action Logic Planner) is a forward chain-

ing planner. Similarly to SAPA, TALPlanner also uses the decision epoch

simplification that can deal with a limited form of concurrency. The pe-

culiarity of TALPlanner is the use of Temporal Action Logic as a mean

to represent the domain, the goals and also the plan. The planner heavily

relies on domain specific knowledge expressed by the user in the form of

Temporal Action Logic formulae.

SGPlan [CWwH06] uses a divide-et-impera technique by first solving

sub-goals and by then combining the results in a global plan.

TLPlan [BA01] and TP4 [HG01] are another examples of forward chain-

ing planners that use approaches similar to the one adopted by SAPA.

5.1.4 Plan Space Temporal Planning

Another relevant approach to solve temporal planning problem is to search

in the space of plans. This approach was studied also in the context of

classical planning [GNT04] but recently it was outperformed by state-space

search. In temporal planning, the relationship between the two approaches

in not so well defined yet. Many practical planners employ plan-space

search as their engine.

The general algorithm for plan-space search is reported in algorithm 5.

Intuitively, the algorithm searches in the space of partial plans: a partial

plan is a set of actions subject to a set of constraints. Starting from the

empty plan, the algorithm incrementally develops a plan that satisfies the

goals by solving one “flaw” at a time using a series of “refinements”. A

flaw, in the partial order planning jargon, is either an unsatisfied action

precondition, an unsatisfied goal or a violation of a causal link [GNT04].

This schema is completely equivalent to the classical planning case, but

this is due to the fact that the Inconsistent, SelectFlaw and the re-

84

CHAPTER 5. PLANNING CLASSIFICATION

Algorithm 5 The Plan Space Temporal Planning framework

1: procedure PSTP(P)

2: Solve(∅, P)

3: end procedure

4: procedure Solve(π, P)

5: if Inconsistent(π) then

6: return ⊥
7: end if

8: f := SelectFlaw(π, P)

9: if f = ∅ then

10: return π

11: end if

12: for all possible refinement π′ of f do

13: r := Solve(π′, P)

14: if r 6= ⊥ then

15: return r

16: end if

17: end for

18: return ⊥
19: end procedure

finement generator procedures hide all the complexity deriving from the

introduction of time. Clearly, Inconsistent must be able to perform a

schedulability check analogously to the one performed via STN in algo-

rithm 4. Another point is the way precedence constraints and causal links

are stored: often in the temporal setting the ordering constraints are sub-

stituted by a STN that keeps track of the metric constraints for the partial

plan.

The first planner of this kind was ZENO [PW94]. ZENO was an ambi-

tious attempt to deal with a very expressive problem specification includ-

ing time and a wide variety of resources. Differently from SAPA and other

state-space planners, ZENO is provably sound and complete for temporal

planning. ZENO implements an uniform representation of time and re-

source constraints in the form of a linear programming problem and uses

85

5.1. TEMPORAL PLANNING WITHOUT UNCERTAINTY

the Simplex algorithm to check for inconsistencies.

VHPOP [YS03] is another successful planner based on this scheme. VH-

POP supports both grounded and lifted reasoning and offers a variety of

plan selection and flaw-selection heuristics. VHPOP uses STNs to keep

track of the temporal information in the partial plans.

ASPEN [CRK+00] is a complex and practical framework developed by

NASA that allows very expressive plan domains to be analyzed. ASPEN

uses iterative repair [ZDDD93] to plan and re-plan. This is similar, even if

not equivalent, to plan-space search.

Timeline planning. A different, yet very successful, realm of planning tech-

niques is the one of the so-called timeline-based planners. Differently from

the systems we presented so far, timeline planners use a problem repre-

sentation that is more similar to a Constraint Satisfaction Problem (CSP)

than to a classical planning domain. In fact, timeline planners do not dis-

tinguish between preconditions and effects, nor between facts and goals:

they simply impose constraints on variables that need to be satisfied in

order for the action to be applied. The philosophy behind this idea is that

temporal planning is a natural extension of scheduling to control dynamic

systems.

One can imagine a timeline planner as a technique to automatically fill

a Gantt chart using some rules. Some activities are imposed on the chart,

those are facts and goals, the job of the planner is to fill the chart using

some user-provided rules, the domain specification.

The Heuristic Scheduling Testbed (HSTS) [MSCD91] was the first sys-

tem of this kind. It formalized the concept of timeline and introduced a

number of innovations and opened a new area of research for planning and

scheduling. IxTeT [GL94] is another system based on this approach that

has been used in many practical applications. We will discuss IxTeT also

86

CHAPTER 5. PLANNING CLASSIFICATION

in the next section, as one incarnation of IxTeT also supports temporal

uncertainty.

EUROPA [FJ03] is the successor of HSTS and provides a rich framework

for the modeling and the solution of timeline planning problems. Europa

is more than a domain-independent planner, it is a software architecture

that allows the development of planning and scheduling applications also

supporting optimization. EUROPA is an open-source project that is still

running.

APSI [CCF+09], is a framework similar to EUROPA in use by the Eu-

ropean Space Agency.

Verfaille et al. [VPL10] proposed a similar CSP-based approach for space

satellites scheduling. The formalisms used in this work is a middle-ground

between scheduling and planning, because these timelines cannot describe

generally evolving systems, but only a finite number of activities subject

to temporal constraints.

5.1.5 Planning as Satisfiability

Following an approach similar to the successful SATPlan [KS92] for clas-

sical planning, it is possible to leverage the expressiveness of the SMT

framework to address the temporal planning problem. The first research

on this topic can be found in [SD05].

The idea is to encode all the valid plans of finite length k as a single

SMT formula. If the formula is unsatisfiable, there are no plan of length

k, otherwise a model of the formula yields a valid plan.

The use of arithmetic theories provides an easy way of encoding time;

however, this kind of planners are still under-represented in the literature

and in the available set of tools.

We do not report here the details of the encoding, we refer the reader

to [Rin15b] and [Rin15a] for a recent an in-depth discussion.

87

5.2. BEYOND TEMPORAL PLANNING

The use of arithmetic theories provides an easy way of encoding time;

however, this kind of planners are still under-represented in the literature

and in the available set of tools.

5.1.6 Planning Graph Derivations

GraphPlan [BF97] is an influential and fundamental technique in classical

planning. Unsurprisingly, several works went in the direction of extending

the GraphPlan algorithm for the temporal planning case.

The Temporal Graphplan (TGP) [SW99] algorithm extends the Graph-

Plan idea to the temporal case by generalizing the mutual exclusion concept

to deal with durative actions.

Local search Planning Graph (LPG) [GSS03] uses Temporal Action

Graphs (TA-graphs) as search nodes for a stochastic local search. Each

node intuitively corresponds to an abstract plan that can be refined, if

needed, in several ways. If the search finds a non-spurious node it termi-

nates and a plan can be extracted from the TA-graph.

TPSys [GFL02] is another tool that uses an extension of the planning

graph for the temporal case. Similarly to TGP, it also represent the tem-

poral information in an enriched form of planning graph.

The Linear Programming and Graph Plan (LPGP) [LF03] tool combines

a planning graph search for the abstraction of the domain obtained by

discarding temporal information with linear programming, that is used to

solve the temporal constraints.

5.2 Beyond Temporal Planning

As clearly evident from table 5.1, there are few works in the literature that

are beyond temporal planning according to our classification scheme.

88

CHAPTER 5. PLANNING CLASSIFICATION

In fact, the existence of non-deterministic action effects is a well-studied

problem in planning without time, but to the best of our knowledge the

temporal case is an unexplored problem in the literature.

IxTeT [GL94] is a system that is able to reason on uncontrollable action

durations, by incrementally searching for a plan expressed in the form of

an STNU. At each step, the planner checks if the STNU is dynamically

controllable and backtracks if it is not. In this way, IxTeT is able to

produce a dynamic plan that is guaranteed to achieve the goal given an

executor that is able to schedule an STNU (for example using the Morris

algorithm [Mor06]). Compared to the formalization we gave in chapter 3,

IxTeT does not address the full “Duration-only Plant, Dynamic Executor”

class, because the plans generated by IxTeT have a fixed set of actions to

be executed: only the timing of actions is dynamic. On the other side,

the general form of the “Duration-only Plant, Dynamic Executor” class

allows the executor to observe the action durations and to possibly execute

different of actions depending on the observation. Nonetheless, IxTeT is a

very important and successful planner in this context.

A recent planner that takes an approach similar to IxTeT to deal with

uncontrollable action durations is FAPE [DBMIG14]. FAPE is a planning

architecture designed to work in a closed loop with an executor: the planner

is used as a deliberation system that produces a (possibly dynamic) plan

and is invoked each time the conditions for which the plan was generated

change. FAPE can use different planning algorithms to produce a plan

structure that is then scheduled by a dynamic controllability solver. If the

plan is dynamically controllable, then a constraint network is passed to the

executor that has the responsibility of scheduling the actions.

Recent research ignored the uncertainty dimensions we proposed fo-

cusing on temporal planning in the controllable deterministic case. The

practical problems arising from uncontrollability of the action durations

89

5.2. BEYOND TEMPORAL PLANNING

and the non-deterministic effects are dealt in practice with a re-planning

scheme. A planner is employed as an on-line component that is required

to generate a new plan form the current state of the system each time the

executor monitor realizes that something is non behaving as predicted by

the previous plan. This scheme can be seen as an optimistic planning that

is iterated each time something goes wrong.

Apart for the aforementioned techniques, no other works addressed the

issue in the realm of qualitative uncertainty. Instead, some related work is

present in the field of probabilistic planning, that is when temporal uncer-

tainty and uncontrollability are not considered as pure non-determinism,

but probabilities distributions are attached to the model. This is very dif-

ferent from the planning model we discussed so far and form the scope of

this thesis. In fact, probabilistic planning associates a probability distribu-

tion on the possible action durations and on the possible non-deterministic

outcomes and aims at producing a policy that maximizes a metric function

(usually the likelihood of plan success). In this field, the Probabilistic Tem-

poral Planning problem [MW08] can be imagined to address the problem

of dynamic controllability for uncontrollable action duration and dynamic

observation for non-determinism.

Planners such as MOP [ATZ04], DUR [MW08] and Prottle [LAT05]

have been developed to solve this problem, but their analysis is beyond the

scope of this survey.

90

Chapter 6

Extensions

In this part, we analyzed and classified the landscape of scheduling and

planning techniques when time is considered. We focused on two dimen-

sions, namely the action durations and the presence or absence of non-

determinism, combined with the executor observation capabilities. How-

ever, this classification has several possible extensions in orthogonal direc-

tions. In this section, we list and briefly discuss some of such features that

have been presented in the literature.

6.1 Flexibility

Our execution model focuses on the concept of controllability that is a

long standing problem in AI planning and is recognized as a still-open

challenge [BDM+02]. Nonetheless, several approaches addressed the exe-

cutability issues of temporal planning in a different way, called flexibility.

Flexibility is often used as a synonymous of least commitment planning

in the temporal case. The idea is to generate a plan in a fully deterministic

setting without instantiating the time points, but leaving to the executor

the task to schedule them. In this way, instead of producing a single time-

triggered plan, the planner produces a bag of plans that differ only for

the timing of the actions. The executor can then (incrementally) select

91

6.2. RESOURCES AND CONTINUOUS CHANGE

which plan to apply, possibly adapting its decision to contingencies such

as a delay or a tightening of a deadline observed at runtime. Usually, a

(Simple) Temporal Network is used to compactly represent the set of plans

to be executed.

This sounds similar to the reason why controllability has been intro-

duced in the first place, but we remark two important differences.

1. There is no formal guarantee that a flexible plan will adapt to a run-

time situation different from the nominal case. In fact, no modeling

of the uncertainty is present and the planner only tries to limit com-

mitments in a greedy way: in general, no formal guarantees are given.

2. Flexibility is very useful in practice as it limits the planner com-

mitments and allow for soundly tackling behaviors that arise in real

world but are out of the modeled reality. Hence, flexibility, differently

from controllability, addresses behaviors arising when the model is not

aligned with the real world.

Therefore, we argue that controllability and flexibility are two orthogo-

nal concepts: controllability guarantees plan executability and goal achieve-

ment with respect to the behaviors encoded in the formal model, flexibility

tries to limit the commitment of the plan by greedily dealing with as many

non-nominal behaviors as possible.

Finally, we highlight that the two ideas are not self-contradicting: it is

possible to conceive a flexible controllable plan, and we believe this is an

important future development that can be pursued.

6.2 Resources and Continuous Change

One of the most discussed and analyzed feature of a planning problem is the

presence of resources. This is a very well-understood concept in schedul-

92

CHAPTER 6. EXTENSIONS

Resource change

Discrete Continuous

D
y
n

a
m

ic
s Consumable

Reusable

Table 6.1: Classification of resources.

ing and many planners offer dedicated language support and algorithmic

features to deal with resources.

A resource can be defined generally as “something needed in order to

achieve an action” [GNT04]. In practice, a resource is any tool, fuel, as-

set, machine with non-unlimited availability that is needed/consumed to

perform an action.

Resources are usually modeled as values that change in time. At a high

level, different classes of resources are possible as shown in table 6.1.

First of all, a resource can be reusable or consumable. A reusable re-

source is a quantity that is “borrowed” by an action and it is restored

once the action is terminated, while consumable resources are not restored

after action termination: they are employed and need to be replenished in

order to return to the original value. Examples of reusable resources are

machines and tools, but also the grid-power in a house (you cannot use too

many appliances, otherwise you exceed the allowed watts, but once you

shut down one appliance, some watts are freed to be used by another ap-

pliance). Examples of consumable resources are batteries that are depleted

during operations, the fuel in a car that is consumed while driving, but also

raw materials that are transformed in products by a factory. Consumable

resources can be possibly replenished by specific actions: for example, a

93

6.3. OPTIMALITY

refuel action in a gas station allows the fuel in a car to be increased.

Another dimension of distinction for resources is given by rate at which

a resource is changed: a resource can be changed discretely or continuously.

If the value of a resource in time can be described as a piecewise-constant

function the resource is said to be discrete, otherwise it is continuous (and

the behavior in time is described by a generic total function). For example,

the number of available cars in a car-renting shop is a discrete resource,

while the amount of fuel in a car is a continuous resource.

In addition, similarly to time and action effects, resources can be uncon-

trollable. For example, the amount of energy produced by a solar panel is a

function of time that does not entirely depend on the planner decisions, but

also on uncontrollable factors such as weather conditions. This is somehow

similar to temporal uncertainty, but resources might have behaviors that

are more convoluted and less easy to manage than time.

6.3 Optimality

We defined the planning and scheduling problems as the problems of finding

a plan or a schedule fulfilling some requirements, however many plans and

schedules can fulfill the requisites, hence one may be interested in obtaining

the one that maximizes or minimizes one or more objective functions while

still being a valid plan or schedule.

The scheduling community is very oriented towards optimality, while

the planning community is more oriented towards satisfying techniques

(where optimality is sought but not guaranteed).

In temporal planning a significant amount of work has been devoted to

optimize the make-span of plan, that is the total completion time. Nonethe-

less, PDDL 2.1 introduced the possibility of specifying custom metrics to

be optimized.

94

CHAPTER 6. EXTENSIONS

Optimality is another orthogonal concept with respect to controllability

and non-determinism, in fact, it is for example possible to define an optimal

controllable plan.

6.4 Temporally Extended Goals

We never described nor formalized which kind of goal we pursue in a plan-

ning problem. The simpler and most common kind of goal is reachability,

that is bringing the system to a state fulfilling a desired property. How-

ever, this is not the only goal of practical interest. For example, one may

want to express constraints at intermediate points of the execution or to

maintain a property for a period of time.

To this extent, some features and techniques have been developed espe-

cially in the field of temporal planning.

A simple, yet very powerful, extension to reachability goals are durative

goals that allow each goal to be associated with an interval specifying when

the goal must be reached. Durative goals can be modeled as constraints

in PDDL 3.0, while languages such as NDDL and ANML natively support

them.

An extension to durative goals are trajectory constraints that have been

introduced in PDDL 3.0 that use temporal specifiers to constrain the set

of valid plans. It is for example possible to force a proposition to stay true

in a given interval or to achieve goals in a given order [GHL+09].

95

6.4. TEMPORALLY EXTENDED GOALS

96

State-Of-The-Art Survey

Conclusions

In this part of the thesis, we proposed an execution model to classify exist-

ing scheduling and planning techniques and problems along two directions:

temporal uncontrollability and discrete non-determinism. We summarized

the existing literature on the subject locating each work in our classification

table.

Evidently, the realm of planning application is much more concentrated

on few cases than the scheduling one that covers almost all the cases. This

opens the perspective for several research lines.

First, several scheduling problems are open for expressive classes of tem-

poral networks (e.g. DTNU). Second, planning under temporal uncertainty

is largely an open and interesting problem.

In this thesis, we contribute techniques that fill some of these gaps.

97

6.4. TEMPORALLY EXTENDED GOALS

98

Part II

Disjunctive Scheduling under

Temporal Uncertainty

Introduction

In this part, we present some novel techniques to deal with the problem

of scheduling in presence of temporal uncertainty. We already introduced

the main existing formalisms and existing techniques in chapter 4: here we

recall the definitions and proceed in the description and the analysis of the

new techniques.

As we discussed in section 4.2.1, several kinds of temporal networks

have been identified, depending on the nature and structure of the con-

straints [DMP91b, PVYS07]. If the network is expressible as a pure con-

junction of constraints over distances of time points, then we have the

so-called Simple Temporal Network (STN). A more complex class is Tem-

poral Constraint Satisfaction Network (TCSN), where the temporal dis-

tance between two time points can be constrained to lie in the union of

disjoint intervals. Constraints in TCSNs can be seen as a restricted form of

Boolean combinations. When arbitrary Boolean combinations are allowed,

we have a Disjunctive Temporal Network (DTN).

A temporal network is said to be consistent if there exists an assignment

for the time points, such that all the constraints are satisfied [DMP91b].

Such an assignment is called a schedule, and it corresponds to sequential

time-triggered programs.

In many practical cases, however, the durations of some activities are un-

controllable. TNs are thus extended with uncertainty in the duration of ac-

tivities, thus obtaining the classes of STNU, TCSNU and DTNU [VF99b].

101

Given a temporal network with uncertainty (TNU), three different prob-

lems can be addressed, namely weak, dynamic and strong controllabil-

ity [VF99b]. Weak controllability concerns the existence of a strategy that

schedules each activity, as a function of all the uncontrollable durations.

The executor is assumed to know the duration of the uncontrollable ac-

tivities before the execution starts (this property is sometimes known as

“clairvoyance”). In dynamic controllability, a solution is a strategy, simi-

larly to weak controllability, but each decision is constrained to depend on

past events only. In strong controllability, we disallow any runtime observa-

tion, and we require a fixed schedule for the activities that is independent

of the uncertainty. As in the case of consistency, we look for a schedule.

However, the schedule only determines the start of all the activities, and

the end of the activities that are controllable, and must satisfy the con-

straints for all the durations of the uncontrollable activities. If such a

schedule exists, the problem is said to be strongly controllable [VF99b].

In this part, we focus on the scheduling problem of temporal networks

with disjunctions and uncertainty. In fact, while STN (U) scheduling is a

generally well-established area, solutions for the DTN (U) problem class

are less studied. Nonetheless, many application domains, such as produc-

tion planning and mission critical robotics, require the expressive power of

disjunctive constraints to be modeled naturally [MNPW98].

We refer the reader to chapter 4 for a thorough overview of existing

approaches. In this part, we make the following contributions.

1. We experiment with several encoding of the consistency problem into

the SMT framework and we report very encouraging results.

2. We re-visit the problem of strong controllability for the DTNU prob-

lem class, providing a set of SMT encodings of the problem that are

empirically evaluated to show their efficiency with respect to the state-

102

of-the-art.

3. We address the weak controllability decision problem for the DTNU

problem class by reducing it to SMT modulo LRA. This accounts for

the first implementation of a decision procedure for this problem.

4. We address the open problem of weak strategy extraction for STNUs

and DTNUs. We provide a portfolio of algorithms for both the classes

and show their empirical performance.

5. We tackle the dynamic controllability problem for the DTNU problem

class. First, we provide a reduction of the problem to a reachability

game in a linear-sized TGA. This not-only is the first solution tech-

nique for the open problem, but it also provides the first dynamic

solution in closed form. Second, we exploit the ideas behind the for-

mal TGA encoding to provide a more efficient, dedicated solution

technique.

Structure of this part. In chapter 7 we formally define several classes of

temporal networks.

In chapter 8 we revisit the consistency problem for temporal networks

and we show how the SMT framework can be used to solve the problem

and build consistent schedules.

In chapter 9 we discuss the strong controllability problem and we pro-

pose novel solution techniques based on the encoding of the problem in the

SMT framework.

In chapter 10 we introduce the weak controllability problem, in its two

declinations: decision problem and strategy synthesis problem. We show

two quantified SMT encodings for the decision problem and a portfolio of

algorithm to synthesize weak strategies given a problem.

103

In chapter 11 we analyze the last form of controllability, namely dynamic

controllability. We discuss an approach to solve the dynamic controllability

problem for the most general class of temporal networks, namely DTNU.

Finally, in section 11.5 we review the part contributions and highlight

possible future work.

104

Chapter 7

Temporal Networks Formalization

In this chapter, we formalize various classes of temporal networks proposed

in the literature. In particular, we focus on disjunctive temporal networks

with uncertainty (DTNU). We recall the needed concepts from chapter 4,

adding the technical details needed to present the rest of the part.

We start by proposing a small example of a temporal network with

uncertainty. Suppose we have two activities A and B. Activity A has

duration of at least 7 units and at most 8 units or at least 10 units and

at most 11 units, depending on a controllable decision. Activity B is

uncontrollable, meaning that the actual duration is not decidable by the

solver, but we can assume that it is at least 8 units and at most 11 units.

We require that activity B must start after activity A and both activities

must end within 20 units. The situation is depicted in figure 7.1.

A Temporal Network (TN) is a formalism that is used to represent

temporal constraints over time-valued variables representing time points.

Two families of TNs have been presented in literature over the years: TN

without uncertainty, in which all the time points can be freely assigned

by the solver [DMP91b, SK00] and TN with uncertainty (TNU), in which

only some of the time points can be assigned by the solver, while the others

are intended to be assigned by an adversary [VF99b, PVYS07]. As such,

105

t

0 107

As

A (Controllable)

8

Ae

11 16

Bs

B (Uncontrollable)

19

Be

20

Figure 7.1: Schema of a possible temporal situation in the running example. Activities are

depicted in time, filled regions are used to indicate the minimal guaranteed duration of an

activity, the region in which uncontrollable event Be can happen is striped, while the region in

which Ae can be scheduled is the union of the two white rectangles. The problem deadline is

indicated with the solid line at time 20.

TNUs can be seen as a form of game between the solver and an adversarial

environment. In this part we focus on the DTNU class. We recall the

DTNU definition from chapter 4.

Definition 40 (DTNU [PVYS07]). A DTNU is a tuple 〈T , C,L〉, where:

1. T is a set of time points, partitioned into controllable (Tc) and uncon-

trollable (Tu);

2. C is a set of free constraints: each constraint ci is of the form,∨Di

j=1 t1,j − t2,j ∈ [li,j, ui,j], for some t1,j, t2,j ∈ T and li,j, ui,j ∈ R ∪
{+∞,−∞}; and

3. L is a set of contingent links: each li ∈ L is of the form, 〈bi,Bi, ei〉,
where bi ∈ Tc, ei ∈ Tu, and Bi is a finite set of pairs 〈li,j, ui,j〉 such that

0 < li,j < ui,j < ∞, j ∈ [1, Ei] (Ei being |Bi|); and for any distinct

pairs, 〈li,j, ui,j〉 and 〈li,k, ui,k〉 in Bi, either li,j > ui,k or ui,j < li,k.

Intuitively, time points belonging to Tc are time decisions that can be

controlled by the solver, while time points in Tu are under the control of

106

CHAPTER 7. TEMPORAL NETWORKS FORMALIZATION

the environment. A similar subdivision is imposed on the constraints: free

constraints C are constraints that the solver is required to fulfill, while

contingent links (L) are the assumptions that the environment will fulfill.

As in previous work [VF99b, PVYS07], we consider only contingent links

that start with a controllable time point. Thus, each uncontrollable time

point ei is constrained by exactly one contingent link to a controllable time

point bi called the activation time point 1 of e (indicated with α(x)).

Within the framework of DTNU, we can only express uncertainty on the

duration of activities (i.e. we cannot express uncertainty on whether an

activity could occur or not, nor on its discrete outcome). Contingent links

are used to model the possible durations of the uncontrollable activities,

while uncontrollable time points represent the uncontrollable ending time

of activities. We remark that the Temporal Network model of time is

continuous, and we explicitly avoid any discretization seeking for a real-

valued solution.

Any temporal network is defined over a set of time points, namely vari-

ables representing time instants. A temporal situation such as the one

in our running example can be encoded in a temporal network by using

two time points to represent the starting and ending time of each activ-

ity. Therefore, in order to model the running example with a temporal

network we need a total of four time points As, Ae, Bs and Be represent-

ing the start and end of activity A and B respectively (figure 7.1). Be is

the only uncontrollable time point, as we can control the starting and end

time of A but we cannot control the duration of B. The only contingent

constraint is the constraint on the duration of B. The rest of the net-

work is composed of requirements that have to be fulfilled in any possible

situation, and can be translated in three free constraints. The resulting

1This formulation assumes a complete independence between contingent links. This means that this

formalism cannot express assumptions of interdependence between uncontrollable durations.

107

As Ae

BsBe

[7, 8] ∪ [10, 11]

[0,∞)

[8, 11]

[0, 20]

Figure 7.2: Graphical representation of the TNU model derived from the running example

description. Each node of the graph is a time point, doubly circled nodes are uncontrollable

the others are controllable, solid arrows are free constraints and dashed arrows are contingent

constraints.

temporal network is then 〈T , C,L〉 where Tc = {As, Ae, Bs}, Tu = {Be},
C = {Be−As ∈ [0, 20], Bs−Ae ∈ [0,∞), Ae−As ∈ [7, 8]∨Ae−As ∈ [10, 11]}
and L = {〈Be, {〈8, 11〉}, Bs〉}. Figure 7.2 shows a graphical visualization

of the resulting TNU.

For the sake of this part, we define a TN without uncertainty as a TNU

〈T , C, ∅〉, in which the set of uncontrollable time points Tu is empty and the

set of contingent links L is also empty. Excluding the ∅ in the tuple, this

coincides with the Definitions of STN, TCSN and DTN (see section 4.2.1).

Depending on the generality of the constraints in C and the maximal

cardinality of the sets Bi of the elements of L, three classes of TNUs are

possible [PVYS07]. Definition 40 in its general form identifies Disjunctive

Temporal Network with Uncertainty (DTNU) [PVYS07]. If each constraint

contained in C is defined on at most two time points, the resulting network

is a Temporal Constraint Satisfaction Network with Uncertainty (TCSNU).

If each constraint in C has exactly one disjunct and each Bi has ex-

actly one element, we obtain a Simple Temporal Network with Uncertainty

(STNU).

Similarly, we can define the corresponding TNs without uncertainty

108

CHAPTER 7. TEMPORAL NETWORKS FORMALIZATION

(DTN [SK00], TCSN, and STN [DMP91b]). Following the classification of

Peintner et al. [PVYS07], we also say that a network is simple-natured if

each Bi has exactly one element.

Given a TNU, values for controllable time points can be decided, namely

they can be scheduled in time by an executor, while an uncontrollable time

point ei just happens after its activation time point bi has been scheduled.

The only assumption is that the i-th contingent link will be satisfied by the

values of bi and ei. Given this intuitive meaning, we rephrased the concept

of situation for a TNU [VF99b] for the DTNU problem class.

Definition 41 (Situation). Let P =̇ 〈T , C,L〉 be a TNU and let m be the

number of uncontrollable time points (|Tu| = m).

The space of situations for P is a set of tuples ΩP =̇S1×· · ·×Sm, where

Si =̇
⋃Ei
j=1[l

c
i,j, u

c
i,j]. A situation is an element ω of ΩP , and we write ωei

to indicate the value of the i− th element of the tuple (i.e. the duration of

the contingent link for ei).

Intuitively, a situation is a choice of the actual duration for each activity

with uncontrollable duration.

Given a situation, we define the projection of a TNU as the TN obtained

fixing the duration of each contingent link.

Definition 42. Let P =̇ 〈T , C,L〉 be a TNU and let ω =̇ 〈ω1, . . . , ω|Tu|〉 be

a situation in ΩP . The projection Pω of the network P with respect to the

situation ω is the TN 〈T , C ′, ∅〉, where T = Tc, C ′ =̇ C ∪ {ei − bi ∈ [ωi, ωi] |
〈bi,Bi, ei〉 ∈ L}.

Intuitively, the projection Pω is the network without uncertainty in

which each uncontrollable duration has been fixed to a given value.

In the following, we will discuss one query at the time for the general

disjunctive case, starting from the consistency of DTNs.

109

110

Chapter 8

Consistency

We first focus on the consistency problem, i.e. the case in which there is

no uncontrollability.

We define an assignment to the time points as a total function from

time points to real values. Given a TN without uncertainty, checking

consistency corresponds to deciding the existence of an assignment that

fulfills all the constraints of the network. We call such an assignment a

consistent schedule, and we say that the TN is consistent. Checking the

consistency of a TNU 〈T , C,L〉 is defined as checking the consistency of the

TN without uncertainty 〈T , C∪ρ(L), ∅〉, where ρ(L) is the set of constraints

obtained by considering each contingent link as a requirement constraint.

Formally, ρ(L) =̇ {ρ(x) | x ∈ L} and

ρ(〈b,B, e〉) =̇
∨
〈l,u〉∈B

e− b ≥ l ∧ e− b ≤ u .

The running example in figure 7.2 is consistent, and a consistent sched-

ule is for example µ = {As = 0, Ae = 11, Bs = 11, Be = 20}. Intuitively,

when checking consistency of a TNU, the behavior of the environment is

assumed to be “cooperative” with the solver. Hence, checking the consis-

tency of a temporal network amounts to checking whether the conjunction

of the constraints admits a model. Therefore, the consistency problem can

111

8.1. CONSISTENCY ENCODINGS

be reduced to checking the satisfiability of a quantifier-free formula mod-

ulo the LRA theory. The temporal network is consistent if and only if the

corresponding SMT formula is satisfiable, and any satisfying assignment

for the formula corresponds to a consistent schedule for the network.

8.1 Consistency Encodings

In this thesis, consistency checking plays the role of back-end for control-

lability solutions for TNUs. We present several SMT encodings, that turn

out to have different performance in the solvers, depending on the nature

of the constraints. We exploit the characteristics of such encodings to im-

prove the performances of the approach we propose to solve the strong and

weak controllability problems.

8.1.1 Näıve Encoding

In the following, we assume that a temporal network without uncertainty

P = 〈T ,X , ∅〉 is given. The first encoding in SMT of the consistency

problem can be directly obtained as follows: for every time point in x ∈ T
we introduce a real SMT variable1 x, and we denote with ~T the vector

of such variables (imposing an arbitrary order); each constraint c ∈ C is

directly mapped on the corresponding SMT formula (indicated by JcK) by

keeping the Boolean structure of the constraint and substituting each time

point with the corresponding SMT variable.

J
Di∨
j=1

xi,j − yi,j ∈ [`i,j, ui,j]K =̇

Di∨
j=1

(
xi,j − yi,j ≥ `i,j ∧ xi,j − yi,j ≤ ui,j

)
(8.1)

1We use no graphical distinction for time points and SMT variables, because we always have a one-to-

one correspondence. It shall be clear from the context whether we are referring to the time point (when

we discuss about constraints) or to the SMT-variables (when we work with formulae).

112

CHAPTER 8. CONSISTENCY

The resulting encoding is given by the SMT formula shown in equa-

tion (8.2). ∧
c∈C

JcK (8.2)

Proposition 8.1. The temporal network P is consistent if and only if

equation (8.2) is satisfiable (and a model of the formula yields a strong

schedule for P).

Proposition 8.1 is justified by the fact that equation (8.2) is the conjunction

of the formalization of the network constraints, and by definition, checking

consistency amounts to checking the existence of a model of the constraints.

This formalization is such that a consistent schedule can be extracted from

a model of the encoding formula by interpreting the value assigned to each

SMT variable as a time value of the corresponding time point.

Equation (8.2) is already a working SMT encoding. It is linear in the size

of the original TN, but does not exploit any knowledge on the structure of

the network, and is thus referred to as näıve encoding. In particular, we

notice that the resulting SMT formula is not in Conjunctive Normal Form

(CNF)2.

In the running example this encoding amounts to checking the satisfia-

bility of the conjunction of all the constraints as follows.

(Be −Bs ≥ 8) ∧ (Be −Bs ≤ 11) ∧

(Be − As ≥ 0) ∧ (Be − As ≤ 20) ∧

(Bs − Ae ≥ 0) ∧

((Ae − As ≥ 7) ∧ (Ae − As ≤ 8)) ∨ ((Ae − As ≥ 10) ∧ (Ae − As ≤ 11))

In the rest of this chapter, we introduce three optimizations: the switch

encoding (applicable to any DTN), the switch encoding with mutual ex-

clusion and the hole encoding (both dedicated to the TCSN sub-class).
2Since most efficient SMT solvers work by combining a SAT and a T-solver, a CNF formulation of the

problem is an advantage that prevents the solver for computing a (possibly less efficient) CNF by itself.

113

8.1. CONSISTENCY ENCODINGS

8.1.2 Switch Encoding

The switch encoding performs a CNF conversion of the formula in equa-

tion (8.2) by means of a polarity-based CNF labeling conversion [dlT90].

To this extent, we introduce
∑

ci∈CDi Boolean “switch” variables si,j (with

j ∈ [1, Di]), and the resulting encoding is the one in equation (8.3).

∧
ci∈C

((Di∧
j=1

((
¬si,j∨(xi,j−yi,j ≥ `i,j)

)
∧
(
¬si,j∨(xi,j−yi,j ≤ ui,j)

)))
∧
Di∨
j=1

si,j

)
(8.3)

where ci =̇
∨Di

j=1 xi,j − yi,j ∈ [`i,j, ui,j].

We remark that the encoding uses the switch variables si,j as implicants

for the disjuncts of the i-th constraint, in fact si,j → (xi,j− yi,j ∈ [`i,j, ui,j])

can be equivalently rewritten as (¬si,j ∨ (xi,j − yi,j ≥ `i,j))∧ (¬si,j ∨ (xi,j −
yi,j ≤ ui,j)).

The following theorem states the correctness of the encoding; the proof

is in appendix A.1.

Theorem 8.1 (Switch Correctness). The temporal network P is consistent

if and only if equation (8.3) is satisfiable (and a consistent schedule can be

derived from any model of equation (8.3)).

This encoding is also linear in the size of the original TN network, and

it directly produces a CNF formula. We notice that the clauses involving

theory atoms are binary; furthermore, if a switch variable is assigned to

false, the corresponding clauses are satisfied without any theory reasoning.

These factors have a positive impact on the performance of the SMT solver.

114

CHAPTER 8. CONSISTENCY

In the running example this encoding is as follows.

(Be −Bs ≥ 8) ∧ (Be −Bs ≤ 11) ∧

(Be − As ≥ 0) ∧ (Be − As ≤ 20) ∧

(Bs − Ae ≥ 0) ∧

(¬s1 ∨ (Ae − As ≥ 7)) ∧

(¬s1 ∨ (Ae − As ≤ 8)) ∧

(¬s2 ∨ (Ae − As ≥ 10)) ∧

(¬s2 ∨ (Ae − As ≤ 11)) ∧

(s1 ∨ s2)

8.1.3 Switch Encoding with Mutual Exclusion

If we focus on the TCSN class, we can exploit the network structure to

further improve our encodings. In particular, we assume that the disjuncts

in each constraint are mutually exclusive, otherwise two or more disjuncts

can be merged together by simply taking the union of the intervals they

represent. For example, a constraint (a− b ∈ [10, 20])∨ (a− b ∈ [30, 35])∨
(a−b ∈ [15, 25]) can be simplified to (a−b ∈ [10, 25])∨ (a−b ∈ [30, 35]) by

merging the first and the last disjuncts. Formally3, this means that each

TCSN constraint ci is composed of disjuncts of the form xi−yi ∈ [`i,j, ui,j],

where xi and yi are time points, and for all j, `i,j ≤ ui,j and ui,j < `i,j+1.

If we use the previous encodings, it is left to the solver (in particular

to the theory solver) to discover this mutual exclusion property. We can

strengthen the switch encoding by statically adding mutual exclusion con-

straints of the form (¬sh∨¬sk), with h 6= k. Adding this information to the

encoding is a form of static learning, and it can guide the Boolean search by

pruning branches that are unsatisfiable in the theory. The switch encoding

with mutual exclusion is presented in equation (8.4) and its correctness is

3Note that in TCSN the constraints are binary, i.e. each constraint relates exactly two variables.

115

8.1. CONSISTENCY ENCODINGS

stated by theorem 8.2 that is proven in appendix A.1.

∧
ci∈C

(Di∧
j=1

(
(¬si,j ∨ (xi,j − yi,j ≥ `i,j)) ∧ (¬si,j ∨ (xi,j − yi,j ≤ ui,j))

)
∧

Di∨
j=1

si,j ∧
Di∧
j=1

Di∧
k=j+1

(¬si,j ∨ ¬si,k)
)

(8.4)

Theorem 8.2 (Mutex Switch Correctness). If P is a TCSN, P is consis-

tent if and only if equation (8.4) is satisfiable (and a model of equation (8.4)

yields a consistent schedule).

This encoding is in CNF, but its size is quadratic in the size of the TN

because of the added term
∧Di

j=1

∧Di

k=j+1(¬si,j ∨ ¬sk).
In the running example this encoding is as follows.

(Be −Bs ≥ 8) ∧ (Be −Bs ≤ 11) ∧

(Be − As ≥ 0) ∧ (Be − As ≤ 20) ∧

(Bs − Ae ≥ 0) ∧

(¬s1 ∨ (Ae − As ≥ 7)) ∧

(¬s1 ∨ (Ae − As ≤ 8)) ∧

(¬s2 ∨ (Ae − As ≥ 10)) ∧

(¬s2 ∨ (Ae − As ≤ 11)) ∧

(s1 ∨ s2) ∧

(¬s1 ∨ ¬s2)

8.1.4 Hole Encoding

A different encoding for the TCSN problem class is obtained by considering

the intervals that define each TCSN constraint. Without loss of generality,

116

CHAPTER 8. CONSISTENCY

xi − yi ∈ [5, 20] [25, 50] [60, 75]

time0

Figure 8.1: Graphical view of an example TCSNU constraint. The difference between two time

points is constrained to lay within a disjunction of three intervals in time.

we assume that the intervals are disjoint and ordered: for each constraint

ci =
∨Di

j=1(xi−yi) ∈ [`i,j, ui,j], we require that ui,j < `i,j+1. The idea is then

to consider two adjacent intervals in the constraint and exclude the “holes”

between intervals, a hole being an open interval (ui,j, `i,j+1). The result is

the hole encoding reported in equation (8.5). The encoding correctness in

stated in theorem 8.3 that is proven in appendix A.1.∧
ci∈C

(
(xi − yi ≥ `i,1) ∧ (xi − yi ≤ ui,Di

) ∧

(Di−1∧
j=1

(xi − yi ≤ ui,j) ∨ (xi − yi ≥ `i,(j+1))
)) (8.5)

Theorem 8.3 (Hole Encoding Correctness). If P is a TCSN, P is consis-

tent if and only if equation (8.5) is satisfiable (and a model of equation (8.5)

yields a consistent schedule for P).

Consider for example figure 8.1, depicting the constraint (x − y ∈
[5, 20]) ∨ (x − y ∈ [25, 50]) ∨ (x − y ∈ [60, 75]). The hole encoding of

this constraint is ((x− y) ≥ 5)∧ ((x− y) ≤ 20∨ (x− y) ≥ 25)∧ ((x− y) ≤
50 ∨ (x− y) ≥ 60) ∧ ((x− y) ≤ 75).

This encoding is linear in the size of the original TN, does not introduce

any additional variable, and, most importantly, results in a 2-CNF formula.

These properties are noteworthy and will be exploited in the following

sections.

117

8.2. EXPERIMENTAL EVALUATION

TN

Encoding
(näıve / Switch / Switch

M.E. / Hole)

SMT(QF LRA)

SMT Solver for

QF LRA
(Z3 / MathSAT4 /

MathSAT5)

Consistent or

Inconsistent

Figure 8.2: Graphical representation of the developed tool-chain.

In the running example this encoding is as follows.

(Be −Bs ≥ 8) ∧ (Be −Bs ≤ 11) ∧

(Be − As ≥ 0) ∧ (Be − As ≤ 20) ∧

(Bs − Ae ≥ 0) ∧

(Ae − As ≥ 7) ∧

((Ae − As ≤ 8) ∨ (Ae − As ≥ 10)) ∧

(Ae − As ≤ 11)

Finally, we notice that equation (8.5) is logically equivalent to equa-

tion (8.2) (in the applicable case of TCSN), while equations (8.3) and (8.4)

are only equi-satisfiable to it, because of the added switch variables. The

solution to the temporal network is still obtained directly from any satis-

fying assignment, gathering the values for the variables in ~Xc.

8.2 Experimental Evaluation

In this section, we experimentally evaluate the consistency encodings we

proposed.

We developed a tool that automatically encodes the various classes of

temporal problems as SMT problems. The tool, depicted in figure 8.2,

generates SMT (QF LRA) encodings, that can then be solved by Math-

SAT4 [BCF+08], MathSAT5 [CGSS13] or Z3 [dMB08].

We used a set of randomly-generated benchmarks. Consistency prob-

lems are generated using the random generator presented in [ACG99]. The

118

CHAPTER 8. CONSISTENCY

0 500 1000 1500 2000

1
10

0
10

00
0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Floyd−Warshall
Bellmann−Ford
Johnson
Snowball3
P3C
TSAT++
Z3 naive
MathSAT4 naive
MathSAT5 naive

Figure 8.3: Results for consistency experimental evaluation of STN.

119

8.2. EXPERIMENTAL EVALUATION

0 500 1000 1500 2000

1
10

0
10

00
0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

TSAT++ switch
TSAT++ hole
Z3 naive
Z3 switch
Z3 switch me
Z3 hole
MathSAT4 naive
MathSAT4 switch
MathSAT4 switch me
MathSAT4 hole
MathSAT5 naive
MathSAT5 switch
MathSAT5 switch me
MathSAT5 hole

Figure 8.4: Results for consistency experimental evaluation of TCSN.

120

CHAPTER 8. CONSISTENCY

0 500 1000 1500 2000

1
10

0
10

00
0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

TSAT++ switch
Z3 naive
Z3 switch
MathSAT4 naive
MathSAT4 switch
MathSAT5 naive
MathSAT5 switch

Figure 8.5: Results for consistency experimental evaluation of DTN.

121

8.2. EXPERIMENTAL EVALUATION

benchmark set contains 2108 instances for each problem class (STN, TCSN

and DTN). We used random instance generators because they are typi-

cally used in literature, and because they can be easily scaled to stress the

solvers.

We performed all our experiments on a machine running Scientific Linux

6.0, equipped with two quad-core Xeon processors @ 2.70GHz. We consid-

ered a memory limit of 2GB and a time-out of 300 seconds. The bench-

marks and the tool are available as indicated in section 1.2.

8.2.1 Results

For consistency problems, we analyzed the performance of the various SMT

solvers on the various encodings. We also compared our tool chain with

the other available solvers for TN without uncertainty, namely the Snow-

ball3 [PdWvdK12] tool, that implements many algorithms for the case of

STN (i.e Floyd-Warshall, Bellman-Ford, Johnson and Snowball3), and

TSAT++ [ACG99], that is able to solve STN, TCSN and DTN problems.

The results for consistency problems are reported in figures 8.3 to 8.5.

The cactus plot reports the number of solved instances in the horizon-

tal axis and the cumulative time for each approach in logarithmic scale

on the vertical axis. For example, MathSAT4 takes about 100 seconds

to solve the easiest 500 STN instances. For STN problems, we com-

pared the näıve encoding with various algorithms available in the Snow-

Ball3 [PdWvdK12] tool, and with TSAT++ [ACG99]. (In the case of

STN, the other encodings coincide with the näıve encoding.) In TCSN

and DTN, we tested all the applicable encodings with all the SMT solvers

under analysis and with TSAT++. The plots show that the SMT ap-

proach is competitive with dedicated techniques. MathSAT4 implements

a dedicated algorithm for the theory of difference logic [CM06], and is

thus faster than MathSAT5, that uses a general purpose algorithm for

122

CHAPTER 8. CONSISTENCY

LRA [DdM06a]. All solvers perform better on problems with Hole encod-

ing. This encoding produces a formula that has just one real variable for

every time point and has at most two literals per clause: this simplifies the

SMT search procedure by augmenting the number of unit propagations,

and by reducing the size of the search space. TSAT++ is outperformed

by the other (more modern) SMT solvers.

123

8.2. EXPERIMENTAL EVALUATION

124

Chapter 9

Strong Controllability

In this chapter, we focus on strong controllability for a TNU, where the en-

vironment is adversarial [VF99b]. Strong controllability consists in decid-

ing the existence of an assignment to controllable time points that fulfills

the free constraints under any assignment of uncontrollable time points

that satisfies the contingent constraints. Such an assignment is called a

strong schedule of the network. A TNU for which there exists a strong

schedule is said to be strongly controllable. Consider again the running

example, the network is strongly controllable and a strong schedule is

µ′ = {As = 0, Ae = 8, Bs = 8}.

If a TNU is strongly controllable, it is also consistent [VF99b]. However,

the converse does not hold in general. Consider for example a variation to

the running example in figure 7.2 in which the deadline is moved from 20

time units to 17 time units. The network is consistent because a consistent

schedule is {As = 0, Ae = 7.5, Bs = 8, Be = 16}. However, this version

of the problem is not strongly controllable because the activity B cannot

be started before 7 (that is the minimal duration of activity A that must

precede B): since B is uncontrollable with duration in [8, 11], it may be

the case that the execution of the activity takes more than 10 time units,

thus exceeding the deadline.

125

Strong controllability is an important problem, because it results in

a schedule that is satisfactory under all possible uncertainties. Clearly,

a strong schedule can yield a longer time-span compared to a dynamic

strategy. However, dynamic information may not be available, e.g. due

to the lack of sensors. Furthermore, most algorithms for dynamic exe-

cution require run-time reasoning [Hun10a]. This may be incompatible

with some operational settings: for example, in mission-critical systems,

validating the run-time reasoner to the required level of assurance may

be prohibitively hard. Furthermore, the computational resources available

during execution may be too limited for a dynamic approach. Examples

of such application domains can be found in production planning and in

mission critical robotics, for which strong controllability is a very relevant

problem. We also remark that, in the same domains, the expressiveness

of disjunctive constraints (compared to simple temporal problems) is often

necessary [MNPW98].

We now formally define the concept of strong controllability.

Definition 43. Let P =̇ 〈T , C,L〉 be a TNU. P is strongly controllable if

there exists an assignment µ for Tc such that for each situation ω ∈ ΩP , µ

is a consistent schedule for the projection Pω.

In this chapter, we propose a comprehensive and effective approach for

solving the strong controllability problem for TNUs in the most general

form including arbitrary disjunctions. We tackle the strong controllability

problem of TNUs by reduction to SMT. The resulting problem can be then

solved by efficient SMT solvers. First, we show how to encode a TNU into

the theory of quantified linear real arithmetic (LRA) and, by leveraging

the specific nature of the problem, we optimize the encoding by reducing

the scope of quantifiers. The resulting formula can be solved by any SMT

solver for (quantified) LRA. Each encoding we present is satisfiable if

and only if the temporal problem is strongly controllable, and such that a

126

CHAPTER 9. STRONG CONTROLLABILITY

model of each encoding yields a solution for the original problem. Second,

we present a general reduction procedure from strong controllability to

consistency, based on the eager application of quantifier elimination tech-

niques. The resulting formulae can be directly fed into any SMT solver

for the quantifier-free LRA theory (QF LRA). This gives the first gen-

eral comprehensive solver for strong controllability of TNUs. Third, we

generalize the results by Vidal and Fargier [VF99b], originally stated for

STNU, to the subclass of (simple-natured) TCSNU. In this way, we avoid

the use of expensive general purpose quantifier elimination techniques, with

significant performance improvements.

The proposed approach has been implemented in a solver based on state-

of-the-art SMT techniques. To the best of our knowledge, this is the first

implemented solver for strong controllability of TNUs. We carried out a

thorough experimental evaluation, over a large set of benchmarks. We

analyze the merits of the various encodings, and demonstrate the overall

feasibility of the approach. We also compare the proposed approaches

with state-of-the-art algorithms on consistency problems. SMT solvers

turned out to be competitive with, and often outperform, the best known

dedicated solving techniques. Finally, we compared our approach with the

only other algorithm to check strong controllability for DTNU [PVYS07].

The results show that the symbolic techniques we propose can dramatically

outperform the enumerative approach in [PVYS07].

9.1 Encoding Strong Controllability in SMT

In the following, we assume that a TNU P = 〈T , C,L〉 is given. We derive

a number of encodings of the problem using the expressive power of the

SMT framework.

127

9.1. ENCODING STRONG CONTROLLABILITY IN SMT

9.1.1 Encodings into Quantified LRA

As in the previous section, we assume each time point is associated with an

SMT variable. The encoding in equation (9.1) is a direct logical mapping

of the notion of strong controllability; we call this encoding direct encoding.

We indicate with ~Tc and ~Tu the SMT variables corresponding to Tc and Tu,
respectively.

∀~Tu.Jρ(L)K→
∧
ci∈C

JciK (9.1)

Proposition 9.1. The TNU P is strongly controllable if and only if equa-

tion (9.1) is satisfiable (and a model of equation (9.1) yields a strong sched-

ule for P).

Proposition 9.1 is directly obtained by formalizing the definition of

strong controllability. Intuitively, equation (9.1) is satisfiable if and only if

there exists an assignment to the controllable variables Tc such that, for all

assignments to the uncontrollable variables Tu (that is, for each situation)

satisfying the contingent links L, the free constraints C are also satisfied1.

In the above formula, the controllable variables are implicitly existentially

quantified. In case of satisfiability, the SMT solver returns a satisfying

assignment to the controllable variables that is exactly a strong schedule.

In the running example, this encoding is as follows.

∀Be.

((
(Be −Bs ≥ 8) ∧ (Be −Bs ≤ 11)

)
→(

Be − As ≥ 0 ∧Be − As ≤ 20 ∧Bs − Ae ≥ 0 ∧(
(Ae − As ≥ 7 ∧ Ae − As ≤ 8) ∨ (Ae − As ≥ 10 ∧ Ae − As ≤ 11)

)))
1Here we assume that the contingent links are not contradictory, otherwise the implication will be

automatically true. However, the non-contradiction of contingent links is true by construction in our

definition of temporal problem, as no relationship between different contingent links is possible.

128

CHAPTER 9. STRONG CONTROLLABILITY

t

As

Bs

Ae

Be

B

A
yBe

Figure 9.1: The running example seen from an activities point of view to explain the encoding

of the problem. The striped region is the uncontrollable space, namely where the uncontrollable

time point Be can be scheduled given the decision on the related controllable time point (Bs).

The value of yBe in the shown situation is seen as the actual duration of the B activity.

In order to enable further simplifications, we notice that contingent

constraints depend both on controllable and uncontrollable time points,

and we re-code the problem as follows.

We encode each uncontrollable time point ei in terms of the time differ-

ence with its starting time point bi =̇ α(ei) by means of an uncontrollable

duration variable yei. Intuitively, if we take an activity view, yei measures

the duration of the i-th activity. For every contingent link li = 〈bi,Bi, ei〉
with Bi = {〈`i,1, ui,1〉, 〈`i,Ei, ui,Ei〉}, let yei ∈ R be the uncontrollable offset

variable associated to ei such that
∨Ei
j=1(yei ∈ [`i,j, ui,j]). yei represents the

duration of the interval [bi, ei] that is constrained by the i-th contingent

link. We are thus symbolically encoding a situation ω =̇ (ω1, . . . , ω|Tu|) in

which yei models the value of ωi. Figure 9.1 gives a pictorial representation

of this encoding interpreted at the activity level.

Definition 44. Given a TNU 〈T , C,L〉, let ~Yu be the vector of uncontrol-

lable duration variables 〈ye1, ye2, . . . , yem〉, with Tu =̇ {e1, e2, · · · , em}. We

define the encoding of the problem as a tuple 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉 where

Γ(~Yu) =̇
m∧
i=1

Ei∨
j=1

(yei ∈ [li,j, ui,j])

129

9.1. ENCODING STRONG CONTROLLABILITY IN SMT

~Tc = 〈As, Ae, Bs〉
~Yu = 〈yBe〉

Γ(~Yu) = (yBe ≥ 8) ∧ (yBe ≤ 11)

Ψ(~Tc, ~Yu) = (Ae − As ∈ [7, 8] ∨ Ae − As ∈ [10, 11])∧
((Bs + yBe)− As ∈ [0, 20])∧
(Bs − Ae ∈ [0,∞])

Figure 9.2: The encoding of the example TCSNU of figure 7.2.

and

Ψ(~Tc, ~Yu) =̇
∧
c∈C

c[(α(e1) + ye1)/e1][(α(e2) + ye2)/e2] . . .[(α(em) + yem)/em].

Intuitively, Γ(~Yu) is the formula representing the conjunction of all the

contingent links after the re-coding, and Ψ(~Tc, ~Yu) is the conjunction of all

the free constraints rewritten in terms of ~Tc and ~Yu.

We remark that the use of this encoding yields two consequences. First,

thanks to the redefinition of each ei in terms of yei, we managed to encode

the contingent links in terms of ~Yu only, therefore they are independent of

the values of the controllable time points (~Tc). Intuitively, Γ(~Yu) encodes

the set of all possible situations (ΩP) for the given problem P : each model

of Γ(~Yu) corresponds to a situation ω. Second, the constraints in this

formulation are expressed in the LRA theory (the original formulation

was expressed in the RDL fragment of LRA). This encoding applied to

the STNU problem in figure 7.1 is shown in figure 9.2.

From here on, we assume an encoded problem 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉
is given. In this setting, the strong controllability problem consists in

finding a value for ~Tc that satisfies the free constraints Ψ(~Tc, ~Yu) under any

possible value of ~Yu that satisfies Γ(~Yu).

The strong controllability encoding in equation (9.1) can be re-coded as

130

CHAPTER 9. STRONG CONTROLLABILITY

an LRA formula in the free variables ~Tc as follows.

∀~Yu.
(
Γ(~Yu)→ Ψ(~Tc, ~Yu)

)
(9.2)

We call this encoding Offset Encoding. This formulation corresponds

to a quantified SMT problem in LRA, and still requires a solver that

supports quantified formulae, but the part of the encoding representing

the contingent link is now dependent on ~Yu only. The following theorem

states the correctness of this encoding, the relative proof can be found in

appendix A.2.

Theorem 9.1 (Offset Encoding Correctness). The TNU P is strongly con-

trollable if and only if equation (9.2) is satisfiable (and a strong schedule

can be extracted from any of its models).

In the running example, this encoding is as follows.

∀yBe.

(
(yBe ≥ 8 ∧ yBe ≤ 11)→(

Bs + yBe − As ≥ 0 ∧ Bs + yBe − As ≤ 20 ∧ Bs − Ae ≥ 0 ∧

((
Ae − As ≥ 7 ∧ Ae − As ≤ 8

)
∨
(
Ae − As ≥ 10 ∧ Ae − As ≤ 11

))))
The main problem in the previous encodings is the scope of the universal

quantifier. Since the computational cost of quantification is very high,

we can rewrite the offset encoding in equation (9.2) in order to obtain a

possibly more efficient encoding. Let us assume that Ψ(~Tc, ~Yu) is written

as a conjunction of H formulae ψh(~Tch,
~Yuh), where ~Tch ⊆ ~Tc and ~Yuh ⊆ ~Yu

are the variables used in the formula ψh. This assumption can be easily

satisfied by converting Ψ(~Tc, ~Yu) in CNF using any2 consistency encoding

2If the used encoding introduces additional variables, those are existentially quantified and extend the

model of equation (9.1) by preserving the satisfiability and the strong schedules encoded in the models.

131

9.1. ENCODING STRONG CONTROLLABILITY IN SMT

we presented in chapter 8.

Ψ(~Tc, ~Yu) =
H∧
h=1

ψh(~Tch,
~Yuh)

We have that
∧
h ∀~Yu.(¬Γ(~Yu)∨ψh(~Tch, ~Yuh)) can be equivalently rewrit-

ten to
∧
h ∀~Yuh.(¬Γ(~Yu)|Yuh ∨ ψh(~Tch, ~Yuh)), and we obtain the following

distributed encoding. We recall that φ|~x is a notation meaning the restric-

tion of the conjunction φ to the conjuncts that are defined on at least one

variable of ~x (see section 2.1 for the details).∧
h

∀~Yuh.
(
¬Γ(~Yu)|Yuh ∨ ψh(~Tch, ~Yuh)

)
(9.3)

The following theorem states the correctness of this encoding, the proof

is reported in appendix A.2.

Theorem 9.2 (Distributed Encoding Correctness). If the TNU P is con-

sistent, it is strongly controllable if and only if equation (9.3) is satisfiable

(and each model yields a strong schedule).

The size of the produced (quantified) formula is linear with respect to the

original TNU. This encoding still requires a solver that supports quantified

formulae, and contains as many quantifiers as conjuncts in Ψ(~Tc, ~Yu). How-

ever, each quantification is now restricted to the offset variables Yuh ⊆ Yu

occurring in each conjunct ψh. This encoding also limits the scope of the

universal quantifiers, which turns out to be beneficial in practice. Intu-

itively, this is related to the fact that a number of quantifier eliminations

in LRA on smaller formulae may be much cheaper than a single, mono-

lithic quantifier elimination over a large formula.

If we use the hole encoding to obtain the CNF formula for the free

132

CHAPTER 9. STRONG CONTROLLABILITY

constraints, the running example formulation of this encoding is as follows.(
∀yBe.(yBe < 8 ∨ yBe > 11 ∨ Bs + yBe − As ≥ 0)

)
∧(

∀yBe.(yBe < 8 ∨ yBe > 11 ∨ Bs + yBe − As ≤ 20)
)
∧

(Bs − Ae ≥ 0) ∧ (Ae − As ≥ 7) ∧(
(Ae − As ≤ 8) ∨ (Ae − As ≥ 10)

)
∧ (Ae − As ≤ 11)

9.1.2 Encodings into Quantifier-Free LRA

In order to exploit solvers that do not support quantifiers, we propose an

encoding of strong controllability into a quantifier-free SMT (LRA) for-

mula. This is obtained by resorting to an external procedure for quantifier

elimination.

We rewrite equation (9.3) as
∧
h ¬(∃~Yuh.(Γ(~Yu)|Yuh ∧ ¬ψh(~Tch, ~Yuh))), in

order to apply a procedure for the elimination of existential quantifiers (e.g.

Fourier-Motzkin [Sch98]). In the following we refer to each conjunct after

quantifier elimination as ψΓ
h(~Tch) (ψΓ

h(~Tch) is then a quantifier-free formula).

ψΓ
h(~Tch)↔ ¬(∃~Yuh.(Γ(~Yu)|Yuh ∧ ¬ψh(~Tch, ~Yuh)))

The resulting encoding, reported in equation (9.4), is called eager for-all

elimination encoding. Theorem 9.3 states the correctness of the encoding

and is proven in appendix A.2. ∧
h

ψΓ
h(~Tch) (9.4)

Clearly, this approach moves most of the computation complexity from

the solving of the resulting formula to the encoder. In fact, the encoder

needs now to solve a number of costly quantifier eliminations.

Theorem 9.3 (EFE Encoding Correctness). The TNU P is strongly con-

trollable if and only if equation (9.3) is satisfiable (and a strong schedule

can be extracted from a model of equation (9.3)).

133

9.1. ENCODING STRONG CONTROLLABILITY IN SMT

In the running example, this encoding is as follows.(
¬∃yBe.(yBe ≥ 8 ∧ yBe ≤ 11 ∧ (Bs + yBe − As < 0)

)
∧(

¬∃yBe.(yBe ≥ 8 ∧ yBe ≤ 11 ∧Bs + yBe − As > 20)
)
∧

(Bs − Ae ≥ 0) ∧ (Ae − As ≥ 7) ∧(
(Ae − As ≤ 8) ∨ (Ae − As ≥ 10)

)
∧ (Ae − As ≤ 11)

(9.5)

For the simple-natured TCSNU class, it is not necessary to apply a gen-

eral purpose quantifier elimination procedure. Given the specific nature of

the constraints and the limitation to convex contingent constraints, only

few cases are possible, and for each of them we use a pattern-based encod-

ing, that in essence pre-computes the result of quantifier elimination. This

result can be thought of as generalizing to simple-natured TCSNUs the

result proposed by Fargier and Vidal [VF99b] for the case of STNU. We

start from the distributed encoding of equation (9.3), where the each sub-

formula ψh is generated by the hole encoding. We treat each sub-formula

as a separate existential quantification problem, and provide static results

for each case. The final result is logically equivalent to the corresponding

ψΓ
h(~Tch) in equation (9.4).

Each conjunct under analysis results from the encoding of a free con-

straint in the TCSNU over variables v and w, with D intervals. Let t be

v − w. The encoding results in two unit clauses (t ≥ l1 and t ≤ uD), and

in D − 1 binary clauses in the form (t ≤ ui) ∨ (t ≥ li+1).

The static elimination procedure must deal with eight possible cases,

depending on v and w being controllable or uncontrollable3. The eight

possible clause patterns are shown in table 9.1. For unit clauses, we proceed

as in the work by Fargier and Vidal [VF99b]: the first four rows of table 9.1

report these results.

3The possible cases are actually sixteen but v − w ≥ k can be rewritten as w − v ≤ −k, thus halving

the possibilities.

134

CHAPTER 9. STRONG CONTROLLABILITY

Clause pattern Quantification Result (ψΓ
h (~Tch))

(bi − bj) ≥ k (bi − bj) ≥ k

(ei − bj) ≥ k (bi − bj) ≥ k − Li

(bi − ej) ≥ k (bi − bj) ≥ k + Uj

(ei − ej) ≥ k (bi − bj) ≥ k − Li + Uj

(bi − bj) ≤ k1 ∨

(bi − bj) ≥ k2

(bi − bj) ≤ k1 ∨ (bi − bj) ≥ k2

(ei − bj) ≤ k1 ∨

(ei − bj) ≥ k2

((bi + Li − bj > k1)∨(bi + Ui − bj ≤ k1)) ∧

((bi + Li − bj < k1)∨(bi + Li − bj ≥ k2))

(bi − ej) ≤ k1 ∨

(bi − ej) ≥ k2

((bi − bj − Lj < k2)∨(bi − bj − Uj ≥ k2)) ∧

((bi − bj − Lj > k2)∨(bi − bj − Lj ≤ k1))

(ei − ej) ≤ k1 ∨

(ei − ej) ≥ k2

((bi + Ui − bj − Uj > k1)∨(bi + Ui − bj − Lj ≤ k1)) ∧

((bi + Ui − bj − Uj < k1)∨(bi + Li − bj − Uj ≥ k1)) ∧

((bi + Li − bj − Lj < k2)∨(bi + Li − bj − Uj ≥ k2)) ∧

((bi + Li − bj − Lj > k2)∨(bi + Li − bj − Lj ≤ k2))

Table 9.1: Static quantification for simple-natured TCSNUs. For each clause pattern deriving

from a hole-encoding of free constraints, the corresponding ψΓ
h (~Tch) is presented, assuming that

if ei is an uncontrollable time point, bi is its corresponding controllable time point that relates

to it with the i-th contingent link 〈bi, {〈Li, Ui〉}, ei〉.

The rest of the table present the results for the disjunctive binary

clauses. The static quantification is possible by knowing that the con-

tingent links are in the shape ei − bi ∈ [Li, Ui] and thus each possible free

constraint clause can be parametrized and resolved upfront.

During the encoding of a given problem, we can now generate the set of

clauses using the hole encoding, search in the table which is the applicable

pattern and instantiate the resulting ψΓ
h(~Tch) (The quantifier free formula

that is equivalent to ¬(∃~Yuh.(Γ(~Yu)|Yuh ∧¬ψh(~Tch, ~Yuh)))) that form a set of

clauses to be conjoined to obtain a sound and complete SMT encoding for

135

9.2. RELATED WORK

strong controllability.

In the running example, equation (9.5) can be equivalently transformed

using this technique as follows.

(Bs − As ≤ 9) ∧ (As −Bs ≤ 8) ∧ (Bs − Ae ≥ 0) ∧ (Ae − As ≥ 7) ∧

((Ae − As ≤ 8) ∨ (Ae − As ≥ 10)) ∧ (Ae − As ≤ 11)

The constraint (Bs − As ≤ 9) comes from the Be − As ≤ 20 clause using

the third rule, while (As − Bs ≤ 8) is derived from Be − As ≥ 0 using the

second rule.

In order to explain the intuition of the rules, let us show, as an example,

why the constraint (Bs − As ≤ 9) comes from the Be − As ≤ 20. By

rewriting the constraint Be − As ≤ 20, we get Bs + yBe − As ≤ 20. This

inequality must hold for any yBe ∈ [8, 11], because yBe is uncontrollable. A

fortiori, it must hold for yBe = 11, that is the worst case for an upper bound

constraint4. Therefore, we obtain Bs + 11−As ≤ 20, that is Bs −As ≤ 9.

The construction described above can be used in equation (9.4). This

specialized quantification technique results in a 2-CNF formula that has

linear size in the original TCSNU. This is because the size of the hole en-

coding is linear, and for each clause, we statically resolve the quantification

by creating at most four new binary clauses. This encoding spares the com-

putational cost of quantifier elimination and produces a highly optimized

QF LRA formula.

9.2 Related Work

We discussed the existing approaches for strong controllability in chapter 4,

here we compare them with our approach and we discuss alternative solving

techniques for our encoding.

4Recall that setting yBe
= 11 means assuming the duration of activity B to be its maximum, namely

it takes 11 time units.

136

CHAPTER 9. STRONG CONTROLLABILITY

9.2.1 The PVYS Algorithm

The first (and only) technique to solve the strong controllability problem

for the DTNU problem class is proposed in [PVYS07]. We described the

details of PVYS in section 4.2.2. The key difference between our approach

and PVYS is in the nature of enumerations. PVYS explicitly enumerates

the choices over the free constraints and contingent links. This may be

costly if many disjunctive constraints are present in the problem: in fact,

in the worst case, all the possible combinations of disjuncts must be an-

alyzed. In our approach, the enumerations are carried out symbolically,

and relying on the SMT infrastructure for efficiency. In this way, we in-

herit effective splitting heuristics, learning, and backjumping. Moreover,

the early pruning mechanism in the SMT solver is able to draw conclu-

sions from “partial” choices, where a disjunct is not (yet) chosen for each

clause [BSST09]. Finally, we use more powerful quantifier elimination tech-

niques, that are able to deal with DTNUs at once. In the section 9.3 we

present a thorough empirical comparison of our encodings with PVYS.

9.2.2 Polyhedra-Based Approach

The ideas presented in this chapter are based on LRA formulae, and are

made practical by leveraging SMT solvers. In principle, given the geomet-

ric interpretation of LRA, the problem could be addressed by other means.

In fact, each conjunction of LRA atoms is a Non-Necessarily Closed Con-

vex Polyhedron (NNC-Polyhedron), and each formula over LRA can be

seen as the (non-convex) union of finitely-many NNC-Polyhedra. In this

parallelism, conjunction corresponds to intersection, disjunction to union,

negation to complement, and existential quantification to projection.

Libraries for manipulating NNC-Polyhedra are available (e.g. [BHZ08,

Wil93]), and could be used as a back-end for the problems described here

137

9.3. EXPERIMENTAL EVALUATION

instead of SMT solvers. In an early stage of this research, we also explored

this possibility, experimenting with the Parma Polyhedra Library [BHZ08],

one of the most efficient libraries available. The results we obtained were

dramatically in favor of the SMT approach. We could identify various rea-

sons for this lack of scalability. On the one side, the explicit manipulation of

polyhedra disjunctions may be very costly. On the other, using polyhedra-

based solvers, we are computing the entire solution space, while the SMT

based approaches are only looking for one solution. Further discussion of

these techniques is out of the scope of this thesis.

9.3 Experimental Evaluation

In this Section, we experimentally evaluate our approach. We describe our

implementation (section 9.3.1), the experimental set-up (section 9.3.2), and

the results for strong controllability (section 9.3.3). Finally, in section 9.3.4

we evaluate (our implementation of) the PVYS algorithm.

9.3.1 Implementation

We developed a tool that automatically encodes the various classes of tem-

poral problems as SMT problems. For strong controllability problems, the

tool, depicted in figure 9.3, has two flows. First, it implements the three

encodings to quantified SMT (LRA), that are then solved by Z3. Second,

it generates quantifier-free SMT (QF LRA) encodings, by applying eager

quantifier elimination techniques. The quantifier elimination procedure in

the eager for-all elimination encoding is carried out by calling one of the

following procedures: the internal formula simplifier of Z3 [dMB08] (de-

noted EFE Z3qe); Fourier-Motzkin quantifier elimination (EFE M5fm),

built on top of MathSAT5 [CGSS13]; and the Loos-Weispfenning (EFE

M5lw) procedure, also built on MathSAT5. The resulting encodings are

138

CHAPTER 9. STRONG CONTROLLABILITY

Encoding
(Direct / Offset /

Distributed)

TNU

EFE Encoding

(Using Z3qe / M5fm /

M5lw / Static

quantification)

SMT(LRA)

SMT(QF LRA)

SMT Solver for LRA
(Z3)

SMT Solver for

QF LRA
(Z3 / MathSAT5)

Controllable or

Not-Controllable

Figure 9.3: Graphical representation of the developed tool-chain.

solved using Z3 and MathSAT5. Given that the encodings are written

in SMT-LIB2 [BST+10] language, it would be straightforward to use any

modern SMT solver as a back-end5. However, our purpose is to assess the

encodings we propose, and not to compare the various SMT solvers. Z3 can

be seen as a representative for solvers that support quantified theories, and

MathSAT as representative for quantifier-free solvers. We expect other

solvers (e.g. Yices [DdM06b], OpenSMT [BPST10]) to exhibit a similar

behavior. (See [BDM+13] for a recent summary on the performances of

current state-of-the-art solvers.)

9.3.2 Experimental Set-Up

We used a set of randomly-generated benchmarks. Strong controllability

problems are generated by means of an extension of the generator presented

in [ACG99], where uncertainty is randomly introduced: each constraint

generated by the consistency problem generator is turned in a contingent

link with a given probability, and its destination node is considered as

uncontrollable. The benchmark set contains 1054 simple-natured instances

for each TNU class (STNU, TCSNU and DTNU). We used random instance

generators because they are typically used in literature, and because they

can be easily scaled to stress the solvers.

5In fact, the tool can also generate the benchmarks also in SMT-LIB1 [RLT06] format.

139

9.3. EXPERIMENTAL EVALUATION

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5fm
Z3 EFE M5lw
Z3 EFE Static
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw
MathSAT5 EFE Static

(a)

Z3 Direct

Z3 Offset

Z3 Distributed

Z3 EFE Z3qe

Z3 EFE M5fm

Z3 EFE M5lw

Z3 EFE Static

MathSAT5 EFE Z3qe

MathSAT5 EFE M5fm

MathSAT5 EFE M5lw

MathSAT5 EFE Static

Mean Time Percentage

0 20 40 60 80 10
0

(b)

Figure 9.4: Results for strong controllability experimental evaluation of STNU. In (a) we report

a cumulative cactus plot of the results. In (b) we show a breakdown of computation time for

the analyzed encodings for the STNU class: encoding time percentage (in black); quantifier

elimination time percentage (in gray); solving time percentage (in white). In Eager For-all

Elimination Static encodings the static quantification and the encoding time are considered

together.

We performed all our experiments on a machine running Scientific Linux

6.0, equipped with two quad-core Xeon processors @ 2.70GHz. We consid-

ered a memory limit of 2GB and a time-out of 300 seconds. The bench-

marks and the tool are available as indicated in section 1.2.

9.3.3 Results for Strong Controllability

To the best of our knowledge, there are no available solvers for strong

controllability problems. Thus, we evaluated the different approaches we

presented, to highlight the difference in performance and the respective

140

CHAPTER 9. STRONG CONTROLLABILITY

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5fm
Z3 EFE M5lw
Z3 EFE Static
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw
MathSAT5 EFE Static

(a)

Z3 Direct

Z3 Offset

Z3 Distributed

Z3 EFE Z3qe

Z3 EFE M5fm

Z3 EFE M5lw

Z3 EFE Static

MathSAT5 EFE Z3qe

MathSAT5 EFE M5fm

MathSAT5 EFE M5lw

MathSAT5 EFE Static

Mean Time Percentage

0 20 40 60 80 10
0

(b)

Figure 9.5: Results for strong controllability experimental evaluation of TCSNU. In (a) we

report a cumulative cactus plot of the results. In (b) we show a breakdown of computation time

for the analyzed encodings for the TCSNU class: encoding time percentage (in black); quantifier

elimination time percentage (in gray); solving time percentage (in white). In Eager For-all

Elimination Static encodings the static quantification and the encoding time are considered

together.

merits. The results for strong controllability are reported in figure 9.4

for the STNU problem class and in figure 9.5 and in figure 9.6 for the

TCSNU and DTNU classes, respectively. We plotted in logarithmic scale

the cumulative time in seconds to solve the considered set of benchmarks.

Differently from the consistency case, the total time includes the encoding

time, which may be significant in the case of quantifier-free encodings.

The plots show that the Offset and Direct encodings quickly reach

the resource limits, and are unable to solve all the instances. The behav-

ior of the Distributed encoding is slightly better than the eager for-all

elimination approaches. The difference can be explained in purely tech-

141

9.3. EXPERIMENTAL EVALUATION

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5lw
Z3 EFE M5fm
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw

(a)

Z3 Direct

Z3 Offset

Z3 Distributed

Z3 EFE Z3qe

Z3 EFE M5lw

Z3 EFE M5fm

MathSAT5 EFE Z3qe

MathSAT5 EFE M5fm

MathSAT5 EFE M5lw

Mean Time Percentage

0 20 40 60 80 10
0

(b)

Figure 9.6: Results for strong controllability experimental evaluation of DTNU. In (a) we report

a cumulative cactus plot of the results. In (b) we show a breakdown of computation time for

the analyzed encodings for the DTNU class: encoding time percentage (in black); quantifier

elimination time percentage (in gray); solving time percentage (in white). In Eager For-all

Elimination Static encodings the static quantification and the encoding time are considered

together.

nological terms: the quantifier elimination modules are called via pipe in

our implementation, while Z3, on the Distributed encoding, performs

quantifier elimination “in-memory”.

We notice that the static quantification techniques (EFE Static),

when applicable (i.e. for STNU and simple-natured TCSNU), yield a sub-

stantial improvement in performance: the expensive quantifier elimination

step is avoided altogether.

In figures 9.7a and 9.7b, we report the scatter plots obtained compar-

ing the performance of the Offset and Distributed encodings, and the

Distributed and the EFE Static encodings using the Z3 solver. The

142

CHAPTER 9. STRONG CONTROLLABILITY

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

Z3 Distributed

Z
3

O
ffs

et

Controllable
Not Controllable

(a)

0.01 0.10 1.00 10.00 100.00
0.

01
0.

10
1.

00
10

.0
0

10
0.

00

Z3 EFE Static

Z
3

D
is

tr
ib

ut
ed

Controllable
Not Controllable

(b)

Figure 9.7: Scatter plot of TCSNU solving time benchmarks obtained using the Z3 solver

showing the comparison of Offset and Distributed encodings (a) and the Distributed and

the Static Eager For-all Elimination encodings (b). Controllable instances are marked

with blue × signs, while not controllable instances are marked with red + signs.

plots show how the performances are affected by the encoding, in fact the

Offset encoding is unable to solve the most complex instances. More-

over, we see that instances that are harder to solve are the ones that are

not strongly controllable for all the tested encodings. In order to assess

the real gap between the Offset and the Distributed encodings, we

isolated three TCSNU benchmarks in which the Offset encoding timed

out, and we tested them without time limits. Two benchmarks were solved

in 1356.8 and 26353.2 seconds, while the third one was still running after

33249.8 seconds. This shows that the logical rewriting performed in the

Distributed encoding yields a very significant performance improvement;

in fact, the same benchmarks are solved by the Distributed encoding in

1.99, 3.46, and 10.992 seconds respectively. In turn, the static encoding

yields a further speed-up (to 1.5, 3.02 and 9.12 seconds).

143

9.3. EXPERIMENTAL EVALUATION

We also plotted the distribution of time consumption between encoding

time, quantifier elimination and solving time (figures 9.4b, 9.5b and 9.6b).

The plots highlight the fact that the quantification is the major issue in

solving TNUs. The plot shows that the encoding time is absolutely negli-

gible when quantifier elimination is applied, in fact the black part of the

diagram is hardly visible. In EFE Static encodings we could not dis-

tinguish the quantifier elimination time from the encoding time because

the elimination is performed together with the encoding. In approaches

where the quantification is demanded to the solver, the vast majority of

time is in the SMT solving, while in eager for-all elimination approaches

the quantifier elimination dominates the solving time. The relatively high

encoding time of Distributed encoding is mainly due to the time needed

to printout the big output file in SMT-LIB format.

9.3.4 Comparison with PVYS

In this section, we compare our approach with the PVYS algorithm de-

scribed in [PVYS07]. We discussed the algorithm in detail in section 4.2.2.

To the best of our knowledge, no implementation is available. Therefore we

implemented our own version of PVYS. The tool is written in Python, and

exploits the MathSAT SMT solver to check the consistency of DTNs. The

PVYS pseudo-code reported in [PVYS07] includes steps to compute the

minimal network, and to check the consistency of DTNs constructed by the

algorithm, but gives no details on how to push and intersect constraints.

Thus, we implemented the same operations using the SMT technology.

The tool (also available as indicated in section 1.2) has been imple-

mented in two variants. The first one directly follows the original pseudo-

code; the second one exploits the incrementality feature of the MathSAT

SMT solver, to gain more efficiency: instead of checking the consistency

of each problem separately, it reuses information derived from previous

144

CHAPTER 9. STRONG CONTROLLABILITY

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

PVYS
PVYS Incremental
Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5fm
Z3 EFE M5lw
Z3 EFE Static
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw
MathSAT5 EFE Static

(a)

0 200 400 600 800 1000
1

10
10

0
10

00
10

00
0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

PVYS
PVYS Incremental
Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5fm
Z3 EFE M5lw
Z3 EFE Static
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw
MathSAT5 EFE Static

(b)

Figure 9.8: Results for strong controllability using the PVYS implementation for the STNU

(a) and TCSNU (b) problem classes.

checks whenever possible.

In figures 9.8 and 9.9, we overlay the results achieved by PVYS in the

same experimental conditions of figures 9.4 to 9.6, respectively. In the

STNU problem class, the results of PVYS are comparable to the SMT-

based approaches. This is expected, because the implementation of PVYS

uses the same SMT-based calls to FargierVidal. In the disjunctive cases,

PVYS performs dramatically worse than the SMT-based approaches, due

to the enumerative treatment of disjunctions. Finally, we notice that in-

crementality improves the performance to some extent.

145

9.3. EXPERIMENTAL EVALUATION

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

PVYS
PVYS Incremental
Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5lw
Z3 EFE M5fm
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw

Figure 9.9: Results for strong controllability using the PVYS implementation for the DTNU

problem class.

146

Chapter 10

Weak Controllability

Another query that can be addressed in the context of TNUs is weak

controllability, that is concerned with the existence of a strategy that as-

sociates values to the controllable starting points of each activity, as a

function of the uncontrollable durations. The values for the uncontrollable

durations are not known at the moment of solving the problem; however,

the executor is given the actual value of such durations just before the

execution starts.

There are several reasons for studying weak controllability. From the

temporal problems perspective, weak controllability is the conceptually

interesting dual of the strong controllability problem. In addition, deciding

whether a given TNU is weakly controllable may serve as a pre-check for

more complex problems such as dynamic controllability. In fact, weak

controllability is a necessary condition for dynamic controllability [VF99b].

From the practical standpoint, weak controllability allows for the mod-

eling of a setting where a number of tasks is to be repeatedly executed,

but with modalities that depend on some environmental parameters that

become available just prior to execution. For example, an automated pro-

duction line may be required to perform a set of activities, whose duration

functionally depends on the measured size of the objects to be manip-

147

ulated. The duration of the activities is unknown a priori, except for an

upper and lower bound, but it becomes precise once the actual objects ma-

terialize. Similarly, in a multi-core processor, the power management may

dynamically control the actual clock speeds, thus affecting the duration

of jobs. An on-line scheduler may be required to decide the appropriate

allocation based on information that may be made available by the power

management unit. Another example of application is given in the setting

of remote systems (such as space exploration rovers or satellites), where

the degradation due to use causes many activities to change duration over

time. For example, the movement speed of many components may decrease

with the age of the system.

These domains share the fact that the tasks may be repeated multi-

ple times, on platforms of limited capacity, and in conditions that can be

estimated prior to execution. As such, they can be encoded as weak con-

trollability problems. In this chapter, we tackle weak controllability for

DTNUs, making the following contributions.

First, we propose a general decision procedure for the problem of weak

controllability for DTNUs. The decision procedure is based on a reduction

to an SMT problem for the theory of Quantified Linear Real Arithmetic

(LRA). The encoding can be thought as working by refutation: we state

the existence of an assignment to uncontrollable time points that cannot

be countered by any controllable assignment. This means that the SMT

problem is satisfiable if and only if the TNU is not weakly controllable.

The problem can thus be directly provided to an efficient SMT solver.

This approach accounts for the first implemented decision procedure for

weak controllability of DTNUs.

Then, we investigate the problem of on-line strategy execution, i.e. given

a weakly controllable DTNU, how to repeatedly produce a suitable sched-

ule for the controllable time points as a function of a valuation to the

148

CHAPTER 10. WEAK CONTROLLABILITY

uncontrollable ones. We propose an approach, referred to as implicit strat-

egy execution, based on the run-time execution of a solver for TN without

uncertainty: any valuation to the uncontrollable durations removes the un-

certainty from the problem, and thus transforms the TNU at hand into a

TN. The solver is then invoked to solve the consistency problem yielding

an assignment to the controllable time points. Unfortunately, this solution

imposes strong requirements on the run-time: most notably, the control

platform must support the execution of a solver; in addition, at each it-

eration it is required to solve an NP-hard problem, i.e. a DTN (without

uncertainty).

This motivates the investigation of efficient run-time execution for weakly

controllable TNUs. We analyze the spectrum of explicit strategies, ex-

pressed in a form that does not require reasoning, and can thus be directly

evaluated. We consider linear strategies, that are strategies in which the

values for the controllable time points are a linear function of the un-

controllable ones; and piecewise-linear strategies, that are combinations of

different linear strategies, each associated with an activation condition de-

fined over the uncontrollable time points. Linear strategies turn out not to

be expressive enough in general: we prove that even for the STNU prob-

lem class, a weakly controllable instance is not guaranteed to have a linear

strategy. We also prove that piecewise-linear strategies are sufficiently ex-

pressive: a piecewise-linear strategy is guaranteed to exist for every weakly

controllable DTNU.

Finally, we address the synthesis problem: given a weakly controllable

temporal problem, we algorithmically synthesize a function from an assign-

ment to uncontrollable time points to an assignment to the controllable

ones. We propose a number of algorithms for the synthesis of a strategy.

We start by considering linear strategies, developing two algorithms to pro-

duce linear strategies for the STNU and DTNU cases. Then, we generalize

149

10.1. WEAK CONTROLLABILITY DEFINITION

to the case of piecewise-linear strategies, and we propose several algorithms

for the STNU and DTNU cases.

All the proposed algorithms have been implemented in a tool for solv-

ing temporal problems under uncertainty. The tool is developed on top

of, and fully leverages, state-of-the-art SMT solvers [dMB08, CGSS13]. To

the best of our knowledge, this is the first implementation for weak control-

lability and strategy extraction. We carried out an extensive experimental

evaluation on a comprehensive set of benchmarks. Our implementation,

demonstrates high scalability, and is able to automatically extract strate-

gies of significant size. The experimental evaluation highlights a dramatic

speed-up in the execution of the synthesized explicit strategies.

10.1 Weak Controllability Definition

We first formally define the concept of weak controllability exploiting the

concept of projection from definition 42. Intuitively, the projection Pω is

the problem without uncertainty in which each uncontrollable duration has

been fixed to a given value.

Definition 45. Let P =̇ (T , C,L) be a TNU. P is weakly controllable if

and only if for each situation ω ∈ ΩP the projection Pω is consistent.

Definition 45 captures the weak controllability concept by requiring the

existence of a schedule for each situation. This definition implicitly models

a strategy as a function f : ΩP → R|Tc| that maps each situation ω in a

schedule for the controllable time points that fulfills the constraints of the

projection Pω. If such a function exists, the problem is weakly controllable.

Weak controllability is, in terms of games, the dual of strong controlla-

bility: in strong controllability, the executor is required to make its move

(i.e. all its decisions) without observing the situation (i.e. the move of the

150

CHAPTER 10. WEAK CONTROLLABILITY

As

Bs

[0,+∞]

Be
[1, 2]

[−∞, 2]

Ae
[0, 3]

[−∞, 1]

(a)

Tc = {As, Bs}
Tu = {Ae, Be}
L = {〈Ae, {〈0, 3〉}, As〉

〈Be, {〈1, 2〉}, Bs〉}
C = {Bs − As ∈ [0,+∞),

Ae −Be ∈ (−∞, 1],

Be − As ∈ (−∞, 2]}

(b)

Figure 10.1: (a) The running example of a weakly controllable STNU: nodes are time points,

double-circled nodes are uncontrollable time points; contingent constraints are depicted as

dashed arrows while free constraints are solid. (b) The constraint definitions for the running

example.

environment); in weak controllability, the environment is required to make

all its decisions before the executor.

To better explain the algorithms and encodings, we consider another

example of TNU, depicted in figure 10.1. The example is composed of two

activities A and B. A starts at time point As and ends in Ae; similarly,

B starts at Bs and ends in Be. The two activities have uncontrollable

duration: A1 has duration between 0 and 3 time units, while A2 lasts for

at least 1 and at most 2 time units. We require As to be scheduled before

Bs (Bs −As ∈ [0,+∞)), Bs before Ae (Ae −Bs ∈ [0,+∞)), Be to happen

at most 1 time unit before Ae (Ae −Be ∈ (−∞, 1]) and Be at most 2 time

units after As (Be − As ∈ (−∞, 2]).

10.2 Deciding Weak Controllability

In this section we address the decision problem of weak controllability:

given a TNU P , we want a decision procedure that answer positively if

151

10.2. DECIDING WEAK CONTROLLABILITY

Tc = 〈As, Bs〉
Yu = 〈yAe , yBe〉

Γ(~Yu) = (yAe ≥ 0) ∧ (yAe ≤ 3) ∧ (yBe ≥ 1) ∧ (yBe ≤ 2)

Ψ(~Tc, ~Yu) = (Bs − As ≥ 0)∧
((As + yAe)− (Bs + yBe) ≤ 1)∧
((Bs + yBe)− As ≤ 2)

Figure 10.2: The encoding of the example STNU of figure 10.1.

and only if P is weakly controllable.

In order to logically define weak controllability and obtain a decision

encoding, we first perform some manipulations on the problem definition.

As in chapter 9, we encode each uncontrollable time point ei in terms of

the time difference with its starting time point bi by means of an uncon-

trollable duration variable yei. We refer to section 9.1.1 (definition 44)

for the encoding details. From here on, we assume an encoded problem

〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉 is given. Figure 10.2 reports the encoding of the

problem depicted in figure 10.1.

Intuitively, a temporal problem is weakly controllable if there exists a

strategy that maps every situation to a corresponding assignment to con-

trollable time points, in such a way that all free constraints are satisfied.

We can rephrase the concept of weak controllability presented in defini-

tion 45 as a satisfiability problem modulo the LRA theory as follows.

Proposition 10.1 (Weak Controllability Formalization). Let P =̇〈T , C,L〉
be a TNU and let 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉 be its encoding. P is weakly

controllable if and only if the following formula is valid modulo the LRA
theory.

∀~Yu.∃~Tc.(Γ(~Yu)→ Ψ(~Tc, ~Yu)) (10.1)

The formula in equation (10.1) is a direct formalization of the intuitive

152

CHAPTER 10. WEAK CONTROLLABILITY

notion of weak controllability, and of the original definition in [VF99b]. The

universal quantifier captures the uncertainty in the decision of the duration

variables. The implication ensures that free constraints are checked only

when Γ(~Yu) is satisfied, that is only on assignments that encode situations

of the original temporal problem. In fact, if Γ(~Yu) is not satisfied, the

implication is automatically satisfied. Equation (10.1) is a formula in LRA
that is valid if and only if the problem is weakly controllable.

For example, the problem depicted in figure 10.1a is weakly controllable

if and only if the following formula is valid.

∀yAe, yBe.∃As, Bs.(((yAe ≥ 0) ∧ (yAe ≤ 3) ∧ (yBe ≥ 1) ∧ (yBe ≤ 2))→

((Bs − As ≥ 0) ∧ ((As + yAe)− (Bs + yBe) ≤ 1) ∧

((Bs + yBe)− As ≤ 2)))

Looking at the weak controllability formal characterization in propo-

sition 10.1 from an SMT perspective, it is clear that we are solving the

validity problem of an LRA formula. Any SMT solver supporting LRA
is able to deal with such a formula directly and it can correctly solve the

problem. However, due to the high computational cost of directly handling

quantifiers, an optimized encoding is required.

We first rewrite the formula encoding weak controllability in proposi-

tion 10.1 by transforming the external universal quantifier into the negation

of an existential one, and we consider the negation of the resulting formula.

We call the resulting formula inverted encoding.

¬∃~Tc.(Γ(~Yu)→ Ψ(~Tc, ~Yu)) (10.2)

If this formula is unsatisfiable, then the problem is weakly controllable,

while if it is satisfiable, then the problem is not weakly controllable. Note

that in equation (10.2) we dropped the outermost ¬∃~Yu as any SMT prob-

lem is inherently an existential quantification and we consider the negation

153

10.2. DECIDING WEAK CONTROLLABILITY

¬∃As, Bs.((yAe ≥ 0) ∧ (yAe ≤ 3)∧
(yBe ≥ 1) ∧ (yBe ≤ 2))→

((Bs − As ≥ 0)∧
((As + yAe)− (Bs + yBe) ≤ 1)∧
((Bs + yBe)− As ≤ 2))

(a)

(yAe ≥ 0) ∧ (yAe ≤ 3)∧
(yBe ≥ 1) ∧ (yBe ≤ 2)∧
¬∃As, Bs.((Bs − As ≥ 0)∧

((As + yAe)− (Bs + yBe) ≤ 1)∧
((Bs + yBe)− As ≤ 2))

(b)

Figure 10.3: Inverted encoding (a) and assumption-extraction encoding (b) applied to the

running example STNU of figure 10.1.

by reversing the interpretation of the result. Intuitively, we are searching

for an assignment to the uncontrollable time points that is able to violate

the free constraints under any possible strategy (it is a winning strategy

for the environment). In fact, if the formula is satisfiable, each model

corresponds to a situation for which no weak strategy to schedule the con-

trollable time points exists. Therefore, differently from equation (10.1),

this encoding is also helpful for debugging a non-weakly controllable prob-

lem. This encoding still requires a solver with full support of LRA, but is

able to exploit the searching power of the SMT framework and, in case of

non-weak controllability, it allows for the extraction of debug information

by providing a model of the formula. An example of this encoding for the

running example problem is shown in figure 10.3a.

A further improvement can be achieved by limiting as much as possible

the scope of the existential quantifier. To this extent, we push the existen-

tial quantifier over the implication, and thus the quantification is limited

to the free constraints only (ref. as assumption-extraction encoding):

Γ(~Yu) ∧ ¬∃~Tc.Ψ(~Tc, ~Yu). (10.3)

The assumption-extraction encoding for the running example problem is

154

CHAPTER 10. WEAK CONTROLLABILITY

reported in figure 10.3b.

The following proposition states that the inverted and assumption-

extraction encodings are logically equivalent: the proof can be found in

appendix A.3.

Proposition 10.2 (Assumption Extraction Correctness). Equation (10.2)

and equation (10.3) are logically equivalent.

10.3 Strategies for Weak Controllability

We now consider the problem of actually executing a control strategy that

is associated with a given weakly controllable TNU. A TNU is a modeling

framework that represents a set of assumptions over the environment and

imposes a set of requirements to be fulfilled. We consider the use-case in

which a strategy for scheduling the controllable time points is repeatedly

executed by reading the inputs from the environment in the form of a

situation. Such a situation is generated by reading the parameters on which

the uncontrollable durations depends, by means of appropriate sensors or

estimators. The strategy computes an assignment to the controllable time

points that fulfills the problem constraints and is then deployed to an

actuator for execution.

The problem we tackle here is to automatically synthesize such a strat-

egy: we discuss two approaches. First, we use a TN solver to do on-line

reasoning, thus executing a control strategy that is implicitly defined in

the TNU, if solvable. Then, we investigate the idea of explicit strategies,

that can be readily executed without resorting to on-line reasoning.

155

10.3. STRATEGIES FOR WEAK CONTROLLABILITY

Implicit strategy execution

TNU = 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Xc, ~Yu)〉

TN =

〈~Tc, ∅, ∅,Ψ(~Tc, S̄)〉 TN Solver
+

~Yu → S̄

Plant
Parameter

Estimation

S̄ T̄c

Figure 10.4: Schematic view of implicit strategy mechanism. The strategy is repeatedly executed

once a situation is obtained by estimating the relevant parameters in the Plant. The output

of the strategy is a controllable schedule (i.e. an assignment T̄c to all the controllable time

points). The implicit strategy works by “projecting away” the uncertainty in the TNU: the

uncontrollable durations ~Yu are substituted with the actual values of the situation S̄. Then, a

TN is obtained and is solved using a TN solver, yielding the assignment (T̄c) to the controllable

time points.

10.3.1 Implicit Strategies

A way of obtaining a strategy for a weakly controllable TNU is given by

definition 42 and depicted in figure 10.4: when a situation S̄ is read1, we

eliminate the uncertainty by substituting the uncontrollable duration vari-

ables in the TNU formulation with the values obtained from the situation

(obtaining a TN that is the projection of the TNU). Then, we solve the

resulting temporal problem, that is now without uncertainty, and return

the assignment to the controllable time points (indicated as T̄c) for exe-

cution. Formally, given the encoding of a TNU 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉
and an assignment to all the uncontrollable durations S̄ fulfilling Γ(S̄) (a

1S̄ is a vector of |~Yu| rational numbers, one for each uncontrollable duration.

156

CHAPTER 10. WEAK CONTROLLABILITY

situation), we can find an assignment to the controllable variables ~Tc by

finding a model for the formula Ψ(~Tc, S̄). This strategy requires a solver

to be executed once the situation S̄ is known.

In practice, we can implement this idea using any SMT solver by search-

ing for a model for Ψ(~Tc, S̄). However, this approach (called Implicit-

SMT) requires one to solve a separate SMT problem for each situation.

A more advanced approach is to exploit the incrementality feature of

modern SMT solvers [BSST09], allowing the solver to “recycle” discov-

ered clauses and lemmas among different situations. For this purpose, we

designed an incremental approach, described in algorithm 6. Implicit-

SMT-Incremental takes the encoding 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉, and ini-

tializes the SMT solver by asserting the free constraints Ψ(~Tc, ~Yu). Then,

it enters a (possibly infinite) loop, and processes a sequence of situations

S̄1, S̄2, · · · . The problem description is asserted in the solver once and for

all, while the situation is first asserted, and once an assignment is found,

it is retracted.

The main drawback of the implicit approach is the requirement of on-

line reasoning. In fact, once the situation is known, a solver is invoked to

discover the assignment for the controllable time points. Solving the TN

resulting from the projection of a TNU is hard in general. If the problem

belongs to the STNU problem class the resulting STN can be solved in

polynomial time, but for the general case of DTNU, the projection results

in a DTN that is, in general, NP-hard [SK00]. In addition, having a solver

as part of the run-time may require much more expensive platforms.

10.3.2 Explicit Strategies

We avoid the burden of on-line reasoning by providing techniques for the

synthesis of functions that are simple and fast to execute. Consider the

formalization in proposition 10.1. Interestingly, we can apply skolemiza-

157

10.3. STRATEGIES FOR WEAK CONTROLLABILITY

Algorithm 6 Implicit strategy execution based on SMT with incrementality.

1: procedure Implicit-SMT-Incremental(Γ(~Yu), Ψ(~Tc, ~Yu))

2: for all bi ∈ ~Tc do

3: SMT.declareRealVar(bi)

4: end for

5: for all yj ∈ ~Yu do

6: SMT.declareRealVar(yi)

7: end for

8: SMT.assert(Ψ(~Tc, ~Yu))

9: loop

10: S̄ := WaitForSituation()

11: SMT.push()

12: for all yi ∈ ~Yu do

13: SMT.assert(yi = S̄i)

14: end for

15: if SMT.solve = SAT then

16: µ := SMT.getModel()

17: ExcecuteTimePoints(µ)

18: else

19: ⊥ . Unreachable if the problem is weakly controllable and S fulfills Γ(~Yu)

20: end if

21: SMT.pop()

22: end loop

23: end procedure

tion [Kle67], thus replacing the existential quantifier by means of a fresh

function symbol. The following theorem formalizes this idea, the proof is

reported in appendix A.3.

Theorem 10.1 (Weak Controllability Skolemization). A TNU 〈T , C,L〉
is weakly controllable if and only if the formula

∀~Yu.Γ(~Yu)→ Ψ(f(~Yu), ~Yu) (10.4)

is satisfiable.

158

CHAPTER 10. WEAK CONTROLLABILITY

We transform the inner existential quantifier into a function f that

models the weak strategy for the problem. In fact, in equation (10.4), the

interpretation of the function f is exactly a strategy that solves the prob-

lem. Equation (10.4) gives a clear vision of what a strategy is: a function

that gets in input the uncontrollable durations and returns an assignment

to the controllable time points that fulfills all the problem constraints.

In principle, one would like to exploit this formulation to query an SMT

solver, and extract, from the model, a closed form for the strategy f .

However, equation (10.4) is a quantified first-order formula involving un-

interpreted functions2, that is in general undecidable.

In the following, we focus on two types of strategies: linear strategies,

where each controllable variable is computed as a linear combination of the

uncontrollable durations; piecewise-linear strategies, where different linear

strategies are executed depending on the input situation.

From here on, we assume the encoding 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉 of a

TNU is given. In general, a weak strategy is a function that maps each as-

signment to uncontrollable durations satisfying Γ(~Yu) (i.e. each situation)

into an assignment to the controllable time points, such that all the free

constraints are satisfied.

Definition 46. A weak strategy for a TNU is a function f : R|~Yu| → R|~Tc|

defined for every point ~Yu in Γ(~Yu) and such that Ψ(f(~Yu), ~Yu) holds for

every ~Yu in Γ(~Yu).

Note that, this definition does not impose any constraint (e.g. linearity,

continuity) on f other than being a function.

In definition 46, we modeled a weak strategy as a single function f :

R|~Yu| → R|~Tc|, but we can equivalently consider a set of functions f1, . . . , f|~Tc|
each computing a schedule for a single controllable time point given the

2Formally, equation (10.4) is a quantified first-order formula expressed in the theory combination of

LRA and the theory of uninterpreted functions (EUF) [BSST09].

159

10.3. STRATEGIES FOR WEAK CONTROLLABILITY

situation. The two formalizations are equivalent because if there exists a

unique function f , we can obtain the set of function by projection of f and

vice-versa.

Let f̄(~Yu) : R|~Yu| → R|~Tc| be a strategy. The strategy imposes a rela-

tion between the controllable time points and the uncontrollable durations:
~Tc = f̄(~Y). If such a relation is expressible as a formula in a theory T we

can check whether f̄ is a weak strategy for a given temporal problem by

checking the existence of a point in Γ(~Yu) that violates the free constraints.

Γ(~Yu) ∧ ¬Ψ(~Tc, ~Yu) ∧ (~Tc = f̄(~Yu)) (10.5)

If equation (10.5) is satisfiable modulo T ∪QF LRA, then f̄(~Yu) is not a

valid weak strategy, because there exists a situation for which the strategy

violates the free constraints. In this case, T can be any theory needed

to express the relation imposed by the strategy, for example it could be

LRA or even Nonlinear Real Arithmetic. Note that, this check is very

useful in practice if f̄(~Yu) can be expressed in QF LRA because the entire

check would fit in QF LRA. In the following, we describe two possible

shapes of strategies, namely linear and piecewise-linear. Both the shapes

can be expressed in QF LRA. Therefore checking if such strategies are

weak strategies for a given problem is possible by performing a single call

to an SMT solver in QF LRA.

Linear strategies. A linear strategy is such that the value of every control-

lable time point is obtained as a linear combination of ~Yu. Let n
.
= |~Tc|

and m
.
= |Tu|. A linear strategy can be represented with a matrix A of

real coefficients of size n ×m and a vector ~c of size n. Every controllable

variable is scheduled according to a linear function of the uncontrollable

durations. The strategy f(~Yu) can be then expressed as A · ~Yu +~c in which

each bi ∈ ~Tc can be computed as Ai,1yAe + . . . + Ai,mym + ci. Therefore,

160

CHAPTER 10. WEAK CONTROLLABILITY

the matrix A must have one column for every duration and the vector ~c

contains the constant additive terms. The problem of synthesizing a linear

strategy is then equivalent to the problem of finding a suitable matrix A

and vector ~c.

Piecewise-linear strategies. A more general form of strategy is the piecewise-

linear strategy, that is the composition of a finite number of linear strate-

gies. A piecewise-linear strategy is defined by cases over a finite partition

of the situations (a partition of the region represented by Γ(~Yu)). For each

case we have a linear strategy that is a valid weak strategy for that subset

of the situations. We can compose these linear strategies by first checking

in which element of the partition the observed situation belongs, and then

applying the corresponding linear strategy. In this setting, a linear strat-

egy is a particular case of a piecewise-linear strategy in which we have a

partition of cardinality one.

Definition 47. A piecewise-linear strategy is a function

f(~Yu)
.
=

f1(~Yu) if η1(~Yu)

f2(~Yu) else if η2(~Yu)

...

fk(~Yu) else if ηk(~Yu)

where each f i is a linear strategy and ηi(~Yu) are sub-regions of Γ(~Yu) such

that Γ(~Yu) ⊆ (
⋃k
i=1 η

i(~Yu)).

Note that, even this kind of strategy can be directly encoded in QF LRA.

We call each pair 〈f i(~Yu), ηi(~Yu)〉 a “piece” of the strategy. In order to

compactly represent a piecewise-linear strategy in the algorithms we ab-

stract a piecewise-linear strategy f(~Yu) as the ordered list of its pieces.

For example, the strategy f(~Yu) in definition 47 can be represented as the

following list of pieces:

〈〈f 1(~Yu), η
1(~Yu)〉, 〈f 2(~Yu), η

2(~Yu)〉, . . . , 〈fk(~Yu), ηk(~Yu)〉〉.

161

10.3. STRATEGIES FOR WEAK CONTROLLABILITY

As

Bs

[0,+∞]

Be
[1, 2]

[−∞, 2]

Ae
[0, 3]

[0,+∞]

[−∞, 1]

(a)

Tc = {As, Bs}
Tu = {Ae, Be}
L = {〈Ae, {〈0, 3〉}, As〉,

〈Be, {〈1, 2〉}, Bs〉}
C = {Bs − As ∈ [0,+∞),

(∗) Ae −Bs ∈ [0,+∞),

Ae −Be ∈ (−∞, 1],

Be − As ∈ (−∞, 2]}

(b)

Figure 10.5: (a) The modified running example STNU: the problem is weakly controllable,

but does not have any linear strategy. (b) The constraint definitions for the modified running

example.

Following definition 47, no continuity requirement is imposed on piecewise-

linear strategies. Continuity is not required by the weak controllability

definition and is not a useful requirement for our setting, as we assume that

the parameters yielding the situation are fully specified before scheduling

the problem.

Linearity is not enough. A linear strategy is very useful in practice: it is

compact to represent and easy to evaluate. In fact, it can be represented

using just a matrix and a vector; moreover, given an assignment to the

uncontrollable duration, we can compute the resulting assignment to the

controllable variables by means of a single matrix multiplication. In gen-

eral, unfortunately, a weakly controllable TNU is not guaranteed to have

such a strategy. In fact, even the STNU class of problems is not guar-

anteed to admit such a strategy for every weakly controllable instance.

The following theorem states that there exists a weakly controllable STNU

162

CHAPTER 10. WEAK CONTROLLABILITY

yAe

yBe

Bs

12

3

(a)

yAe
yBe

Bs

1 23

(b)

Figure 10.6: (a) The region of feasibility of the STNU in figure 10.2 with As = 0 in the space of

Bs, yAe and yBe , depicted from two different angles.

without any linear strategies.

Theorem 10.2 (Linearity Insufficiency for STNU). There exists an STNU

that is weakly controllable and does not have any linear strategy.

Proof. Let us consider the STNU depicted in figure 10.5 obtained by adding

the constraint Ae −Bs ∈ [0,+∞) to the running example in figure 7.2. In

the following we show that this STNU is weakly controllable, but there

exists no linear strategy.

The problem is weakly controllable, because we can apply the following

piecewise-linear weak strategy.

As

Bs

 = f(yAe, yBe) =̇

 0

yAe − yBe − 1

 if (yBe ≤ yAe − 1)0

0

 otherwise

This strategy corresponds to the following assignments.

As = 0

163

10.3. STRATEGIES FOR WEAK CONTROLLABILITY

Bs =

yAe − yBe − 1 if (yBe ≤ yAe − 1)

0 otherwise

This strategy clearly covers the entire uncontrollable space because it is a

total function. Given this strategy, the free constraints are always satisfied:

assuming Γ(yAe, yBe) and yBe > yAe − 1, the formula Ψ(~Tc, ~Yu) reduces to

Ψ(f(yAe, yBe), yAe, yBe) =̇ (0− 0 ≥ 0) ∧ ((0 + yAe)− 0 ≥ 0)∧

((0 + yAe)− (0 + yBe) ≤ 1)∧

((0 + yBe)− 0 ≤ 2)

⇔ (yAe ≥ 0) ∧ (yAe − yBe ≤ 1) ∧ (yBe ≤ 2).

(10.6)

The atoms (yAe ≥ 0) and (yBe ≤ 2) follow from the assumptions of

Γ(yAe, yBe) while the atom (yAe − yBe ≤ 1) is entailed by the condition

of the piece: yBe > yAe − 1.

Considering the other piece, namely the case yBe ≤ yAe − 1, we obtain

the following.

Ψ(f(yAe, yBe), yAe, yBe) =̇ (yAe − yBe − 1− 0 ≥ 0) ∧

((0 + yAe)− (yAe − yBe − 1) ≥ 0) ∧

((0 + yAe)− (yAe − yBe − 1− yBe) ≤ 1) ∧

((yAe − yBe − 1 + yBe)− 0 ≤ 2)

⇔ (yBe ≤ yAe − 1) ∧ (yBe ≥ 1) ∧ (1 ≤ 1) ∧ (yAe ≤ 3)

(10.7)

The atoms (yBe ≥ 1) and (yAe ≤ 3) follow from the assumptions of

Γ(yAe, yBe) while the atom (yBe ≤ yAe − 1) is exactly the condition of

the piece we are considering.

We now show that no linear strategy exists for the given problem. For

the sake of contradiction, let us suppose that a linear strategy exists for

the problem. Let f̄(~Yu) =̇ A · ~Yu + ~c be such a linear strategy. Then,

164

CHAPTER 10. WEAK CONTROLLABILITY

As =̇ A1,1yAe + A1,2yBe + c1 and Bs =̇ A2,1yAe + A2,2yBe + c2. If f̄(~Yu) is a

valid weak linear strategy, it must fulfill the problem constraints in all the

situations. Let us consider four particular situations, namely ω1 = 〈0, 1〉
(that is, yAe =̇ 0 and yBe =̇ 1), ω2 = 〈0, 2〉, ω3 = 〈3, 1〉 and ω4 = 〈3, 2〉.

We can now build the following system obtained by instantiating each

constraint of Ψ(As, Bs, yAe, yBe) in each of the four picked situations, and

by substituting each bi with its strategy definition.

(A2,1 · 0 + A2,2 · 1 + c2)− (A1,1 · 0 + A1,2 · 1 + c1) ≥ 0

(A1,1 · 0 + A1,2 · 1 + c1 + 0)− (A2,1 · 0 + A2,2 · 1 + c2) ≥ 0

(A1,1 · 0 + A1,2 · 1 + c1 + 0)− (A2,1 · 0 + A2,2 · 1 + c2 + 1) ≤ 1

(A2,1 · 0 + A2,2 · 1 + c2 + 1)− (A1,1 · 0 + A1,2 · 1 + c1) ≤ 2

(A2,1 · 0 + A2,2 · 2 + c2)− (A1,1 · 0 + A1,2 · 2 + c1) ≥ 0

(A1,1 · 0 + A1,2 · 2 + c1 + 0)− (A2,1 · 0 + A2,2 · 2 + c2) ≥ 0

(A1,1 · 0 + A1,2 · 2 + c1 + 0)− (A2,1 · 0 + A2,2 · 2 + c2 + 2) ≤ 1

(A2,1 · 0 + A2,2 · 2 + c2 + 2)− (A1,1 · 0 + A1,2 · 2 + c1) ≤ 2

(A2,1 · 3 + A2,2 · 1 + c2)− (A1,1 · 3 + A1,2 · 1 + c1) ≥ 0

(A1,1 · 3 + A1,2 · 1 + c1 + 3)− (A2,1 · 3 + A2,2 · 1 + c2) ≥ 0

(A1,1 · 3 + A1,2 · 1 + c1 + 3)− (A2,1 · 3 + A2,2 · 1 + c2 + 1) ≤ 1

(A2,1 · 3 + A2,2 · 1 + c2 + 1)− (A1,1 · 3 + A1,2 · 1 + c1) ≤ 2

(A2,1 · 3 + A2,2 · 2 + c2)− (A1,1 · 3 + A1,2 · 2 + c1) ≥ 0

(A1,1 · 3 + A1,2 · 2 + c1 + 3)− (A2,1 · 3 + A2,2 · 2 + c2) ≥ 0

(A1,1 · 3 + A1,2 · 2 + c1 + 3)− (A2,1 · 3 + A2,2 · 2 + c2 + 2) ≤ 1

(A2,1 · 3 + A2,2 · 2 + c2 + 2)− (A1,1 · 3 + A1,2 · 2 + c1) ≤ 2

This system can be rewritten as follows.

165

10.3. STRATEGIES FOR WEAK CONTROLLABILITY

−A1,2 + A2,2 − c1 + c2 ≥ 0

A1,2 − A2,2 + c1 − c2 ≥ 0

−A1,2 + A2,2 − c1 + c2 ≥ 0

A1,2 − A2,2 + c1 − c2 ≥ −1

−2A1,2 + 2A2,2 − c1 + c2 ≥ 0

2A1,2 − 2A2,2 + c1 − c2 ≥ 0

−2A1,2 + 2A2,2 − c1 + c2 ≥ −3

+2A1,2 − 2A2,2 + c1 − c2 ≥ 0

−3A1,1 − A1,2 + 3A2,1 + A2,2 − c1 + c2 ≥ 0

3A1,1 + A1,2 − 3A2,1 − A2,2 + c1 − c2 ≥ −3

−3A1,1 − A1,2 + 3A2,1 + A2,2 − c1 + c2 ≥ 1

3A1,1 + A1,2 − 3A2,1 − A2,2 + c1 − c2 ≥ −1

−3A1,1 − 2A1,2 + 3A2,1 + 2A2,2 − c1 + c2 ≥ 0

3A1,1 + 2A1,2 − 3A2,1 − 2A2,2 + c1 − c2 ≥ −3

−3A1,1 − 2A1,2 + 3A2,1 + 2A2,2 − c1 + c2 ≥ 0

−3A2,1 − 2A2,2 + 3A1,1 + 2A1,2 + c1 − c2 ≥ 0

The system admits no solution in the real numbers. Therefore there

exists no linear strategy for the given problem as there exists no assignment

to the coefficients that are able to fulfill the four situations at the same

time.

In order to graphically explain the reason why no linear strategy exists

for the given problem, we plotted the space of free constraints of the STNU

problem in the space (yAe, yBe, Bs) regions in figures 10.6a and 10.6b (with-

out loss of generality, we assigned As = 0 as we can always freely assign a

reference controllable time point thanks to the RDL property of shifting

166

CHAPTER 10. WEAK CONTROLLABILITY

solutions). The plot clearly shows that there exists no linear strategy for

Bs. Considering the vertex 〈0, 1〉 in the space (yAe, yBe), a linear solution

must contain point 〈0, 1, 0〉 as it is the only feasible point for the vertex

〈0, 1〉. Similarly, considering 〈0, 2〉 we must include 〈0, 2, 0〉; considering

〈3, 1〉 we must include 〈3, 1, 1〉 and for 〈3, 2〉 the linear solution must in-

clude the point 〈3, 2, 0〉. However, no linear solution can exist because

no plane contains all the four points. In fact, the only plane containing

〈0, 1, 0〉, 〈0, 2, 0〉 and 〈3, 2, 0〉 is Bs = 0, but this plane does not contain the

point 〈3, 1, 1〉.
We can also exploit the encodings for the decision problem to show

that the STNU in figure 10.5 is weakly controllable. The inverted SMT

encoding of equation (10.2) for the example problem is as follows.

¬∃As, Bs.((yAe ≥ 0) ∧ (yAe ≤ 3) ∧ (yBe ≥ 1) ∧ (yBe ≤ 2))→

((Bs − As ≥ 0) ∧ ((As + yAe)−Bs ≥ 0)∧

((As + yAe)− (Bs + yBe) ≤ 1))∧

((Bs + yBe)− As ≤ 2)

(10.8)

This formula can be shown to be unsatisfiable by any LRA SMT solver.

Therefore the problem is indeed weakly controllable. The unsatisfiability

of the formula is also shown by equations (10.6) and (10.7) that provide a

witness strategy for the existential quantifier, making the formula false. In

fact, if (yBe > yAe−1) holds, equation (10.8) is unsatisfiable because As = 0

and Bs = 0 is a model of equation (10.6). Similarly, if (yBe ≤ yAe−1) holds,

equation (10.8) is unsatisfiable because As = 0 and Bs = yAe − yBe − 1 is

a model of equation (10.7).

Piecewise-linear strategy is enough. We now prove that a piecewise-linear

strategy always exists for any weakly controllable TNU.

167

10.3. STRATEGIES FOR WEAK CONTROLLABILITY

Theorem 10.3 (Piecewise Strategy Existence). For any given TNU P , if

P is weakly controllable, then P admits a piecewise-linear strategy.

Proof. Let 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉 be the encoding of P . Since P is weakly

controllable, we know that

∀~Yu.∃~Tc.Γ(~Yu)→ Ψ(~Tc, ~Yu)

is valid.

We want to prove that there exists a piecewise-linear strategy f such

that

∀~Yu.(Γ(~Yu) ∧ ~Tc = f(~Yu))→ Ψ(~Tc, ~Yu)

is valid.

By construction, both Γ(~Yu) and Ψ(~Tc, ~Yu) are formulae in QF LRA
and hence they geometrically correspond to the union of finitely many

closed convex polyhedra (the polyhedra are closed because all the inequal-

ities are non-strict by problem definition).

We now show that from each face we can extract a linear strategy that

correctly work for a sub-region of Γ(~Yu). By combining these linear strate-

gies for all the faces of the polyhedron we obtain a weak strategy for P .

Without loss of generality we can assume Ψ(~Tc, ~Yu) being a bounded

set (meaning that it can be completely contained in a ball of finite ra-

dius). This is because we already have bounds for all the uncontrollable

variables in Γ(~Yu) (because of the assumptions in definition 40) and we

can always add upper and lower bounds on controllable variables as fol-

lows. Since the problem is weakly controllable, let g(~Y) be any weak

strategy. For each variable x ∈ ~Tc, let ux =̇max({g(~Yu) | ~Yu |= Γ(~Yu)}) and

lx =̇min({g(~Yu) | ~Yu |= Γ(~Yu)}). We can then add the following constraint

to the problem without altering its weak controllability: x ∈ [lx, ux].

Let φ1(~Tc, ~Yu), · · · , φw(~Tc, ~Yu) be the formulae corresponding to the faces

of Ψ(~Tc, ~Yu). Each face φz(~Tc, ~Yu) is a convex polyhedron and can be ex-

168

CHAPTER 10. WEAK CONTROLLABILITY

pressed as a system of inequalities A(~Tc|~Yu) ≤ b with at least one inequality

satisfied as an equality. From this system is easy to extract a linear strategy

f z(~Yu) by reducing the augmented matrix (A|b) into reduced row echelon

form and applying substitution to extract the relation between ~Tc and ~Yu

in closed form.

For each face φz(~Tc, ~Yu) we define its projection χz(~Yu) =̇ ∃~Tc.φz(~Tc, ~Yu).
SinceQF LRA admits quantifier elimination, also χz(~Yu) can be expressed

as a QF LRA formula, and geometrically corresponds to a finite union of

convex polyhedra.

Therefore, we can build the piecewise-linear weak strategy f defined as

follows.

f(~Yu)
.
=

f 1(~Yu) if χ1(~Yu)

f 2(~Yu) else if χ2(~Yu)

...

fk(~Yu) else if χk(~Yu)

Clearly, ∀~Yu.(
∨w
i=1 χ

i(~Yu)) → Γ(~Yu) because we know that P is weakly

controllable and we assumed Ψ(~Tc, ~Yu) to be bounded (being bounded, the

projection of all the faces corresponds to the projection of the polyhedral

union itself). In addition, each f z(~Yu) applied to a point in χz(~Yu) yields a

point belonging to a face of the polyhedron, hence belonging to Ψ(~Tc, ~Yu).

Thus, the strategy is a valid weak strategy for P .

We are interested in generating strategies that can be efficiently exe-

cuted once the situation is known. Given this requirement, linear strate-

gies are very helpful, because they are compact (the size is quadratic in the

number of time points) and can be executed by performing a linear compu-

tation in the size of the strategy. Piecewise-linear strategies are also helpful

because they can be executed in linear time in the size of the strategy as

they require only a case switch before applying the linear executor.

169

10.4. SYNTHESIS OF STRATEGIES FOR WEAK CONTROLLABILITY

Strategy Type

Linear Piecewise-Linear

Convex VertexEncoding (section 10.4.1) SimplexesDecomposition (section 10.4.2)

(STNU) IncrementalWeakening (section 10.4.1) LazyExpansion (section 10.4.2)

Disjunctive
NRA Encoding (section 10.4.3)

SkinCrawler (section 10.4.4)

(DTNU) ConvexRegionEnumerator (section 10.4.4)

Table 10.1: Overview of the developed algorithms with references to the section that describes

each of them.

10.4 Synthesis of strategies for Weak Controllability

The problem of synthesizing weak strategies can be classified along two

dimensions; we distinguish between (i) convex (STNU) vs. disjunctive

(DTNU) temporal problems and (ii) linear vs. piecewise-linear strategies.

Table 10.1 summarizes this classification and indicates the algorithms we

developed for each problem class.

All the algorithms assume that the given problem is weakly control-

lable, but it is not known in advance whether the problem admits a linear

strategy. Thus, the algorithms listed in the “Linear” column of table 10.1

return ⊥ in case no linear strategy exists. The others are guaranteed to

find a piecewise-linear strategy. In the rest of this section we analyze each

combination of temporal problem class and strategy type separately.

10.4.1 Linear Strategies for STNU

In the following, we discuss two algorithms that are able to synthesize linear

strategies for a given STNU problem. They both leverage the convexity in

the constraints of the STNU problem class.

170

CHAPTER 10. WEAK CONTROLLABILITY

Vertex Encoding

If the problem is an STNU, then the free constraints represent a convex

space: given any two points in the space of free constraints, any point in

the line connecting these two points is also a solution. Following this idea

we can generalize the result of weak controllability on bounds in [VF99b]

(see section 4.2.2 and theorem 4.1) to the search of linear strategies. We

consider all the vertexes of the uncontrollable space Γ(~Yu) that, by defini-

tion of Γ(~Yu), are the elements of the set VΓ =̇{lc1,1, uc1,1}×· · ·×{lcm,1, ucm,1}.
We then search for a hyperplane that satisfies the free constraints in all

these vertexes. Such a hyperplane constitutes a linear strategy, because

the solution space is convex. The following theorem formalizes this idea,

and is proven in appendix A.3.

Theorem 10.4 (Vertex Encoding Correctness). Let P =̇ 〈T , C,L〉 be an

STNU, 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉 be its encoding and let f̄ : R|Yu| → R|Xc| be

a linear strategy. If f̄ fulfills Ψ(~Tc, ~Yu) in all the vertexes vi ∈ VΓ, then f̄

is a weak linear strategy for P .

Based on this insight, the idea is to create a single formula that encodes

the problem with a symbolic strategy in all the vertexes of the uncontrol-

lable region. The encoding is obtained instantiating the problem constraint

in all the vertexes vi ∈ VΓ and by enforcing a single hyperplane to contain

all of them. If such a hyperplane exists, then it is a valid linear strategy

for the entire problem.

Algorithm 7 shows the pseudo-code for extracting a linear strategy with

such encoding. We create a matrix A and a vector ~c of real SMT variables

representing the coefficients of the linear strategy. The function Vertex-

Assignments generates all the vertexes of the convex polyhedron corre-

sponding to Γ(~Yu). In order to achieve this result if Γ(~Yu) is generated as

in definition 44, it suffices to generate all the possible combinations of as-

171

10.4. SYNTHESIS OF STRATEGIES FOR WEAK CONTROLLABILITY

Algorithm 7 Vertex Encoding

1: procedure VertexEncoding(Γ(~Yu), Ψ(~Tc, ~Yu))

2: for all bi ∈ ~Tc do

3: SMT.declareRealVar(ci)

4: for all yj ∈ ~Yu do

5: SMT.declareRealVar(Ai,j)

6: end for

7: end for

8: φ(A,~c) := >
9: for all p̄ ∈ VertexAssignments(Γ(~Yu)) do

10: φ(A,~c) := φ(A,~c) ∧Ψ(A · p̄+ ~c, p̄)

11: end for

12: if SMT.solve(φ(A,~c)) = SAT then

13: (A,~c) := SMT.getModel()

14: return f(~Yu) =̇ A · ~Yu + ~c

15: else

16: return ⊥
17: end if

18: end procedure

signments of contingent links bounds. We remark that each p̄ is a vector of

constants, and therefore the only variables occurring in the formula φ(A,~c)

are the coefficients of the linear strategy f(~Yu) =̇ A · ~Yu + ~c. The function

SMT.solve checks the satisfiability of the given formula using an SMT

solver, while SMT.getModel returns the produced model in case of SAT

answer.

We presented this algorithm for an encoded problem as formalized in

definition 44, but the same idea can be applied when Γ(~Yu) and Ψ(~Tc, ~Yu)

are simply conjunctive QF LRA formulae (so that they represent convex

polyhedra). The only modification needed for the algorithm is to change

the VertexAssignments so that it is able to produce the vertexes of

general formulae. For doing this we can employ well known techniques for

enumerating the vertexes of a convex polyhedron [AF92].

172

CHAPTER 10. WEAK CONTROLLABILITY

Consider for example the STNU problem in figure 7.2. The resulting

problem admits a linear strategy. The encoding obtained by the application

of algorithm 7 is as follows.

((A1,2 · 0 + A2,2 · 1 + c2)− (A1,1 · 0 + A2,1 · 1 + c1) ≥ 0) ∧

(((A1,1 · 0 + A2,1 · 1 + c1) + 0)− ((A1,2 · 0 + A2,2 · 1 + c2) + 1) ≤ 1) ∧

(((A1,2 · 0 + A2,2 · 1 + c2) + 1)− (A1,1 · 0 + A2,1 · 1 + c1) ≤ 2)

∧

((A1,2 · 0 + A2,2 · 2 + c2)− (A1,1 · 0 + A2,1 · 2 + c1) ≥ 0) ∧

(((A1,1 · 0 + A2,1 · 2 + c1) + 0)− ((A1,2 · 0 + A2,2 · 2 + c2) + 2) ≤ 1) ∧

(((A1,2 · 0 + A2,2 · 2 + c2) + 2)− (A1,1 · 0 + A2,1 · 2 + c1) ≤ 2)

∧

((A1,2 · 3 + A2,2 · 1 + c2)− (A1,1 · 3 + A2,1 · 1 + c1) ≥ 0) ∧

(((A1,1 · 3 + A2,1 · 1 + c1) + 3)− ((A1,2 · 3 + A2,2 · 1 + c2) + 1) ≤ 1) ∧

(((A1,2 · 3 + A2,2 · 1 + c2) + 1)− (A1,1 · 3 + A2,1 · 1 + c1) ≤ 2)

∧

((A1,2 · 3 + A2,2 · 2 + c2)− (A1,1 · 3 + A2,1 · 2 + c1) ≥ 0) ∧

(((A1,1 · 3 + A2,1 · 2 + c1) + 3)− ((A1,2 · 3 + A2,2 · 2 + c2) + 2) ≤ 1) ∧

(((A1,2 · 3 + A2,2 · 2 + c2) + 2)− (A1,1 · 3 + A2,1 · 2 + c1) ≤ 2)

The encoding is satisfiable and a possible model (encoding a linear strategy)

is reported in equation (10.9).

A =

0 0

0 −1

 ~c =

0

2

 (10.9)

Therefore, the assignments for the controllable time points As and Bs are

As =̇ 0 and Bs =̇ − yBe + 2.

173

10.4. SYNTHESIS OF STRATEGIES FOR WEAK CONTROLLABILITY

Note that, this approach leads to an exponential blowup in the size of

the SMT problem, caused by the fact that the number of vertexes is 2|Yu|.

Incremental Weakening

In order to limit the exponential blowup of the previous encoding to the

worst case only, we developed another approach called “incremental weak-

ening”, that tries to limit the number of coefficients to search for and to

reduce the amount of variables that are used in the linear strategy. This

idea amounts to finding a matrix A in which some (possibly many) columns

are null vectors; in fact, if the i-th column is null in A, the strategy does not

depend on the actual values of yi. In the limit case in which A is the null

matrix, the strategy degenerates to an assignment of constant values to

each controllable time points, and thus to a strong controllability solution.

We start by solving a relaxed problem, in which no uncontrollable du-

ration is observed. This coincides with the definition of a strong controlla-

bility problem. If a solution is found, the strong assignment is a valid weak

linear strategy for the problem, because strong controllability implies weak

controllability. Otherwise, a subset of the uncontrollable durations ~p ⊆ ~Yu

is picked and marked as “usable” by the strategy. The algorithm then tries

to build a linear strategy that uses uncontrollable durations in ~p only. In

this way, we are limiting the observations available to our strategy. Using

the previous algorithm, we build the coefficients for the p-th column of the

matrix A and we encode the problem as in the previous algorithm, limit-

ing the exponential explosion only to the durations marked as “usable”. If

the algorithm fails to find a linear strategy for a particular set of “usable”

durations, a different subset of the durations is picked and the approach is

iterated, until all the uncontrollable durations are marked as “usable” and

the encoding coincides with the previous approach.

The pseudo-code of this method is reported in algorithm 8. The func-

174

CHAPTER 10. WEAK CONTROLLABILITY

Algorithm 8 Incremental Weakening

1: procedure IncrementalWeakening(Γ(~Yu), Ψ(~Tc, ~Yu))

2: repeat

3: O := GetUsableDurations(~Yu)

4: N := {y ∈ ~Yu | y 6∈ O}
5: η(~Tc, ~O) := SC Encode(Γ|N(~N), Ψ|Xc∪N(~Tc, ~N))

6: f(~O) := VertexEncoding(Γ| ~O(~O), η(~Tc, ~O))

7: if f(~O) 6= ⊥ then

8: return AddNullColumns(f(~O))

9: end if

10: until O = Yu

11: return ⊥
12: end procedure

tion GetUsableDurations returns a heuristically computed subset of
~Yu that constitutes the set of “observed” durations. The function is stateful

as it is assumed to return a different subset at each call. The termination

of the algorithm requires that this function eventually returns the entire
~Yu that exits the repeat loop fulfilling the condition at line 9. In this

termination condition, the algorithm behaves like the VertexEncoding

procedure executed on the entire problem. The function SC Encode pro-

duces the encoding of a strong controllability problem in SMT, using any of

the encodings we discussed in chapter 9. This encoding is used to prevent

the observation of non-used durations, leaving the others untouched. The

function VertexEncoding is the function described in algorithm 7. If

the VertexEncoding function returns a strategy that works for a subset

of the uncontrollable duration variables, we return the same linear strat-

egy completed by the function AddNullColumns. The function adds

columns of 0s in the positions of the durations that were not used. This

guarantees that the strategy is independent of the actual values of those

durations.

175

10.4. SYNTHESIS OF STRATEGIES FOR WEAK CONTROLLABILITY

This algorithm tries to abstract the problem by limiting the set of “us-

able” durations in a strategy, and refines the abstraction if no linear strat-

egy is found. The process is iterated until a strategy is found or the entire

set of durations is marked as “usable”.

As shown in the previous section, if we consider the running example

in figure 7.2, we can derive a strategy in which yAe is never observed. The

advantage of IncrementalWeakening over the previous algorithm is

that if we choose to use yBe but not yAe in our strategy we can get to

the same result reported in equation (10.9) with a smaller and simpler

encoding.

This algorithm depends on the heuristic used for selecting the “usable”

durations. In fact, the number of cycles of the algorithm directly depends

on the heuristic.

In our experiments, we implemented a heuristic based on a topological

sorting of the uncontrollable time points. The heuristic first generates all

the singleton subsets and, if the algorithm is not terminated, considers

prefixes of the topological order of increasing size until all the durations

are marked as “usable” and the algorithm terminates.

10.4.2 Piecewise-Linear Strategies for STNU

In the following, we present two algorithms for extracting a piecewise-linear

strategy for a given weakly controllable STNU.

Simplexes Decomposition

A direct approach to extract a piecewise-linear strategy consists in parti-

tioning the region of the uncontrollable durations in a set of m-simplexes

(hyper-tetrahedra in m dimensions) with m = |Yu|. In geometry, a k-

simplex is the generalization of a triangle to k-dimensions. A k-simplex is

176

CHAPTER 10. WEAK CONTROLLABILITY

a k-dimensional polytope which is the convex hull of k+1 linearly indepen-

dent (i.e. not aligned) vertexes. For example, a 2-simplex is a triangle and

a 3-simplex is a tetrahedron. We consider these polyhedra because they

can be used to triangulate more complex regions [HA96]. The following

theorem states the existence of a linear strategy in any simplex contained

in the uncontrollable space, the proof is in appendix A.3.

Theorem 10.5 (Simplex Strategy Existence). Let P be an encoded weakly

controllable STNU 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉. For each |Yu|-simplex σ(~Yu)

such that σ(~Yu) ⊆ Γ(~Y) there exists a valid weak linear strategy f such that

∀~Yu.((σ(~Yu) ∧ ~Tc = f(~Yu))→ Ψ(~Tc, ~Yu)) is valid.

In order to exploit theorem 10.5 we need to be able to split the uncon-

trollable space into simplexes. Doing so would allow us to split the problem

of finding a piecewise-linear strategy for the whole problem in the problem

of finding linear strategies for each simplex and then combine them.

The uncontrollable region Γ(~Yu) is a hyper-rectangle, and the minimum

number of simplexes needed to cover a hyper-rectangle is an open math-

ematical problem [HA96]. However, it is known that any hyper-rectangle

in m dimensions can be split in a factorial number of simplexes (m!). For

example, a rectangle can be split in 2 triangles, and a rectangular cuboid

can be covered by 6 tetrahedrons.

Given Γ(~Yu), we can obtain all the simplexes using the following idea.

Suppose that the bounds for all the uncontrollable variables are [0, 1].

Then, let R be the region satisfying the sequence of inequalities yp1 ≤
yp2 ≤ · · · ≤ ypm where (p1, . . . , pm) is a permutation of (1, . . . ,m) and m is

the number of uncontrollable duration variables. It can be shown that R is

a simplex and that the simplexes generated for all the permutations form

a partition of the uncontrollable space [HA96]. In the general case, when

we can have arbitrary bounds, we apply the very same idea, permuting

177

10.4. SYNTHESIS OF STRATEGIES FOR WEAK CONTROLLABILITY

yAe

yBe

Bs

3

(a)

yAe

yBe

Bs

3

(b)

Figure 10.7: Plot of the running example problem (with As assigned to 0) with a partition

of the space of uncontrollable durations. The space of uncontrollable durations is split in two

triangles, depicted in yellow and orange. In (a) we plot the space of the solutions, while in (b)

we draw in red a possible piecewise-linear strategy obtained by using a linear strategy for each

triangle.

the variables and considering the inequalities arising from considering the

concrete lower/upper bounds.

Using this approach, we have to enumerate all the permutations of the

uncontrollable variables. Thus, the number of considered simplexes is fac-

torial in the number of uncontrollable variables (i.e. |Yu|!).
For each simplex it is possible to find a linear strategy separately, by

enforcing a hyperplane to satisfy the problem constraints in all the simplex

vertexes. In figure 10.7 we depicted an example of this idea for the running

example problem.

Algorithm 9 shows the pseudo-code for extracting a piecewise linear

strategy by enumerating all the simplexes and finding a linear strategy for

every simplex. The computational complexity of this algorithm is factorial

due to the enumeration of all the (|Yu|!) simplexes.

In the pseudo-code, the function GetMaximalSimplexes enumerates

178

CHAPTER 10. WEAK CONTROLLABILITY

Algorithm 9 Simplexes Decomposition strategy extraction algorithm

1: procedure SimplexesDecomposition(Γ(~Yu), Ψ(~Tu, ~Yu))

2: f := GetEmptyStrategy()

3: for all σ(~Yu) ∈ GetMaximalSimplexes(Γ(~Yu)) do

4: fsub := VertexEncoding(σ(~Yu), Ψ(~Tu, ~Yu))

5: f := AddPieceToStrategy(f , (σ(~Yu), fsub))

6: end for

7: return f

8: end procedure

a sequence of |Yu|-simplexes needed to cover the Γ(~Yu) polyhedron, while

VertexEncoding returns a linear strategy suitable for the given sim-

plex3. We obtain the resulting piecewise-linear strategy f by adding a

piece for each simplex by means of the function AddPieceToStrategy.

Consider the problem in figure 10.5; the algorithm works as follows. We

first consider the simplex with vertexes {〈0, 1〉, 〈0, 2〉, 〈3, 1〉} in the space of

yAe and yBe. A possible linear strategy in this simplex is f1 = A1 · ~Yu + ~c1

as follows.

A1 =

0 0

1
3 0

 ~c1 =

0

0

Then, the algorithm considers the second maximal simplex having vertexes

{〈0, 2〉, 〈3, 1〉, 〈3, 2〉}. A possible linear strategy in this simplex is f2 =

A2 · ~Yu + ~c2 as follows.

A2 =

0 0

0 −1

 ~c2 =

0

2

The algorithm combines such strategies in a valid piecewise-linear weak

3Formally, 〈~Tc, ~Yu, σ(~Yu),Ψ(~Tu, ~Yu)〉 is not a well formed encoding of an STNU, because σ(~Yu) is not

in the shape prescribed by definition 44. Nevertheless, the VertexEncoding algorithm can deal with

any convex uncontrollable region.

179

10.4. SYNTHESIS OF STRATEGIES FOR WEAK CONTROLLABILITY

strategy f as follows.As

Bs

 = f(yAe, yBe) =̇

f1 if (yBe ≤ −1
3yAe + 2)

f2 otherwise

Lazy Expansion

To overcome the complexity limitation of the previous approach we devel-

oped a second technique, called Lazy Expansion, that first selects a simplex

in the uncontrollable region and finds a linear strategy in that simplex.

Second, we symbolically compute the region of the uncontrollable dura-

tions that is satisfied by the computed strategy. In this way, we perform a

“widening” of the portion of the uncontrollable space that can be satisfied

using the computed linear strategy. This widened region is guaranteed to

cover at least the simplex, but it might be larger. We then associate the

computed strategy to the resulting region. Finally, we search a new sim-

plex in the remaining part of the space of uncontrollable durations. The

algorithm terminates when the space of uncontrollable durations is com-

pletely covered. The idea behind the approach is to generalize the strategy

found for a particular simplex to cover a wider potion of the space of the

uncontrollable durations. The algorithm lazily picks a simplex from the

region of the uncontrollable durations to be covered and gets a strategy

that is able to cover that particular simplex. We then generalize the appli-

cability of the returned strategy and proceed until we completely cover the

uncontrollable space. The main advantage of this algorithm with respect

to the previous one is that it is not forced to enumerate all the possible

simplexes, because the computed strategy once found is exploited in all

the possible points of the space where it is applicable.

Algorithm 10 shows the pseudo-code for extracting a piecewise linear

strategy exploiting lazy expansion. The function GetUncoveredSim-

180

CHAPTER 10. WEAK CONTROLLABILITY

Algorithm 10 Lazy piecewise-linear strategy extraction

1: procedure LazyExpansion(Γ(~Yu), Ψ(~Tc, ~Yu))

2: f :=GetEmptyStrategy()

3: η(~Yu) := Γ(~Yu)

4: for all yj ∈ ~Yu do

5: SMT.declareVar(yi, R)

6: end for

7: while SMT.solve(η(~Yu)) do

8: σ(~Yu) := GetUncoveredSimplex(η(~Yu))

9: fsub := VertexEncoding(σ(~Yu), Ψ(~Tc, ~Yu))

10: o(~Yu) := Ψ(fsub(~Yu), ~Yu)

11: f := AddPieceToStrategy(f , (η(~Yu) ∧ o(~Yu), fsub))
12: η(~Yu) := η(~Yu) ∧ ¬o(~Yu)
13: end while

14: return f

15: end procedure

plex returns any simplex σ(~Yu) completely contained in the uncontrollable

region Γ(~Yu). At each step we compute the widening of the simplex (called

o(~Yu) in algorithm 10), that is the region in which the computed linear

strategy fsub is applicable. In order to symbolically obtain this region, we

substitute the LRA encoding of the strategy fsub in the free constraints

Ψ(~Tc, ~Yu). In this way, each variable bi ∈ ~Tc corresponding to a control-

lable time point is replaced by the linear term that computes it according

to fsub, and we are left with a formula defined over ~Yu. Each model of such

formula, is a point in the uncontrollable region for which the application

of fsub fulfills the free constraints of the problem. We use this procedure to

create “bigger” pieces and reduce the number of iterations of the algorithm.

In general, this algorithm is not guaranteed to terminate. In fact, ter-

mination can be assured with the following two requirements. First, each

region σ(~Yu) covers a non-empty volume of the space of the uncontrollable

durations. This means that the piece of strategy computed at each step

181

10.4. SYNTHESIS OF STRATEGIES FOR WEAK CONTROLLABILITY

must be guaranteed to cover at least the simplex that originated it (at

each step σ(~Yu) |=LRA o(~Yu)). The second requirement is to have progres-

sion, that is we disallow infinite decomposition chains for finite regions.

If we avoid empty regions and infinite subdivisions of finite regions, we

will eventually get to the empty region, and thus to unsatisfiability and

termination.

In our implementation, we do not guarantee termination. However, the

algorithm correctly terminated in all our experiments and in many cases it

performed much faster than the SimplexesDecomposition algorithm.

One possibility to guarantee the termination would be to hybridize this

algorithm with the SimplexesDecomposition approach by bounding the

number of loops of the LazyExpansion procedure or to take a portfolio

approach.

One key issue for the efficiency of this approach resides in finding good

simplexes to cover a (possibly non-convex) region η(~Yu). Defining what

a “good” simplex is for the algorithm performance is a non-trivial task

because the aim is to terminate with a minimum number of iterations, and

thus to obtain a decomposition of Γ(~Yu) in a minimal set of oi(~Yu) regions.

10.4.3 Linear Strategies for DTNU

We now consider the DTNU problem class and we provide algorithms for

strategy synthesis starting from the linear case.

A way of computing the elements of matrix A and vector ~c for a linear

strategy is an encoding of the constraints in the theory of Nonlinear Real

Arithmetic over Polynomials (NRA). In fact, we can compactly express

the properties of each entry of A and ~c by imposing constraints on polyno-

mials. Equation (10.10) is an encoding into NRA for extracting a linear

182

CHAPTER 10. WEAK CONTROLLABILITY

strategy for any TNU problem in a single check.

∃A1,1, . . . , A1,m, c1,

. . .

An,1, . . . , An,m, cn.∀~Yu.
(

Γ(~Yu)→ Ψ[A · ~Yu + ~c/ ~Xc](~Yu)
) (10.10)

The idea is to let the solver search for the Ai,j and ci coefficients of the

linear combination of ~Yu that represent the set of hyper-planes that are

strategies for each bi ∈ ~Xc. If the solver reports unsatisfiable, it means

that no linear strategy exists for the given problem. This approach directly

follows from the definition of linear strategy and is applicable to the entire

spectrum of temporal problems with uncertainty because no assumption

on the convexity of the search space is made.

As an example we show the encoding of equation (10.10) applied to the

TNU in figure 10.5, to remark the fact that no linear strategy exists for

this problem.

∃A1,1, A1,2, A2,1, A2,2, c1, c2.∀yAe, yBe.

((yAe ≥ 0) ∧ (yAe ≤ 3) ∧ (yBe ≥ 1) ∧ (yBe ≤ 2))→

(((A2,1yAe + A2,2yBe + c2)− (A1,1yAe + A1,2yBe + c1) ≥ 0)∧

(((A1,1yAe + A1,2yBe + c1) + yAe)− (A2,1yAe + A2,2yBe + c2) ≥ 0)∧

(((A1,1yAe + A1,2yBe + c1) + yAe)− ((A2,1yAe + A2,2yBe + c2) + yBe) ≤ 1)∧

(((A2,1yAe + A2,2yBe + c2) + yBe)− (A1,1yAe + A1,2yBe + c1) ≤ 2))

The running example problem is an STNU, but the approach presented

here is more general. In fact, given a procedure that is able to decide

NRA formulae with arbitrary disjunctions we can deal with DTNU as

well. For example, the Cylindrical Algebraic Decomposition (CAD) pro-

cedure [CH91] can deal with this kind of formulae, even though the com-

putational complexity is extremely high: the problem is in fact triply ex-

ponential.

183

10.4. SYNTHESIS OF STRATEGIES FOR WEAK CONTROLLABILITY

Algorithm 11 Skin-Based Strategy Extraction for DTNU

1: procedure SkinCrawler(Γ(~Yu), Ψ(~Xc, ~Yu))

2: f := GetEmptyStrategy()

3: for all (o(~Yu), fsub) ∈ GetFaceStrategies(Γ(~Yu), Ψ(~Xc, ~Yu)) do

4: f :=AddPieceToStrategy(f , (o(~Yu), fsub))

5: end for

6: return f

7: end procedure

10.4.4 Piecewise-Linear Strategies for DTNU

In this section, we analyze the synthesis of a piecewise-linear strategy for

a DTNU. When dealing with a DTNU, the convexity assumption holding

for the STNU case is not valid anymore. We present two algorithms for

the strategy synthesis in the DTNU problem class. The “skin crawler”

method incrementally builds a strategy by considering the faces of the

DTNU solution space considered as a polyhedron. The “convex region

enumerator” approach, instead, decomposes the DTNU in a number of

convex regions and applies the techniques for the STNU problem class on

each of them.

Skin Crawler

An intuition that can be exploited to synthesize a weak strategy for the

DTNU problem class is obtained from the proof of theorem 10.3. The idea

is to iterate on the faces of Ψ(~Xc, ~Yu) and to project each of them in the

space of ~Yu until the entire Γ(~Yu) region is covered by the projections. Such

an iteration can be done efficiently by exploiting the optimization features

of many modern SMT solvers.

The top-level procedure, shown in algorithm 11, iterates over the faces

and extracts a linear strategy for each face, accumulating this result in a

piecewise-linear strategy.

184

CHAPTER 10. WEAK CONTROLLABILITY

The face extraction procedure (algorithm 12) starts by extracting all

the equalities from the free constraints. Since the free constraints are

made of non-strict inequalities, we aim at extracting the skin of the free

constraints by considering the equality (a − b = k) derived from a con-

straint (a − b ≤ k). The algorithm uses an optimization procedure that

maximizes the number of equalities satisfied at each step represented by

the variable satEqualities. In this way, considering the conjunction of all

the satisfied equalities, we first explore the vertexes, then the edges and

finally the faces. The conjunction of equalities is actually a system of lin-

ear equalities representing a face. In order to extract a strategy from a

face, we transform a conjunction of linear equalities into matrix form. As

an optimization we discard systems that have dimension lower than the

number of uncontrollable durations. This prevents the creation of pieces

representing regions having null volume.

The algorithm termination depends only on the termination of the Get-

FaceStrategies procedure. The procedure is guaranteed to terminate

because at each step we add a new clause to χ(~Xc, ~Yu) that forces at least

one equality that was positive in the found model to be false. Therefore

we can have at most an exponential number of cycles with respect to the

number of equalities in Equalities(Ψ(~Xc, ~Yu)).

Convex Region Enumerator

Finally, we can exploit the possibility of generating a strategy for the con-

vex case by enumerating the convex regions in the space of free constraints.

This idea requires the possibility to deal with a possibly non-convex

Γ(~Yu) because the projection of a convex polyhedron space intersected

with the non-convex Γ(~Yu) can generate non-convex (and non-rectangular)

regions. The LazyExpansion algorithm is able to deal with such con-

straints, because no requirement is imposed on the shape of Γ(~Yu) during

185

10.4. SYNTHESIS OF STRATEGIES FOR WEAK CONTROLLABILITY

Algorithm 12 Generates all the faces of Ψ(~Xc, ~Yu) and converts them in a linear system

of equations

1: procedure GetFaceStrategies(Γ(~Yu), Ψ(~Xc, ~Yu))

2: for all xi ∈ ~Xc ∪ ~Yu do

3: SMT.declareVar(xi, R)

4: end for

5: χ(~Xc, ~Yu) := Ψ(~Xc, ~Yu) ∧ Γ(~Yu)

6: satEqualities := 0

7: for all eqi(~Xc, ~Yu) ∈ Equalities(Ψ(~Xc, ~Yu)) do

8: SMT.declareVar(eqvi, R)

9: χ(~Xc, ~Yu) := χ(~Xc, ~Yu) ∧ (eqi(~Xc, ~Yu)→ (eqvi = 1))

10: χ(~Xc, ~Yu) := χ(~Xc, ~Yu) ∧ (eqi(~Xc, ~Yu) ∨ (eqvi = 0))

11: satEqualities := satEqualities+ eqvi

12: end for

13: faces := ∅
14: while SMT.solveMaximizing(χ(~Xc, ~Yu), satEqualities) = SAT do

15: system := {eqi(~Xc, ~Yu) ∈ Equalities(Ψ(~Xc, ~Yu))|µ |= eqi(~Xc, ~Yu)}
16: (M~t = ~d) := ConvertToLinearSystem(system)

17: bases := GetBases(M~t = 0)

18: if |bases| ≥ |~Yu| then

19: (A,~c) := ToLinearStrategy(M)

20: o(~Y) := Ψ(A · ~Yu + ~c, ~Yu)

21: faces := faces ∪ {(o(~Y), A · ~Yu + ~c)}
22: end if

23: χ(~Xc, ~Yu) := χ(~Xc, ~Yu) ∧ (
∨
eqi(~Xc, ~Yu)∈system ¬eqi(~Xc, ~Yu))

24: end while

25: return faces

26: end procedure

186

CHAPTER 10. WEAK CONTROLLABILITY

the algorithm execution.

We need to enumerate a set of convex formulae {µi(~Xc, ~Yu)|i ∈ [1, I]}
such that (

∨I
i=1 µi)⇔ Ψ(~Xc, ~Yu). Such formulae can be obtained by com-

puting the Disjunctive Normal Form (DNF) of the formula Ψ(~Xc, ~Yu).

From the practical point of view, each disjunct is either an atom of the

original formula or its negation. The DNF can be efficiently computed in

the SMT framework using an incremental mechanism.

Algorithm 13 shows the pseudo-code for the Convex Region Enumerator

algorithm for the weak strategy synthesis of DTNU problems.

The algorithm works as follows. First, it selects any consistent temporal

evolution by solving the SMT problem of the conjunction of the contingent

and free constraints. Given the consistent model, the algorithm extracts

the free constraints atoms that are satisfied and the atoms that are not

fulfilled. The region obtained by conjoining all those atoms is a convex

(non-necessarily closed) polyhedron. We compute the projection of such a

polyhedron in the region of the uncontrollable durations and we compute

a strategy for this quasi-STNU problem4. The obtained strategy is applied

in the covered region that is removed from the problem together with the

polyhedron. This ensures the algorithm termination, because at each step

we remove a model of the Boolean abstraction from the ρ(~Xc, ~Yu) formula.

In the pseudo-code, the function Project performs a quantifier elimi-

nation in order to compute the projection of a given polyhedron onto the

given space and is used to compute the uncontrollable region that is covered

by the selected polyhedron.

Termination is not guaranteed, because we internally use the Lazy-

Expansion algorithm that is incomplete; however, also in this case, the

algorithm terminated in all the benchmarks.

4The problem is not a proper STNU because the projection can be non-rectangular and the constraints

can contain strict inequalities. However the LazyExpansion algorithm is able to deal even with such

degenerated problems.

187

10.4. SYNTHESIS OF STRATEGIES FOR WEAK CONTROLLABILITY

Algorithm 13 Convex Region Enumeration strategy extraction for DTNU

1: procedure ConvexRegionEnumerator(Γ(~Yu), Ψ(~Xc, ~Yu))

2: for all xi ∈ ~Xc ∪ ~Yu do

3: SMT.declareVar(xi, R)

4: end for

5: f := GetEmptyStrategy()

6: ρ(~Xc, ~Yu) := Ψ(~Xc, ~Yu) ∧ Γ(~Yu)

7: while SMT.solve(ρ(~Xc, ~Yu)) = SAT do

8: µ := SMT.GetModel()

9: δ(~Xc, ~Yu) := >
10: for all α(~Xc, ~Yu) ∈ Atoms(Ψ(~Xc

~Yu)) do

11: if µ |= α(~Xc, ~Yu) then

12: δ(~Xc, ~Yu) := δ(~Xc, ~Yu) ∧ α(~Xc, ~Yu)

13: else

14: δ(~Xc, ~Yu) := δ(~Xc, ~Yu) ∧ ¬(α(~Xc, ~Yu))

15: end if

16: end for

17: o(~Yu) := Project(δ(~Xc, ~Yu), ~Yu)

18: fsub := LazyExpansion(o(~Yu), δ(~Xc, ~Yu))

19: f := AddPieceToStrategy(f , (o(~Yu), fsub))

20: ρ(~Xc, ~Yu) := ρ(~Xc, ~Yu) ∧ ¬δ(~Xc, ~Yu) ∧ ¬o(~Yu)
21: end while

22: return f

23: end procedure

188

CHAPTER 10. WEAK CONTROLLABILITY

10.5 Experimental Evaluation

In order to empirically test the effectiveness of the proposed approaches,

we implemented a tool for deciding weak controllability and synthesizing

weak strategies for a TNU. Our tool is implemented in Python. It reads a

TNU problem, and applies to it the portfolio of encodings and algorithms

we presented in this chapter. The tool can synthesize explicit strategies

as C++ functions (taking in input a situation), that can be compiled and

linked in any program. We used the Z3 [dMB08] SMT solver for the

weak controllability decision problem; we rely on the Python API provided

by the MathSAT5 [CGSS13] SMT solver for all the strategy-synthesis

techniques.

The randomly-generated benchmarks were obtained by modifying the

generator of temporal problems presented in [ACG99] by introducing un-

certainty in the problem: each constraint introduced by the consistency

problem generator is turned into a contingent link with a given proba-

bility, and its destination node is considered as uncontrollable. We used

random instance generators because they are typically used in the litera-

ture (e.g. [ACG99]), and because they can be easily scaled to stress the

solvers.

We tested the decision problem encoding over a set of 2442 randomly

generated DTNU, TCSNU and STNU instances, with a number of time

points ranging from 6 to 20000. For the evaluation of strategy-extraction

techniques, we used 1354 weakly controllable STNU benchmarks and 2112

weakly controllable DTNU instances ranging from 4 to 50 time points.

We tested the tool on a set of benchmarks described in detail below. We

remark that, as far as our knowledge is concerned, there are no competitor

tools or solvers able to deal with the weak controllability decision prob-

lem, nor with the synthesis of a weak strategy. Thus, in the experimental

189

10.5. EXPERIMENTAL EVALUATION

evaluation, we do not compare with any other tool or approach. All the ex-

periments have been performed on a Scientific-Linux server equipped with

two quad-core Xeon processors @ 2.70GHz. We used a memory limit of

2GB, a time-out of 300 seconds and we used sequential, single-core com-

putation only. The tool, together with all the benchmarks and the results

of the evaluation, can be obtained as indicated in section 1.2.

10.5.1 Decision Problem

The results of checking the decision problem over the set of TNUs are

plotted in figure 10.8. The cactus plot (a) reports, in the horizontal axis,

the number of solved instances and, on the vertical axis, the cumulative

time, in logarithmic scale, taken by the SMT solver for each encoding.

For example, the Assumption-Extraction encoding takes about 10000

seconds to solve the easiest 750 instances. We compared the formulation

of proposition 10.1 called Direct with the Inverted and Assumption-

Extraction encodings.

The figure highlights the fact that Z3 performs much better when the

Assumption-Extraction encoding of the problem is considered: in fact,

this approach is able to solve, in less time, a higher number of instances with

respect to the Inverted and Direct encodings. The Direct encoding

performs almost identically to the Inverted one. This behavior is due to

the fact that the Inverted encoding has the same shape as the Direct

one. The only difference is the negation of the Direct encoding, that does

not seem to affect the solver performance.

In figures 10.8b and 10.8c, we reported the scatter plots comparing the

performances of the Assumption-Extraction with the Inverted en-

codings, distinguishing between weakly controllable and non weakly con-

trollable instances. We note that, in the weakly controllable case, the

Assumption-Extraction encoding outperforms the Inverted encod-

190

CHAPTER 10. WEAK CONTROLLABILITY

ing in most of the benchmarks. For non weakly controllable instances,

the two encodings perform similarly in terms of speed. However, the In-

verted encoding is able to solve 86 instances that are unsolvable by the

Assumption-Extraction encoding due to the imposed memory limit.

10.5.2 STNU Strategy Synthesis

The results for the evaluation of the strategy-extraction techniques for the

1354 STNU benchmarks are reported in figure 10.9a. The plot consid-

ers only those benchmarks that admit a linear strategy, and compares the

four different approaches. The plot clearly shows that for linear strate-

gies, the IncrementalWeakening approach outperforms all the others.

The SimplexesDecomposition method quickly explodes due to the fac-

torial complexity of simplexes enumeration. Although the techniques for

piecewise-linear strategy extraction are penalized as they are strictly more

general than the others, the plot shows that LazyExpansion approach is

much faster than the SimplexesDecomposition. In figure 10.9b we plot-

ted the number of “pieces” of the strategies for the LazyExpansion and

SimplexesDecomposition methods. The plot shows that, although for

small problems the LazyExpansion approach generates additional, un-

needed “pieces”, when the problem size increases the number of “pieces”

identified by the LazyExpansion method is much smaller than for the

SimplexesDecomposition one. In general, the LazyExpansion ap-

proach has a huge gain in performance and in strategy size.

10.5.3 DTNU Strategy Synthesis

In figure 10.10 we report the results on the DTNU problem class. The

plots show that the ConvexRegionEnumerator algorithm performs

better than the SkinCrawler one. This is because of two main reasons.

191

10.5. EXPERIMENTAL EVALUATION

First, the SkinCrawler approach solves a costly minimization problem

and has to traverse all the faces of the space of free constraints while the

ConvexRegionEnumerator algorithm applies the cheap LazyExpan-

sion approach to each convex region that is generated by a single call to

the SMT solver. Second, the linear strategy generated by the LazyEx-

pansion approach is generalized and applied wherever possible, therefore

if the problem allows for a linear strategy the ConvexRegionEnumer-

ator algorithm is able to quickly synthesize it, while the SkinCrawler

has to enumerate enough faces to cover the entire uncontrollable space.

There is an interesting peak on the rightmost part of the ConvexRe-

gionEnumerator curve in the plot. This is due to a particular instance

that is solved in 287.28 seconds generating a strategy with 3750 pieces (thus

using the same number of iterations to terminate). This is one example

in which the splitting done by the LazyExpansion approach gets lost in

splitting the uncontrollable space in simplexes.

Finally, we did not experimented the effectiveness of theNRA encoding

for two reasons. First, since a linear strategy is not guaranteed to exist

for STNUs, it is also not guaranteed to exist in DTNUs. Second, the

NRA approach needs a solver supporting the quantification over the real

polynomial arithmetic (the full polynomial NRA theory), and to the best

of our knowledge, no SMT solver fully supports this theory due to its

complexity, even if the problem is decidable [CH91].

10.5.4 Strategy Execution

We proposed a number of approaches to synthesize weak strategies arguing

that their execution is practically more efficient than solving the individual

problems without uncertainty obtained by projecting the uncertainty away.

In this section we provide experimental evidence supporting this claim on

a number of STNU and DTNU instances.

192

CHAPTER 10. WEAK CONTROLLABILITY

We conducted the experiment as follows. For each TNU in our bench-

mark set, we randomly generated 1000 situations, represented as com-

plete assignments for the uncontrollable durations. We implemented the

Implicit-SMT and Implicit-SMT-Incremental general strategies de-

scribed in section 10.3.1 using the MathSAT5 SMT solver. Other TN

solvers can, in principle, be employed to create implicit strategies, but in

chapter 8 we show that SMT solvers are very effective in dealing with con-

sistency problems. For this reason, and for the lack of publicly available

implemented solvers, we limited our experimentation to the SMT based

techniques described in section 10.3.1.

In addition, we considered three ways to compile in machine code the

problem-specific strategies generated by our algorithms. We translated the

linear or piecewise-linear strategy synthesized by any of our algorithms into

C++ code. The translation for linear strategies is straight-forward: we cre-

ate a function that takes in input a numeric value for each uncontrollable

duration and we compute the output of the strategy by solving the ma-

trix multiplication as described in section 10.3.2. Given a piecewise-linear

strategy, we translate it using a sequence of if statements, one for each

piece. The condition of each if is the transposition in C++ syntax of the

piece condition. Each conditional statement returns the value computed

by the translation of the linear strategy relative to the particular piece.

We used three different datatypes to represent numeric values and perform

the arithmetic operations. In particular, we used the (finite-precision)

C++ float and double and the GNU-MP library for arbitrary precision

arithmetic [Gt12]. The float and double datatypes are a finite-precision

representation of rational numbers. As such, they suffer from both numeric

stability and rounding problems that may, in principle, cause unsoundness

in the strategy output. On the other hand, GNU-MP is the same library

employed by the MathSAT5 SMT solver and does not suffer from any

193

10.5. EXPERIMENTAL EVALUATION

kind of numeric stability or rounding problems.

Figure 10.11 shows the results of the comparison: in our experiments the

explicit strategies outperform projection-based implicit strategies. Implicit-

SMT-Incremental performs better than Implicit-SMT, thanks to the

incrementality feature of the SMT solver, but the explicit strategies bring

a significant speedup on all the instances. Arbitrary-precision arithmetic

(that fairly compares with the SMT precision) outperforms projection-

based techniques by two orders of magnitude. The compiled strategies

with native C++ datatypes perform even better, but the numerical sta-

bility problems can, in principle, lead to unsound results. We checked the

output of each technique on each situation in order to assess the sound-

ness, but all the results were correct. Nevertheless, studying under which

condition we can guarantee that such finite-precision implementations are

correct is subject of future work. We highlight that the compilations using

native C++ datatypes can be translated to Boolean circuits, and this opens

for the possibility of creating very efficient hardware implementations of

these strategies.

194

CHAPTER 10. WEAK CONTROLLABILITY

0 500 1000 1500 2000

1
10

0
10

00
0

Number of solved instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Direct
Assumption−Extraction
Inverted

(a)

Inverted

A
ss

um
pt

io
n−

E
xt

ra
ct

io
n

0.1 0.5 1 5 10 50 100 300 TO MO

0.
1

0.
5

1
5

10
50

10
0

30
0

TO
M

O

Weakly Controllable

(b)

Inverted

A
ss

um
pt

io
n−

E
xt

ra
ct

io
n

0.1 0.5 1 5 10 50 100 300 TO MO

0.
1

0.
5

1
5

10
50

10
0

30
0

TO
M

O

Not Weakly Controllable

(c)

Figure 10.8: Results for the decision problem encodings solved using the Z3 SMT solver.

Figure (a) reports the cumulative time (in logarithmic scale) cactus plot; Figures (b) and (c)

show the scatter plots of Inverted vs. Assumption-Extraction encodings divided in weakly

controllable, and not weakly controllable, respectively. The TO line denotes the instances that

reached the time out, while MO indicates instances that hit the memory limit.

195

10.5. EXPERIMENTAL EVALUATION

0 200 400 600 800 1000 1200 1400

1
10

10
0

10
00

10
00

0

Number of solved instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

SimplexesDecomposition
ExtremalEncoding
IncrementalWeakening
LazyExpansion
SkinCrawler

(a)

1 2 5 10 20 50 100 200 500

1
2

5
10

20
50

10
0

20
0

50
0

Simplexes

La
zy

(b)

Figure 10.9: Results for STNU linear strategy extraction problem. In (a), we plotted the

cumulative cactus plot of the strategy extraction time for the different algorithms we propose,

while in (b), we compared the number of pieces for piecewise-linear algorithms expressed as the

number of split regions.

196

CHAPTER 10. WEAK CONTROLLABILITY

0 500 1000 1500 2000

1
10

10
0

10
00

10
00

0

Number of solved instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Convex Region Enumeration
Skin Crawler

(a)

0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 200.0

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

20
0.

0

Convex Region Enumeration

S
ki

n
C

ra
w

le
r

(b)

Figure 10.10: Results for strategy extraction problem in the DTNU problem class. In (a) we

plotted the cumulative cactus plot of the solving time for the ConvexRegionEnumerator

and the SkinCrawler algorithms while (b) is a scatter plot of the data.

197

10.5. EXPERIMENTAL EVALUATION

0 1000 2000 3000

Number of solved instances

C
um

ul
at

iv
e

st
ra

te
gy

 e
xe

cu
tio

n
tim

e
(s

ec
)

0.001

0.01

0.1

1

10

100

103

104

105

106

Implicit−SMT
Implicit−SMT−Incremental
C++ strategy (GMP)
C++ strategy (double)
C++ strategy (float)

Figure 10.11: Results for strategy execution: for each problem, the generated strategy is

executed on 1000 randomly generated situations. the plot considers all the STNU and DTNU

randomly generated problems. The cactus plot shows the number of solved instances on the x

axis and the accumulated time to solve them in the y axis.

198

Chapter 11

Dynamic Controllability

The last kind of query that can be addressed given a TNU is dynamic

controllability. Dynamic controllability is concerned with the existence of

a strategy for executing the controllable time points that depends only on

past observations of the outcomes of uncontrollable durations, and that

guarantees that all relevant constraints will be satisfied no matter how the

durations of the contingent links turn out. Essentially, a TNU is dynam-

ically controllable if there exists a weak strategy that, in order to decide

a controllable time point at time k, does not depend on any observation

past time k.

Polynomial algorithms to check the dynamic controllability of STNUs

[MM05, Mor06, Hun14, Mor14] and run-time algorithms for generating an

execution strategy in real-time [Hun10b, Hun13] have been presented in

the literature (we discussed the state-of-the-art in dynamic controllability

in section 4.2.2). Although STNUs have been successful in some domains,

many other domains require a richer set of constraints and features. Dis-

junctive constraints often arise in practice, for example, when two activities

cannot be done simultaneously, but a dynamic controllability checking al-

gorithm has only been presented for a subclass of DTNUs [VVPYS10].

In this chapter, we make following contributions.

199

11.1. FORMALIZATION OF DYNAMIC CONTROLLABILITY

First, we formally define the semantics of dynamic controllability for the

DTNU problem class, by generalizing the STNU semantics and we propose

an algorithm to validate strategies for being valid dynamic strategies for a

given DTNU.

Second, we present a novel approach for checking the dynamic control-

lability of DTNUs by translating the dynamic controllability problem into

a reachability game on a Timed Game Automaton (TGA) [MPS95]. The

reachability game can be solved using off-the-shelf software that is able to

synthesize a viable execution strategy or determine that no such strategy

exists [BCD+07]. This results in the first sound-and-complete checking al-

gorithm for the dynamic controllability of DTNUs. The encoding of such

networks into TGA highlights important theoretical relationships between

the different kinds of temporal reasoning frameworks and the TGA frame-

work.

Third, we exploit the ideas behind the TGA encoding to develop a

dedicated solving algorithm for the DTNU problem class. The algorithm

is able to synthesize a strategy in form of an executable program.

Finally, we present a comprehensive experimental evaluation of the pro-

posed approaches.

11.1 Formalization of Dynamic Controllability

We now focus on the formal concept of dynamic controllability, which

is widely viewed as the most relevant controllability level for real-world

applications. Intuitively, a network is dynamically controllable if it admits

a dynamic execution strategy that can react to contingent durations, but

only those that have occurred in the past. In other words, the values that

the execution strategy assigns to the controllable time points may depend

on uncontrollable events (the execution of uncontrollable time points or the

200

CHAPTER 11. DYNAMIC CONTROLLABILITY

outcomes of observation nodes), but only if that information has already

been observed in real time. Differently from weak strategies we presented in

section 10.3, it cannot depend on any knowledge of future uncontrollables.

Typically, the execution strategy must be able to deal with the branching

that derives from alternative propositional outcomes, and may interleave

the start times of activities with the observation of uncontrollable time

points and propositional labels. In this sense, while a weak strategy is a

function from the uncontrollables to the controllables, a dynamic strategy

is more similar to a real-time program that gets executed and decides when

a controllable time point should be scheduled. Following this analogy, the

program inputs are given in real time and are the uncontrollable time point

observations.

In the literature, the execution semantics for STNUs is expressed in

terms of Dynamic Execution Strategies [MMV01]. For an STNU, 〈T , C,L〉,
the agent seeks a strategy for executing the controllable time points in

Tc ⊆ T such that all constraints in C will necessarily be satisfied no mat-

ter what durations the environment “chooses” for the contingent links in

L, within their specified bounds. The decisions that constitute such a

strategy can depend only on execution events that occurred in the past;

however, the strategy can be dynamic in that it may react to observations

of uncontrollable time points executing.

An agent’s execution strategy can be compactly defined in terms of

Real-Time Execution Decisions (RTEDs), where each RTED has one of

two forms: wait or 〈t, χf〉 [Hun09]. A wait decision can be glossed as

“wait until some uncontrollable time point happens to execute.” A 〈t, χf〉
decision can be glossed as “if nothing happens before time t (i.e., if no

uncontrollable time point happens to execute before time t), then I shall

execute the (controllable) time points in the set χf at time t.” The out-

comes for an RTED specify the range of execution events that could happen

201

11.1. FORMALIZATION OF DYNAMIC CONTROLLABILITY

A B

C

D
[1, 6]

[7, 10]

[5, 20]

[−1, 2]

[−1, 1
0]

∨

(a)

Tc =̇ {A,B,C}
Tu =̇ {D}
C =̇ {B − A ∈ [1, 6], C − A ∈ [7, 10],

D −B ∈ [−1, 2] ∨D − C ∈ [−1, 10]}
L =̇ {〈A, {〈5, 20〉}〉, D}

(b)

Figure 11.1: A dynamically controllable DTNU (b) and its graphical representation (a).

next. For example, a uncontrollable time point might happen to execute

sometime before time t, in which case, the agent could react by adopting

a new decision; or a uncontrollable time point e might happen to execute

precisely at time t, in which case the time points in χf would be executed

simultaneously with e at time t.

In the case of the DTNU in figure 11.1, the agent seeks a strategy for

executing the controllable time points, A, B and C, that will guarantee that

the constraints are satisfied, no matter what durations the environment

happens to pick for the contingent link, 〈A, {〈5, 20〉}, D〉. For example,

the agent might decide to execute A at time 0 and then wait. Should the

environment happen to “choose” a duration of 5 for the contingent link,

the agent would observe, at time 5, the execution of D. For example, the

agent might then react executing B at time 6. Later, the agent will have

to schedule C between time 7 and 10. In this example evolution, all the

time points have been executed and all constraints in C are satisfied, hence

the agent has succeeded. It can be checked that this DTNU is dynamically

controllable (i.e., there exists a strategy for the agent that ensures success

no matter how the environment behaves).

Although the execution semantics described above makes reference to

the agent and the environment, execution strategies are only defined for

202

CHAPTER 11. DYNAMIC CONTROLLABILITY

the agent; the strategies available to the environment are only implicitly

described by the sets of possible outcomes of the agent’s decisions. Thus,

the semantics is effectively a description of a one-player game where the

outcomes of the agent’s decisions are non-deterministic.

In this section we adapt the dynamic controllability semantics proposed

by Hunsberger [Hun09] for the STNU problem class to the DTNU case.

The semantics is expressed in terms of Real-Time Execution Decisions

(RTEDs). This STNU semantics is equivalent to the one used in [MMV01],

but slightly differs on the one of Morris [Mor06]. We will highlight the

differences between the two semantics also for the DTNU class at the end

of the section.

We first define a partial schedule as the current state of the system

according to the perspective of the agent; namely, the time points that

have been executed so far.

Definition 48 (Partial Schedule). A partial schedule for a DTNU, 〈T , C,L〉,
is a set, PS, of assignments to time points in T .

• TPs(PS) ⊂ T is the set of the time points appearing in PS;

• Vals(PS) ⊂ R is the set of values appearing in PS;

• for any X ∈ TPs(PS), PS(X) denotes the value assigned to X; and

• nowPS = max{v | v ∈ Vals(PS)} is the time of the latest execution

event in PS (if PS = ∅, we assume nowPS = −∞).

time points in TPs(PS) are said to be executed. A partial schedule is called

respectful if its assignments do not violate the bounds on any contingent

link.

Intuitively, a partial schedule PS assigns a real value to a subset of

the time points in the network, and represents an execution history: the

203

11.1. FORMALIZATION OF DYNAMIC CONTROLLABILITY

time points in PS are the ones that have already been executed, and the

assigned values are the times at which they were executed. The time points

that are not in PS are the ones that have not yet been executed.

Given a partial schedule PS, the solver must decide what to do next.

Two options are possible:

1. wait for something to happen (i.e., wait for some uncontrollable time

point to execute);

2. conditionally commit to executing a set of controllable time points at

some time, Tf > nowPS.

For example, given PS = {〈A, 0〉}, for which nowPS = 0, the solver could

decide to wait until the uncontrollable time point D eventually executes.

Alternatively, the executor could decide that “if nothing happens before

time 6, I shall execute B at time 6” The decisions available to the solver

are called Real-Time Execution Decisions (RTEDs).

Definition 49 (RTED). Let PS be a respectful partial schedule. An RTED

has one of two forms: wait or 〈Tf , χf〉.
A wait decision is applicable if at least one uncontrollable time point,

ei, is active in PS (i.e., ei’s activation time point α(ei) has already been

executed, but ei has not).

A 〈Tf , χf〉 decision (i.e., “If nothing happens before time Tf , execute

the time points in χf at time Tf”) is applicable if Tf > nowPS and χf is a

non-empty subset of unexecuted controllable time points (i.e., χf 6= ∅ and

χf ∩ TPs(PS) = ∅).

Given a partial schedule PS and some RTED ∆, the outcome of the

decision ∆ typically depends on the range of possible durations for one or

more contingent links, that is on the contingent situation (definition 41),

as follows.

204

CHAPTER 11. DYNAMIC CONTROLLABILITY

Definition 50 (Respected Situations). A situation ω for a TNU is re-

spected by a partial schedule PS if the durations specified in ω are consis-

tent with not only the execution times in PS, but also the constraint that

all time points that are unexecuted in PS must occur after nowPS.

Note that if PS is a partial schedule that respects a situation ω, and

an uncontrollable time point ei 6∈ TPs(PS) but its activation time point

α(ei) ∈ TPs(PS) (i.e., ei is active in PS), then it follows that nowPS <

PS(Ai) + ωi, since ei must be executed after nowPS.

Definition 51 (Outcome of a wait decision). Let PS be a partial schedule

for which at least one uncontrollable time point is active, and let ω be

a situation that is respected by PS. The outcome of the wait decision

depends on:

1. tnc(PS, ω), the time of the next contingent execution according to PS

and ω:

tnc(PS, ω) =̇ min{PS(αei) + ωei | α(ei) ∈ TPs(PS), ei 6∈ TPs(PS)}

2. χ∗(PS, ω), the set of uncontrollable time points that will execute next

(i.e., at the time tnc(PS, ω)).

χ∗(PS, ω) =̇ {ei | α(ei) ∈ TPs(PS), ei 6∈ TPs(PS), PS(α(ei)) + ωei =

tnc(PS, ω)}

The outcome of a wait decision (written O(PS, ω, wait)) is given by:

O(PS, ω, wait) =̇ PS ∪ {〈ei, tnc(PS, ω)〉 | ei ∈ χ∗(PS, ω)}

Definition 52 (Outcome of a 〈Tf , χf〉 Decision). Let PS be a partial sched-

ule for which at least one controllable time point is unexecuted, and let ω

be a situation that is respected by PS. For convenience, let t = tnc(PS, ω)

(or t =∞ if no uncontrollable time points are active in PS), and let χ∗ =

205

11.1. FORMALIZATION OF DYNAMIC CONTROLLABILITY

χ∗(PS, ω). The outcome of a 〈Tf , χf〉 decision (written O(PS, ω, 〈Tf , χf〉))

depends on the relationship between t and Tf . In particular:

O(PS, ω, 〈Tf , χf〉) =̇ PS ∪

{〈ei, t〉 | ei ∈ χ∗} if t < Tf

{〈x, t〉 | x ∈ χf} if Tf < t

{〈y, t〉 | y ∈ χf ∪ χ∗} if Tf = t

In the first case, some uncontrollable time points happened to execute

before time Tf ; in the second case, only the time points in χf were executed;

in the third case, some uncontrollable time points happened to execute

precisely at the time Tf and, thus, both uncontrollable and controllable

time points were executed simultaneously.

Definition 53 (RTED-based Strategy). An RTED-based strategy for an

STNU is a mapping R from respectful partial schedules to real-time execu-

tion decisions. Thus, if PS is a respectful partial schedule, then R(PS) is

an RTED.

Lemma 11.1. If R is an RTED-based strategy for a DTNU, and ω is any

situation, then R and ω together determine a unique (complete) schedule,

written PS(R,ω), that results from following the strategy R in the situation

ω.

Definition 54 (Dynamic Controllabilty for a DTNU). A DTNU 〈T , C,L〉
is dynamically controllable if there exists an RTED-based strategy R for the

network such that for each situation ω, the complete schedule PS(R,ω) that

results from following the strategy R satisfies all of the constraints in C.

11.1.1 Timestrict and Immediate-Reaction Semantics

In the literature, two slightly different versions of the semantics for dy-

namic controllability have been defined. The difference between the two

206

CHAPTER 11. DYNAMIC CONTROLLABILITY

A B

C

D
[1, 6]

[7, 10]

[5, 20]

[0, 2]

[0,
10]
∨

(a)

Tc =̇ {A,B,C}
Tu =̇ {D}
C =̇ {B − A ∈ [1, 6], C − A ∈ [7, 10],

D −B ∈ [0, 2] ∨D − C ∈ [0, 10]}
L =̇ {〈A, {〈5, 20〉}〉, D}

(b)

Figure 11.2: A DTNU derived from the one in figure 11.1 that is dynamically controllable accord-

ing to the immediate-reaction semantics, but is not dynamically controllable for the timestrict

semantics.

resides in the possibility for the solver to react to an observation by imme-

diately schedule a controllable time point. [MMV01] and [Hun09] forbid

this immediate reaction, while [Mor06] allows it. For example, consider

the problem depicted in figure 11.2 derived from the example in figure 11.2

changing the lower bounds of the disjunctive constraint. The problem is

not dynamically controllable according to the semantics in definition 54.

This is because after scheduling A at time 0, the controllable time point B

cannot be scheduled in until C is observed or time 9 is reached. The only

viable strategy to respect the [0, 11] constraint would be to wait until time

10, if C is observed during this wait immediately react by scheduling B,

otherwise schedule B at time 9. This strategy assumes the possibility for

the scheduler to immediately react to an observation (i.e. the decision of

scheduling a time point and the scheduling time happen in no time).

We indicate with “timestrict” the semantics formalized by definition 54,

and with “immediate-reaction” semantics allowing the agent reaction in no

time, formalized as follows.

We can adapt the “timestrict” semantics by only modifying definition 49

to allow immediate reaction.

207

11.2. STRATEGY REPRESENTATION AND VALIDATION

Definition 55 (Immediate Reaction RTED). Let PS be a respectful partial

schedule. An RTED has one of two forms: wait or 〈Tf , χf〉.
A wait decision is applicable if at least one uncontrollable time point,

ei, is active in PS (i.e., ei’s activation time point α(ei) has already been

executed, but ei has not).

A 〈Tf , χf〉 decision (i.e., “If nothing happens before or at time Tf , exe-

cute the time points in χf at time Tf”) is applicable if Tf ≥ nowPS and χf

is a non-empty subset of unexecuted controllable time points (i.e., χf 6= ∅
and χf ∩ TPs(PS) = ∅).

Then, all the rest of the semantics stays the same. Note that this

implies that if PS is a partial schedule that respects a situation ω, and

an uncontrollable time point ei 6∈ TPs(PS) but its activation time point

α(ei) ∈ TPs(PS) (i.e., ei is active in PS), then it follows that nowPS ≤
PS(Ai) + ωi.

It is easy to see that the timestrict semantics is more demanding than the

immediate-reaction one: if a problem is dynamically controllable according

to the timestrict semantics, then it is also controllable for the immediate-

reaction semantics. The vice-versa is not always true.

In the following, we will focus on the immediate-reaction semantics, but

we will also give hints and discuss adaptations of the presented techniques

for the timestrict semantics. We explicitly remark which semantics we refer

to, unless there is no distinction between the two flavors.

11.2 Strategy Representation and Validation

In the practical sense, the concept of dynamic strategy for a TNU is ar-

gument of discussion. Existing approaches that solve the dynamic con-

trollability problem, produce strategies expressed as constraint networks

that need to be scheduled at run-time by an executor. These networks

208

CHAPTER 11. DYNAMIC CONTROLLABILITY

encode a possibly infinite number of RTEDs, but require a constraint solv-

ing algorithm running on-line with the system. This may or may not be

acceptable, depending on the application at hand.

Some works aimed at reducing the amount of on-line reasoning as much

as possible [Mor14]. In this chapter, we want to follow the idea we in-

troduced for weak controllability in chapter 10: we want to automatically

synthesize executable strategies.

We first propose a language to express readily executable, closed-form

strategies that closely resembles the structure of a computer program. The

idea is to generate strategies in a form that can be interpreted, compiled

or even implemented in hardware to accommodate even more resource-

constrained applications.

11.2.1 Strategy Language

We define the following language to compactly express strategies in a read-

ily executable form.

Definition 56. A strategy σ is recursively defined as follows.

• noop is a strategy;

• w(ψ, e1 : σ1, · · · , en : σn,a: σa) is a strategy where ψ is a time region,

each ei ∈ Tu and each σx is a strategy

• s(b);σ′ is a strategy where b ∈ Tc and σ′ is a strategy.

We defined a single wait operator that waits for a condition ψ to become

true. Conditions are expressed as time regions (see section 2.4) defined

over a set of clocks ~T =̇ {x | x ∈ T }. We use a clock for each time point

(controllable or uncontrollable). All the clocks start from time 0 and evolve

as time passes. We assume that a clock is reset when the corresponding

time point is executed. In this way, each clock measures the time passed

209

11.2. STRATEGY REPRESENTATION AND VALIDATION

since the corresponding time point was scheduled. For example, a time

region x− y ≤ 2 ∧ x = 3 indicates that 3 time units ago (at time t− 3), x

was scheduled and y has been scheduled at least 1 time unit ago.

A wait action can be interrupted by the observation of an uncontrol-

lable time point or when the waited condition becomes true (represented

by the a symbol). For each possible outcome, the strategy prescribes a

behavior, expressed as a sub-strategy. For example, if while executing a

strategy w(ψ, e1 : σ1, e2 : σ2,a: σa) the time point e2 is observed, the wait

is terminated and σ2 is immediately executed.

In addition to wait statements, we also have the concatenation (s(b);σ′)

construct that prescribes to immediately schedule the b time point (we

assume no time elapses), and then proceed with the strategy σ′. The noop

operator is a terminator signaling that the strategy is completed.

For example, a strategy σex for the DTNU in figure 11.1, expressed in this

language is as follows:

σex =̇ s(A);w(A = 5, D : w(D > 0,a: s(B);w(A = 7,a: s(C); noop)),

a: s(B);w(A = 10, D : w(A ≥ 7 ∧D > 0,a: s(C); noop),

a: s(C);w(⊥, D : noop))).

This example strategy is correct regardless of the dynamic controllability

semantics (it is valid according to the timestrict semantics, hence it also

works for the immediate-reaction semantics.). For now, we concentrate on

the immediate-reaction semantics, then we will extend the results for the

timestrict case in section 11.2.2.

The following theorem states that the strategy language is sufficient to

capture the whole dynamic controllability semantics. The proof can be

found in appendix A.6.

Theorem 11.1 (Sufficient Syntax). A DTNU is dynamically controllable

if and only if it admits a solution strategy expressible as per definition 56.

210

CHAPTER 11. DYNAMIC CONTROLLABILITY

This strategy syntax is similar to a loop-free program. In practice, one

needs to represent the program allowing common strategies in different

branches to be shared to avoid combinatorial explosion of the strategy size.

In order to simplify the exposition, we keep the simpler tree representation.

The structure of the program explicitly represent the different branches

that the strategy may take: each computation path from the beginning of

the strategy to noop is a way of scheduling the time points in a specific

order.

A strategy σ needs two characteristics for being a solution to the dy-

namic controllability problem: dynamicity and validity, defined as follows.

A strategy σ is dynamic if it never observes future happenings and is

valid if it always ends in a state where all the controllable time points are

scheduled and all the free constraints are satisfied, regardless of the uncon-

trollable observations. Using the strategy syntax in definition 56, dynam-

icity can be checked syntactically: it suffices to check, for each branch of

the strategy, that each wait condition ψ is defined on time points that have

been already started or observed. Formally, this can be done by recursively

checking the free variables of each time region ψ, as follows.

dyn(P, noop) =̇>

dyn(P, s(b);σ′) =̇ dyn(P ∪ {b}, σ′)

dyn(P,w(ψ, e1 : σ1, · · · , en : σn,a: σa)) =̇

(FreeV ars(ψ) ⊆ P) ∧ dyn(P, σa) ∧
∧n
i=1 dyn(P ∪ {ei}, σi)

Proposition 11.1. A strategy σ is dynamic if and only if dyn(∅, σ) = >.

Intuitively, P keeps track of the time points that happened in the branch

under analysis, and the check ensures that no time point outside P is used

as a wait condition.

211

11.2. STRATEGY REPRESENTATION AND VALIDATION

11.2.2 Validation

We now focus on the problem of validating a given strategy using the

immediate-reaction semantics. We first present a search space that en-

codes every possible strategy for a given DTNU. The search space S is an

and-or search space where the outcome of a wait instruction is an and-

node (the result of a wait is not controllable by the solver), while all the

other elements of the strategy language are encoded as or-nodes (they are

controllable decisions). The search space is a directed graph S =̇ 〈V,E〉,
where E is a set of labeled edges and each node in V is a tuple 〈P,w, φ, ψ〉
where P ∈ 2T is a subset of the time points representing the time points

that already happened in the past, w is a Boolean flag marking the state

as a waiting state, while both φ and ψ are time regions. φ represents the

set of temporal configuration in which the state can be; ψ is set only in

and-nodes to record the condition that has been waited for. The graph is

rooted in the node Init =̇ 〈∅,⊥,>,⊥〉. The transition relation defining the

allowed moves in the space is E, defined as follows:

• 〈P,⊥, φ,⊥〉 s(b)−−→ 〈P ∪ {b},⊥, ρ(φ, b),⊥〉 with b ∈ Tc \ P ;

• 〈P,⊥, φ,⊥〉 w(ψ)−−→ 〈P,>, ω(φ, ψ), ψ〉;

• 〈P,>, φ, ψ〉 e−→ 〈P ∪ {e},⊥, ρ(φ, e) ∧ uc(e),⊥〉 where e ∈ Tu \ P and

α(e) ∈ P ;

• 〈P,>, φ, ψ〉 a−→ 〈P,⊥, ψ,⊥〉.

Nodes having w = ⊥ are considered or-nodes, while the others are and-

nodes. Intuitively, the first rule allows the immediate start of a controllable

time point if we are not in a state resulting from a wait. The second rule

allows the solver to wait for a specific condition ψ, the resulting state is

an and-node because the outcome of the wait can be either a timeout (a)

or an uncontrollable time point. The last two rules explicitly distinguish

212

CHAPTER 11. DYNAMIC CONTROLLABILITY

Init 〈{A},⊥, A = 0,⊥〉 〈{A},>, A < 7, A = 7〉

〈{A,D},⊥, D = 0 ∧ A < 7,⊥〉

〈{A},⊥, A = 7,⊥〉

· · ·
· · ·

· · ·· · ·

· · ·
· · ·

s(A)

s(
B

)
s(
C

)

s(
B)

s(
C

)

w(A = 7)

w
(A

=
8)

w(A
=

9)

d

a

Figure 11.3: A portion of the search space S for the DTNU in figure 11.1. Doubly bordered

nodes are and-nodes, the others are or-nodes.

these outcomes. We remark that, when a time point x is scheduled or

observed, the corresponding clock x is reset and the set P keeps record of

the time points that have been scheduled or observed.

Given a time region φ we define the time region that specifies the waiting

time for a condition ψ as a time region ω(φ, ψ)=̇φ1 ∧¬(ψ1). This is the set

of time assignments resulting from starting a wait for condition ψ starting

from any assignment compatible with φ.

For each uncontrollable time point e, we define the uc(e) time region

as
∨
〈l,u〉∈B α(e) ≥ l ∧ α(e) ≤ u where 〈α(e), B, e〉 ∈ L. Intuitively, uc(e)

is the portion of time in which the uncontrollable time point e might be

observed, according to the contingent links. We remark that the time re-

gion only depend on the clock corresponding to the activation time point

α(e) because clocks measure the time since the corresponding time clock

happened. In fact, this is a transliteration of a contingent link into a time

region. This search space directly mimics the structure of our strategies,

but is infinite due to the infinite number of conditions that can be waited

for. Nonetheless, this space is conceptually clean and very useful to ap-

proach the validation problem. Figure 11.3 depicts the first portion of the

search space S for the running example problem in figure 11.1.

213

11.2. STRATEGY REPRESENTATION AND VALIDATION

The procedure for validating a strategy is shown in algorithm 14: the

algorithm navigates the search space S, by applying the strategy prescrip-

tions (thus finitizing the search) and checking that each branch invariably

yields to a state where all the free constraints are satisfied and all the time

points are scheduled. The algorithm starts from Init and recursively vali-

date each branch of the strategy. The region Ψ, used in line 2, is defined

as the region where all the free constraints are satisfied, as follows:

Ψ =̇
∧
ci∈C

Di∨
j=1

li,j ≤ ti,2,j − ti,1,j ≤ ui,j.

A time region implies Ψ if it satisfies all the free constraints. This is because

of the implication semantics: a model satisfies the region only in it also

satisfies the Ψ. We remark that clocks measure the time passed since the

corresponding time point has been executed, therefore a constraint x−y ∈
[l, u] is represented by the region l ≤ y − x ≤ u. The procedure executes

a strategy starting from Init; then it recursively explores the search space

enforcing the controllable decisions of the strategy σ in or-nodes (lines 3-8)

and branching to explore all possible uncontrollable outcomes in and-nodes

(lines 9-15). It is easy to see that the algorithm takes a number of steps

that is linear in the size of the strategy because at each step the strategy

gets shortened (two steps are needed to shorten a wait).

Proposition 11.2. The validation procedure in algorithm 14 is sound and

complete for the immediate-reaction semantics.

Additional Constraints for Timestrict Semantics

When dealing with the timestrict semantics, we must prevent the executor

from react in 0 time to an observation. The only action of an executor is

the scheduling of a time point through a command s(b). The timestrict

214

CHAPTER 11. DYNAMIC CONTROLLABILITY

Algorithm 14 Dynamic Strategy Validation Procedure

1: procedure Validate(σ, 〈P,w, φ, ψ〉)
2: if P = T then

3: return (σ = noop and IsValid(φ→ Ψ))

4: end if

5: if w = ⊥ then

6: if σ = s(b);σ′ then

7: return Validate(σ′, 〈P ∪ {b},⊥, ρ(φ, b),⊥〉)
8: else if σ = w(ψ, e1 : σ1, · · · , en : σn,a: σa) then

9: return Validate(σ, 〈P,>, ω(φ, ψ), ψ〉)
10: else

11: return ⊥ . σ = noop, but not all time points scheduled

12: end if

13: else . σ =̇ w(ψ, e1 : σ1, · · · , en : σn,a: σa)

14: for all 〈P,w, φ, ψ〉 ê−→ 〈P ∪ {ê},⊥, φ ∧ uc(ê),⊥〉 do

15: if @i.ê = ei then

16: return ⊥ . ê is not handled by σ

17: end if

18: c := Validate(σi, 〈P ∪ {ê},⊥, ρ(φ, e) ∧ uc(e),⊥〉)
19: if c = ⊥ then

20: return ⊥
21: end if

22: end for

23: if IsUnsatisfiable(ψ) then

24: return > . The strategy waited for ⊥
25: end if

26: return Validate(σa, 〈P,⊥, ψ,⊥〉)
27: end if

28: end procedure

215

11.3. REDUCING DYNAMIC CONTROLLABILITY TO TGA REACHABILITY

semantics prevents the executor from scheduling a time point if no time is

passed since the last observed time point.

This modifies the validation search space S: the region in which a s(b)

transition is enabled is constrained to have all the clocks corresponding to

the uncontrollable time points positive, so that to ensure a positive delay.

In concrete, this changes the first rule of the transition relation for the

search space S as follows.

• 〈P,⊥, φ,⊥〉 s(b)−−→ 〈P ∪ {b},⊥, ρ(φ, b),⊥〉 with b ∈ Tc \ P and∧
e∈(Tu∩P e > 0) ⊆ φ;

Intuitively, this means that the strategy can start a controllable time

point only if a positive amount of time has passed since any observed

uncontrollable time point. In practice, this forces the strategy to wait

after each observation, a start is only valid in the timeout case of a wait.

This change also propagates to the algorithm, but the rest of the technique

is unchanged.

11.3 Reducing Dynamic Controllability to TGA Reach-

ability

In this section, we present a general schema to approach the dynamic

controllability problem for the whole DTNU network class. The idea is

to reduce the problem to a Reachability Game on a Timed Game Au-

tomaton (TGA) obtained via a linear encoding procedure. Since the

reachability problem for TGA is decidable and algorithms have been de-

veloped to solve this problem, this reduction constitutes a viable and

novel solution approach for the open problem of dynamic controllability

of DTNU. Moreover, this technique can be extended to deal with discrete

non-determinism [CHM+16]. However, this is beyond the scope of this

thesis: we only report some preliminary work in section 11.5.

216

CHAPTER 11. DYNAMIC CONTROLLABILITY

This section is organized as follows. We first introduce an encoding

of the STNU immediate-reaction dynamic controllability problem in TGA

such that the temporal network is dynamic controllable if and only if the

reachability game on the encoded TGA is solvable. We then generalize the

idea to the DTNU case and to the timestrict semantics.

11.3.1 STNU to TGA

Given any STNU P = 〈T , C,L〉, the goal is to generate a corresponding

TGA TP = 〈L, l0,Act ,X , E, Inv〉, and a winning condition θ, such that the

STNU P is dynamically controllable if and only if the TGA TP admits a

strategy for θ. We use controllable TGA transitions are used to model the

execution of the controllable time points in P , and uncontrollable TGA

transitions are used to model the execution of the controllable time points

in P . We model the dynamic controllability problem as a game in which

two players, the solver and the environment, are demanded to schedule

time points in real time (by resetting clocks). The goal of the solver is

to reach a goal location where all the constraints are satisfied, while the

environment tries to prevent its success.

For this encoding, the set of locations is: L =̇ {ctrl, env, goal}, where

ctrl is marked urgent. This means that time is not allowed to pass within

the ctrl location (see section 2.3 for the details). Note that L only has

three locations, regardless of the number of time points in the STNU. Intu-

itively, ctrl represents a state in which the solver can execute one or more

controllable time points; env represents a state in which the environment

can execute one or more uncontrollable time points; and goal represents

a state in which all of the constraints have been satisfied and the game is

over (and ctrl wins successfully scheduling all the time points fulfilling all

the constraints). The initial location of the TGA is env (i.e., l0 =̇ env).

The set of clocks is: X =̇ {γ, δ} ∪ {x |X ∈ T }. All clocks start at 0.

217

11.3. REDUCING DYNAMIC CONTROLLABILITY TO TGA REACHABILITY

The clock γ is never reset; it simply measures global time. The clock δ is

used to limit the alternation of controllable and uncontrollable scheduling

in a single time instant: we require that a positive amount of time passes

after each controllable decision. In this way, we prevent the environment

from reacting to controllable decision in no time1. Finally, for each time

point x ∈ T , there is a corresponding clock x. That clock is reset at most

once each run, at the instant x is executed. It follows that any time point

x has been executed if and only if x < γ. Since the initial state is env, no

time point can be executed at 0. Also, after being executed, the execution

time for X is forever equal to γ − x.

The sets of controllable and uncontrollable actions are defined as follows.

First, the uncontrollable transitions (for the environment) consist of one

action for each uncontrollable time point in P , as follows: Actu =̇ {exx | x ∈
Tu}. Each action in this set represents the execution of the corresponding

time point. The controllable actions (for the solver) include more options:

Act c =̇ A1 ∪ A2 ∪ A3, defined as follows.

A1 =̇ {exx | x ∈ Tc}

A2 =̇ {faile | 〈b, l, u, e〉 ∈ L}

A3 =̇ {gain, pass, win}

A1 contains one execution action for each controllable time point. A2

contains one action for each contingent link; these actions are only enabled

if the environment violates the bounds on any contingent link. gain and

pass model the interplay between the execution of time points by the solver

and the environment; win is used at the end when all time points have been

executed and all constraints have been satisfied.

The transition relation, E, for the TGA encoding of an STNU is demon-

1We remark that we are now considering immediate-reaction semantics, in which the solver can react

in 0 time. We are designing a game in which the environment is forced to execute all the uncontrollable

time points of a given instant before the solver reaction.

218

CHAPTER 11. DYNAMIC CONTROLLABILITY

envctrlgoal
〈Ψ; win; ∅〉

〈>; pass; {δ}〉

〈δ > 0; gain; ∅〉

〈Σ(c1, a1, γ); exC1 ; {c1}〉

〈Σ(c2, a2, γ); exC2 ; {c2}〉

〈A1 = γ; exA1 ; {A1}〉 〈X = γ; exX; {X}〉

〈A2 = γ; exA2 ; {A2}〉

〈Φ(c1, a1, γ); failC1 ; ∅〉

〈Φ(c2, a2, γ); failC2 ; ∅〉

Figure 11.4: Encoding the STNU from figure 11.1 into a TGA. Solid arrows represent control-

lable transitions (for the environment); dashed arrows uncontrollable transitions (for the solver).

The doubly-circled ctrl location is urgent; the initial location is env.

strated in figure 11.4, using the sample STNU from figure 11.1. For each

controllable time point x, there is a transition from ctrl to ctrl labeled

by 〈x = γ; exx; {x}〉, which represents the execution of x by the solver.

The guard, x = γ (meaning that x has not been executed yet), ensures that

this transition will be taken at most once per run. The set, {x}, stipulates

that the clock x will be reset by this transition, signaling that x has been

executed.

Similarly, for each contingent link, 〈b, l, u, e〉, there is a transition from

env to env labeled by 〈Σ(e, b, γ, δ); exe; {e}〉, which represents the execu-

tion of e by Vera. The guard, is defined as follows.

Σ(e, b, γ, δ) =̇ (δ > 0) ∧ (b < γ) ∧ (e = γ) ∧ (b ≥ l) ∧ (b ≤ u)

The guard ensures that this transition can only be taken when the link is

currently activated and its duration would fall within [l, u]. We also require

that the clock δ is positive, this prevents the environment from scheduling

an uncontrollable time point immediately after the solver scheduled some-

thing. In addition, for each contingent link, 〈b, l, u, e〉, there is a transition

219

11.3. REDUCING DYNAMIC CONTROLLABILITY TO TGA REACHABILITY

from ctrl to goal labeled by 〈Φe(b, e, γ); faile; ∅〉, enabling the solver

to move to goal should the environment violate the bounds on that link

by failing to execute e. Its guard is as follows.

ΦC(b, e, γ) =̇ (b < γ) ∧ (b > u) ∧ (e = γ)

The intuition is that the upper bound on the duration of the contingent

link has passed and the uncontrollable time point has not been scheduled.

Next, if ~t is the vector of clocks x such that x ∈ T , the transition from

ctrl to goal labeled by 〈Ψ(~t, γ); win; ∅〉 signals the end of the game.

Ψ(~t, γ) models that all time points have been executed and all constraints

are satisfied.

Ψ(~t, γ) =̇
∧
x∈T

(x < γ) ∧
∧

(y−x∈[l,u])∈C

((x− y ≥ l) ∧ (x− y ≤ u))

Last, to model the interplay between the players, there are two more tran-

sitions. The transition from env to ctrl labeled by 〈δ > 0; gain; ∅〉
enables the solver to gain control for the purpose of executing some con-

trollable time points, but only after some positive delay since the last time

the controller executed something. This prevents the solver to avoid the

environment to play and avoids multiple turns without time passing. The

transition from ctrl to env labeled by 〈>; pass; {δ}〉 enables the solver

to immediately pass back to env, once it has finished executing the chosen

time points. Crucially, no time elapses from the instant the system leaves

env for ctrl to the instant it returns, because ctrl is an urgent state

The winning condition θ of the reachability game is to reach the goal

state. A strategy for the solver beats the environment by ensuring that

goal can be reached regardless of the possible uncontrollable moves.

Proposition 11.3. The presented encoding is such that the STNU P is dy-

namically controllable if and only if the reachability game admits a winning

strategy for the controller.

220

CHAPTER 11. DYNAMIC CONTROLLABILITY

Cs Ce

Ns Ne

[5, 20]

[5, 10]

[0,∞
)

[0,
∞)

∨

Figure 11.5: An small DTNU example used to demonstrate the DTNU-toTGA encoding of the

free constraints. The DTNU corresponds to a couple of activities N and C with uncontrollable

duration in [5, 20] that cannot overlap.

11.3.2 DTNU to TGA

In this section, we generalize the TGA encoding we presented for the STNU

problem class for the DTNU dynamic controllability problem.

DTNU generalizes the STNU framework in two different dimensions.

First, the durations of contingent links can be constrained to lie within

a union of disjoint intervals. Second, the free constraints can comprise

Boolean combinations of difference constraints. We show how to modify

the STNU-to-TGA encoding in section 11.3.1 to capture the immediate-

reaction semantics of DTNUs. First, if the duration for a contingent link

is constrained to lie within one of n disjoint intervals, then there will be n

corresponding loops at the env location, where the guard for each loop ef-

fectively specifies one of the allowed intervals for that contingent duration.

Second, the “all time points executed and all constraints satisfied” transi-

tion to the goal location is represented by alternative pathways through a

sequence of locations from env to goal.

To begin, as for the STNU case, each controllable time point x will have

a corresponding transition from ctrl to ctrl labeled as 〈x = γ; exx; {x}〉,

221

11.3. REDUCING DYNAMIC CONTROLLABILITY TO TGA REACHABILITY

that represents the execution of x by the solver.

However, for each disjunctive contingent link, 〈b,B, e〉, where B =̇

{〈l1, u1〉, · · · , 〈ln, un〉}, there are n uncontrollable transitions from env to

env: 〈Σ(b, e, γ, δ, li, ui); exe
i; {e}〉, for i ∈ [1, n]. Each transition repre-

sents a possible interval of execution of e by the environment. The guards

are defined as follows.

Σ(b, e, γ, δ, li, ui) =̇ (δ > 0) ∧ (b < γ) ∧ (e = γ) ∧ (e ≥ li) ∧ (e ≤ ui)

The guards ensure that (one of) these transitions can be taken only when

the link is currently activated and its duration would fall within one of the

allowed intervals of B. We highlight that intervals in B are disjoint as per

definition 40.

In addition, for each contingent link, we have a controllable transition

from ctrl to goal labeled as 〈Φe(b, e, γ,maxi(ui)); faile; ∅〉 that allows

the solver to win the game if the environment refuses to schedule an uncon-

trollable time point within the maximum allowed bound, maxi(ui). The

guard is expressed by Φe(b, e, γ, u) =̇ (b < γ) ∧ (b > u) ∧ (e = γ), analo-

gously to the STNU case. The interplay between the players, governed by

the pass and gain transitions, is identical to the STNU case.

Next, the TGA must accommodate the arbitrary Boolean combinations

of constraints in C. In principle, we would like to have a transition from

ctrl to goal labeled as 〈Ω(~t, γ); win; ∅〉 that signals the end of the game,

where Ω(~t, γ) encodes the fact that all time points have been executed and

all constraints satisfied, and ~t is the set of all the clocks associated with

the time points.

Ω(~t, γ) =̇ (
∧
x∈T

(x ≤ γ)) ∧ (

|C|∧
i=1

Di∨
j=1

(ti,2,j − ti,2,j ≥ li,j) ∧ (ti,2,j − ti,2,j ≤ ui,j))

Intuitively, Ω(~t, γ) is a transposition of the free constraints of the DTNU,

222

CHAPTER 11. DYNAMIC CONTROLLABILITY

in the form of a time region. First we check that all the time points have

been scheduled (
∧
x∈T (x ≤ γ)), then we enforce all the constraints

However, it is not always possible to directly use the formula Ω(~t, γ) as

a guard for the transition from ctrl to goal because the definition of a

TGA restricts the language of the guards to be purely conjunctive. For

this reason, we aim at building a piece of automaton (possibly adding new

locations) that connects ctrl to goal in such a way that there is a path

from ctrl to goal if and only if all the free constraints are satisfied. This

suffices to ensure the soundness and completeness of the encoding. There

are several ways in which this can be done.

Disjunctive Normal Form

A direct solution that does not introduce new locations in the TGA is to

create a set of transitions from ctrl to goal such that each pathway from

ctrl to goal can be taken if and only if Ω(~t, γ) is satisfied. This is always

possible, since alternative transitions emanating from a single location are

equivalent to a single transition with a disjunctive guard. Thus, all we have

to do is convert Ω(~t, γ) into Disjunctive Normal Form (DNF) and create a

separate transition from ctrl to goal for every disjunct. In this setting,

negation of atomic constraints is not a problem because ¬(y − x ≤ k) is

equivalent to y − x > k, which is allowed in the guards of a TGA. As for

the names of the actions, we simply assign to each action a new, unique

name. It is easy to see that there exists a path from ctrl to goal if and

only if the free constraints are satisfied, because one disjunct of the DNF

is satisfied. The main drawback of this technique is that, for a general

formula, the number of disjuncts in the DNF is exponential, and thus the

encoding becomes exponential in general. Nevertheless, this constitutes

a sound-and-complete encoding for (constructively) deciding the dynamic

controllability of DTNU.

223

11.3. REDUCING DYNAMIC CONTROLLABILITY TO TGA REACHABILITY

goal ctrl

〈Cs < γ ∧ · · · ∧Ne < γ ∧ Cs −Ne ≤ 0, t1, ∅〉

〈Cs < γ ∧ · · · ∧Ne < γ ∧Ns − Ce ≤ 0, t2, ∅〉

Figure 11.6: The DNF encoding of the guards on constraints from ctrl to goal for the sample

DTNU in figure 11.5.

Considering the example in figure 11.5, the encoding of the constraints

between ctrl and goal is composed of only two transitions, as Ω is already

in DNF. The transitions are depicted in figure 11.6.

Negation Normal Form

If we allow for the introduction of new (urgent) locations in the TGA,

we can encode Ω(~t, γ) linearly, thus obtaining a linear size of the overall

DTNU-to-TGA encoding. The idea comes from the following observation.

Suppose we have a piece of automaton that encodes a formula φ1 in such

a way that it is possible to move from location Ls1 to Le1 if and only if φ1

is satisfied, and suppose that we have an analogous encoding for another

formula φ2 with starting and ending locations Ls2 to Le2. We can encode

the formula φ1 ∧ φ2 by “concatenating” the two automata. That is, we

introduce a transition from Le1 to Ls2 with the tautological guard >. Now,

in order to move from Ls1 to Le2 the formula φ1 ∧ φ2 must be satisfied.2

Similarly, if we consider the formula φ1 ∨ φ2 we can introduce two extra

locations Ls∨ and Le∨ and introduce four transitions with the guard >: one

from Ls∨ to Ls1, one from Ls∨ to Ls2, one from Le1 to Le∨, and one from Le2

to Le∨. In this way, we create a “diamond” with two paths from Ls∨ to Le∨;

one path encodes φ1, the other encodes φ2. This construction is simple

2We are assuming that all the locations of the automata pieces are urgent, so the clocks are frozen

and no time can elapse.

224

CHAPTER 11. DYNAMIC CONTROLLABILITY

Jφ1K Jφ2K · · · JφnK

Figure 11.7: Encoding the conjunction φ1 ∧ φ2 ∧ · · · ∧ φn. JφK stands for the recursive encoding

of φ.

Jφ1K

Jφ2K

· · ·

JφnK

Figure 11.8: Encoding the conjunction φ1 ∨ φ2 ∨ · · · ∨ φn. JφK stands for the recursive encoding

of φ.

and correct, even though it introduces many unneeded locations. In fact

it is also possible to compress this encoding by merging locations instead

of linking them with tautological transitions and it is possible to merge

sequences of guards in a single conjunctive guard. However, we decided to

explain the simplest version for clarity.

Now, given a rewriting of Ω(~t, γ) that only has disjunctions and con-

junctions (but no negations) we can recursively create a piece of automaton

that encodes the formula. This is done by constructing an automaton in

which disjunctions and conjunctions are recursively encoded as shown in

figures 11.7 and 11.8. It is well known [Kle67] that we can syntactically and

linearly transform Ω(~t, γ) into Negation Normal Form (NNF) and given the

225

11.3. REDUCING DYNAMIC CONTROLLABILITY TO TGA REACHABILITY

ctrlgoal
〈Cs < γ ∧ · · · ∧Ne < γ, t1, ∅〉

〈Cs −Ne ≤ 0, t2, ∅〉

〈Ns − Ce ≤ 0, t3, ∅〉

Figure 11.9: NNF constraints between ctrl and goal for the sample DTNU in figure 11.5.

shape of the atoms of Ω(~t, γ) we can transform the negations of the atoms

into positive atoms as before, by exploiting the fact that ¬(y − x ≤ δ) is

equivalent to y − x > δ.

Figure 11.9 depicts the running example encoded using the NNF decom-

position of the free constraints optimized by compressing the conjunction

of the x < γ in a single guard and by avoiding the unneeded tautological

guards. In the example, Ω is already in NNF as there are no negations.

Even though the NNF decomposition is generally more succinct than

the DNF, the effort of dealing with disjunctions is moved from the encoding

to the TGA solver, so we are in a trade-off condition.

11.3.3 TGA Strategies

Algorithms for solving TGA reachability games such as [CDF+05], can

synthesize control strategies for the controllable player. As we discussed in

section 2.3, memoryless strategies are sufficient for reachability games and

all the available tools produce those.

The encodings we presented, not only capture the dynamic controlla-

bility decision problem, but we have a simple way of understanding the

strategies synthesized to solve the TGA in the TNU context. In fact, we

encoded all the problem constraints in such a way that the clock x is reset

only once in each run, and the moment it is reset (in absolute time) encodes

the value assigned to the corresponding time point x. Moreover, we mod-

eled each controllable time point with a controllable transition and each

226

CHAPTER 11. DYNAMIC CONTROLLABILITY

uncontrollable time point with an uncontrollable transition; therefore, the

TGA strategy, that prescribes when to take the controllable transitions,

encodes a dynamic strategy.

A memoryless TGA strategy can be employed in a TNU executor by

providing a TGA simulator that executes our encoding controlled by the

strategy. Whenever the strategy prescribes a move on a transition that

resets a controllable time point, that point must be executed in the system.

Each time an uncontrollable is observed in the TNU, the corresponding

uncontrollable transition must be taken. This solution is far from being

practical, but requires no constraint propagation at runtime. In fact, the

shape of a memoryless strategy is quite distant from the syntax we proposed

in definition 56. While a memoryless strategy is a mapping from pairs of

locations and a time regions to TGA transitions, our language is similar to

a stateful program. In the next chapter, we devise a direct technique based

on the ideas of this encoding, and we present an algorithm that can extract

a strategy expressed as prescribed in definition 56 from a memoryless (we

call it “flat”) strategy.

11.3.4 Addressing the Timestrict Semantics

So far, we focused on the immediate-reaction semantics because it can be

translated in the TGA framework more intuitively. In fact, we directly map

uncontrollable time points into uncontrollable transitions and controllable

time point into controllable transitions. In order to address the timestrict

semantics, instead, we need to swap the roles of the players, because in the

TGA semantics, the environment always has the precedence over the con-

troller. In fact, all the difference between the two semantics is on whether

or not the controller is allowed to immediately react to an uncontrollable,

that is whether the controller is invoked before or after the environment

move. The interplay between the players is encoded in TGA using the

227

11.3. REDUCING DYNAMIC CONTROLLABILITY TO TGA REACHABILITY

transitions between ctrl and env and by the use of the clock δ.

In order to encode the timestrict semantics we need to make the follow-

ing modifications.

• Swap the roles of the players, the controllable transitions become un-

controllable and vice-versa.

• Transform the reachability game into a safety game: the goal of the

solver is to avoid the goal location

• Remove the δ > 0 constraint from the exe transitions.

• Reset δ in each controllable transition.

Moreover, we consider the TNU dynamically controllable if and only if the

safety game is unsolvable: i.e. there exists no winning strategy for the con-

trollable player. The intuition is that the controllable player is now the en-

vironment trying to avoid the scheduler from fulfilling the free constraints;

if the environment has a winning strategy it means that the scheduler can-

not win, otherwise the scheduler has at least a way of scheduling all the

controllable time points fulfilling all the constraints.

Figure 11.10 reports the example encoded in TGA using the timestrict

semantics. The important consideration is that in this encoding δ is used

to force a positive amount of time to pass between the last scheduled

uncontrollable time point and the solver reaction. In fact δ is reset in each

uncontrollable time point scheduling and is required to be positive to allow

the solver to schedule a controllable.

A formal proof of this encoding (due to Luke Hunsberger) is given in

appendix A.5. The proof exploits the STNU dynamic controllability se-

mantics reported in appendix A.4.

The very same modification schema can be applied also to the DTNU-

to-TGA encoding obtaining a timestrict dynamic controllability decision

228

CHAPTER 11. DYNAMIC CONTROLLABILITY

envctrlgoal
〈Ψ; win; ∅〉

〈>; pass; {δ}〉

〈δ > 0; gain; ∅〉

〈Σ(c1, a1, γ); exC1 ; {c1, δ}〉

〈Σ(c2, a2, γ); exC2 ; {c2, δ}〉

〈A1 = γ; exA1 ; {A1}〉 〈X = γ; exX; {X}〉

〈A2 = γ; exA2 ; {A2}〉

〈Φ(c1, a1, γ); failC1 ; ∅〉

〈Φ(c2, a2, γ); failC2 ; ∅〉

Figure 11.10: Encoding the STNU from figure 11.1 into a TGA for the timestrict semantics.

Solid arrows represent controllable transitions (for the environment); dashed arrows uncontrol-

lable transitions (for the solver). The doubly-circled ctrl location is urgent; the initial location

is env.

procedure [CHM+16].

Also this encoding can be used to produce a dynamic strategy; in fact,

some tools (for example Uppaal-TIGA has this feature) can synthesize

a counter-strategy as a proof of unsolvability of the game. The counter-

strategy is a memoryless strategy for the uncontrollable player, that in this

encoding is demanded to schedule the controllable time points. Hence, also

with this encoding we can derive a dynamic strategy from the synthesis

algorithm for the encoded TGA.

11.4 Synthesizing Dynamic Strategies

We now discuss a direct synthesis technique for DTNU. Differently from the

encoding in the previous sections, we directly synthesize dynamic strategies

that are valid by construction.

In principle, one could do a classical and-or search in the space S: if the

search terminates, the trace of the search itself is a valid strategy. However,

229

11.4. SYNTHESIZING DYNAMIC STRATEGIES

the infinity of the space makes this choice impractical. The problem with

the search space S is the presence of explicit waits. In fact, while the

length of each path is finite, the arity of each or-node is infinite due to all

the possible waits. In fact, even fixing the structure of a strategy, we can

wait for any time region expressed over the set of time points that have

been already observed or executed. Hence, the possibilities are infinite due

to the density of time.

In order to practically synthesize a strategy, we retain the basic idea

behind the search space S of explicitly representing the possible orderings

in which the time points may happen in time, but we combine this idea

with the TGA semantics to implicitly represent the controllable waits.

In a TGA, time elapses inside locations until a transition (controllable

or uncontrollable) is taken, causing a location change and possibly some

resets. This is conceptually analogous to wait for a condition allowing to

take a controllable transition, provided that the wait may be interrupted

by an uncontrollable transition. We exploited this feature to let time pass

in our TGA encoding: the env location is where all the time passes.

Analogously to the TGA encoding, we model uncontrollable time points

as uncontrollable transitions with appropriate guards, and controllable

time points as controllable transitions. Differently, from the previous ap-

proach we want to explicitly represent the history of the system inside each

location. For this reason we have a location for each subset of T indicating

the set of time point that have been executed so far. Unfortunately, this

yields a TGA whose size is exponential in the number of time points, be-

cause there are 2|T | possible subsets of the time points. In order to address

this issue, we represent this exponential TGA implicitly, by constructing

transitions and constraints on-demand while exploring the symbolic state

space using an algorithm derived from [CDF+05]. The implicit expansion

allows us to only construct the transitions that are needed for the strategy

230

CHAPTER 11. DYNAMIC CONTROLLABILITY

construction process.

First of all, for each constraint c =̇
∨Di

j=1 t1,j − t2,j ∈ [li,j, ui,j] in C, we

define the set of occurring time points as the set occur(c) =̇ {ti,j | i ∈
[1, 2], j ∈ [1, Di]}. Moreover, given any subset of the time points P , we

define the set of active constraints as C(P) =̇ {c | c ∈ C, occur(c) ⊆ P}.
Intuitively, given any subset of the time points P (representing the past

occurrences), the active constraints are the constraints that can be verified

or falsified with the knowledge of the timing of the time points in P .

The implicit TGA is defined as 〈2T , ∅, T , T , E, ∅〉. Each subset of the

time points is a location, the initial state is the empty set where no time

points have been scheduled. We have an action label for each time point:

a controllable time point yields a controllable transition, an uncontrollable

corresponds to an uncontrollable transition. The set of clock variables is

T as in the space S and the transition relation E is defined as:

• P b, fc(P,b)−−−−−→ P ∪ {b} with b ∈ Tc, if b 6∈ P ;

• P
e, uc(e)
99999K P ∪ {e} with e ∈ Tu, if α(e) ∈ P and b 6∈ P .

where each transition implicitly resets the time point corresponding to

its label and the fc(P, b) and uc(e) functions define the guards of the

transitions.

fc(P, b) =̇

> iff C(P) = ∅∧
ci∈C(P)

∨
j∈[0,Di]

yi,j − xi,j ∈ [`i,j, ui,j] otherwise

Algorithm 15 reports the pseudo-code of the approach derived from the

technique in [CDF+05]. We write s1
x

=⇒ s2 for either s1
x−→ s2 or s1

x
99K

s2, where no distinction is needed. Each time an expansion is required

(lines 3, 10 and, implicitly, 12) the relative portion of the search space is

created. The algorithm works as follows. The win map records the winning

portion of visited states. The wait set contains the transitions in the

231

11.4. SYNTHESIZING DYNAMIC STRATEGIES

Algorithm 15 Synthesis Algorithm

1: procedure Synthesize()

2: wait := ∅; dep := ∅;win := ∅
3: PPush(wait, {〈∅,>〉 x

=⇒ 〈P, φ1〉 | 〈∅,>〉 x
=⇒ 〈P, φ〉})

4: while wait 6= ∅ ∧ win[〈∅,>〉] = ⊥ do

5: (s1
x

=⇒ s2) := Pop(wait) . 〈P1, φ1〉 = s1, 〈P2, φ2〉 = s2

6: if not AlreadyVisited(s2) then

7: dep[s2] := {s1
x

=⇒ s2}
8: if P2 = T and IsSatisfiable(φ2 ∧Ψ) then

9: win[s2] := φ2 ∧Ψ

10: Push(wait, {s1
x

=⇒ s2})
11: else

12: PPush(wait, {s2
x

=⇒ 〈P3, φ31〉 | s2
x

=⇒ 〈P3, φ3〉})
13: end if

14: else

15: win∗ := BackPropagateWinning(s1)

16: if win∗ 6⊂ win[s1] then

17: win[s1] := win[s1] ∨ win∗

18: Push(wait, dep[s1])

19: end if

20: dep[s2] := dep[s2] ∪ {s1
x−→ s2}

21: end if

22: end while

23: if win[〈∅,>〉] = ∅ then

24: return ⊥
25: else

26: return MkStrategy(dep, win)

27: end if

28: end procedure

232

CHAPTER 11. DYNAMIC CONTROLLABILITY

symbolic space that need to be analyzed and is initialized with the outgoing

transitions of the initial state (line 3). The Push and PPush functions

insert elements in the set given as argument (the difference between the two

is explained later), while the Pop function picks and removes an element

from the set. The dep map is used to record the set of explored edges

that lead to a state. The procedure keeps track of the visited states and

performs two different computations depending on whether a new state is

encountered or a re-visit happens (line 6). In the first case, the algorithm

explores the state space forward, in the other it back-propagates winning

states. In the forward expansion, the distinction between controllable and

uncontrollable transitions is disregarded until a goal state is reached. When

a goal state is found, the winning states are recorded in the win map and

the transition leading to the goal is re-added to the wait set to trigger the

back-propagation of the winning states. The back-propagation computes

the set of winning states and updates the win table if needed. Then, all

the explored edges leading to s1 are set to be re-explored because their

winning states may have changed due to this update of the winnings of s1.

Line 23 decides the controllability of the problem: if the winning set of the

initial state is empty, it means that all the search space has been explored

and no strategy has been found.

The following theorem states the correctness of the approach. The proof

can be found in appendix A.6.

Theorem 11.2 (Correctness). With no pruning, the algorithm terminates

and returns ⊥ if and only if the TNU is not dynamically controllable.

MkStrategy builds a strategy as per definition 56 using a forward

search guided by the dep and win maps: wait conditions are extracted by

the projection of the winning states.

From the algorithm search trace we can reconstruct a strategy expressed

in the syntax we proposed in definition 56. We perform a forward search

233

11.4. SYNTHESIZING DYNAMIC STRATEGIES

Algorithm 16 Flat Strategy Extraction Algorithm

1: procedure MkFlatStrategy(dep, win)

2: visited := ∅; res := ∅
3: for all 〈s, trans〉 ∈ deps do

4: for all (s1
x−→ s2) ∈ trans do

5: if (s1
x−→ s2) 6∈ visited then

6: visited := visited ∪ {s1
x−→ s2}

7: if win[s1] 6= ∅ and win[s2] 6= ∅ then

8: wregion := PreImage(win[s2], x) ∧win[s1]

9: res[〈s1, x〉] := res[〈s1, x〉] ∨ wregion
10: end if

11: end if

12: end for

13: end for

14: return res

15: end procedure

guided by the dep map constraining the resulting states to lie withing the

winning states represented by the win map. Wait conditions are extracted

by the projection of the winning states. The pseudo-code of this approach

is reported in algorithms 16 and 17.

We first extract a flat strategy (algorithm 16). A flat strategy is a map

from pairs of states and controllable time points to time regions. The

intuition is that each entry 〈state, x〉 → φ in the map has the meaning

“if you are in state, wait until φ then execute x”. This is analogous to a

memory-less strategy for a TGA. The flat strategy is built by re-traversing

the explored search-space using the deps map, each controllable transition

that connects winning states is considered (lines 5-7), and using a pre-image

operation, we compute the subset of the starting winning states that allow

this transition. With this operation, we know that it suffices to reach a

winning state to win the game using this transition (scheduling this time

point).

234

CHAPTER 11. DYNAMIC CONTROLLABILITY

Algorithm 17 Strategy Extraction Algorithm

1: procedure MkStrategy(dep, win)

2: flat := MkFlatStrategy(dep, win)

3: return BuildTree(flat, 〈∅,>〉)
4: end procedure

5: procedure BuildTree(flat, state)

6: 〈P, φ〉 := state

7: ψ := ⊥; σa := ∅
8: if ∃b.f lat[〈state, b〉] 6= ∅ then

9: ψ := flat[〈state, b〉]
10: post := PostImage(state,b)

11: sub strat := BuildTree(flat, post)

12: σa := (s(b); sub strat)

13: end if

14: wait := 〈P, ω(φ, ψ)〉
15: waiting := ∅
16: for all wait

e
99K s2 do

17: waiting[e] := BuildTree(flat, s2)

18: end for

19: if σa = ∅ and waiting = ∅ then

20: if P = T then . All time points scheduled

21: return noop

22: else

23: return WaitRemainingUncontrollables(flat, state)

24: end if

25: else

26: return w(ψ, e1 : σ1, · · · , en : σn,a: σa) | 〈ei, σi〉 ∈ waiting
27: end if

28: end procedure

235

11.4. SYNTHESIZING DYNAMIC STRATEGIES

The flat strategy generated by algorithm 16 is redundant because it

may contain useless transitions that were explored but are not needed in

an actual execution from the initial state. Moreover, it is hard to validate

and to deploy. Therefore, we translate the strategy in our language (as per

definition 56) in algorithm 17. The recursive procedure takes in input the

flat strategy and the current state, and returns the dynamic strategy in

our syntax for winning starting from that state. The algorithm is divided

in three blocks. First (lines 8-13), it checks if any controllable time point is

executable from this state (if there are more than one, we simply pick one

of them). We recursively compute the winning strategy for that transition:

this will be the timeout strategy. Then (lines 15-18), we compute the wait-

ing region and collect all the uncontrollable time points that can happen

during this wait. For each of them, we recursively compute a sub-strategy.

Finally (lines 19-27), three cases are possible.

1. We scheduled all the time points, hence we can simply return a noop

strategy.

2. Some uncontrollable time points are missing3 and we statically build

a strategy that waits for all of them.

3. Otherwise, we can combine the computed timeout strategy and con-

dition in a wait command (line 26).

11.4.1 Ordered and Unordered states

So far, we considered the discrete component (the TGA location) of each

state as a set P . This is conceptually clean but it might be a drawback.

In fact, if two different paths yield to the same subset of time points, two

regions of time may be merged in a single state.

3No controllable time points can be missing if the flat strategy is correct, the actual code contains a

proper sanity check, here we omitted it.

236

CHAPTER 11. DYNAMIC CONTROLLABILITY

Suppose for example that the search decides to schedule a sequence of

time points: A then B then C. Later, by back-propagation of the winning

states, this is proven to be insufficient to find a dynamic strategy. The

search proceeds by exploring another ordering, say A then C then B, and

computing the relative winning states. If we disregard the order of states, it

is possible (depending on temporal constraints) that a state 〈{A,B,C}, φ〉
is explored in both cases, causing its winning region to be updated twice

(resulting in the disjunction of the winning of the two visits, because of line

17 of algorithm 15). This is not a correctness issue, but a lot of disjunctions

are introduced, and disjunctions heavily impact the performance of time

region manipulations.

A direct solution that produces a variant of the algorithm is to consider

P as a sorted set, hence distinguishing between different orderings of time

points. This increases the theoretical search space size (that become more

than factorial in the number of time points:
∑|T |

i=1 i!) but possibly simplifies

the time region management.

This ordered exploration explicitly distinguishes states with the same set

of scheduled time points but different scheduling order. In the above exam-

ple, we would have two final states because 〈〈A,B,C〉, φ〉 is considered as

a different state from 〈〈A,C,B〉, φ〉. Hence, the winnings of 〈〈A,B,C〉, φ〉
are not updated twice limiting the amount of disjunctions. This moves

some of the complexity from temporal disjunctive reasoning to the discrete

search itself.

This variation of the technique uses the very same search algorithm as

before, only the state representation is different.

11.4.2 Pruning Unfeasible States

An orthogonal optimization is enabled by the use of an explicit represen-

tation (ordered or unordered) of the past time points. In fact, differently

237

11.4. SYNTHESIZING DYNAMIC STRATEGIES

from the TGA encoding, we have the possibility of pruning unfeasible paths

without manipulating time regions: we can immediately discard any path

where the (ordered or unordered) set of the time points is inconsistent with

the network temporal constraints.

When the algorithm adds a new, unexplored transition to the wait set

(lines 3 and 10), the ordering of the time points resulting from the transition

may be inconsistent with the free constraints or with the contingent links.

For example, in the DTNU of figure 11.1, any path starting with time

point b is never going to satisfy the free constraints, hence the expansion

〈∅,>〉 b−→ 〈{b}, b = 0〉 can be immediately discarded avoiding a significant

portion of the search.

In algorithm 15, the PPush function (short for “pruning push”) is de-

manded to insert a set of elements in the wait set, but it may discard

unfeasible transitions, working as a filter. This pruning greatly reduces

the search space of the algorithm especially in DTNUs with many con-

straints.

We identified a simple, yet very effective pruning method for PPush,

using the consistency checks we discussed in chapter 8.

For each transition s1
x

=⇒ 〈P2, φ2〉, we check if, disregarding uncertainty,

it is possible for the time points in P2 to be executed before all the time

points in T \ P2. For this reason, we convert the input DTNU in a DTN

(without uncertainty) by considering each uncontrollable time point as

controllable, and each contingent link as a free constraint4. We then add

the following to the DTN constraints:

Cadd =̇ {y − x ∈ [0,∞] | x ∈ P, y ∈ T \ P}.

If the resulting DTN is consistent, then the transition is added to the wait

set, otherwise it is discarded. Note that in lines 10 and 18 we do not

4This conversion is thoroughly discussed at the beginning of chapter 8.

238

CHAPTER 11. DYNAMIC CONTROLLABILITY

use PPush because we are not exploring new transitions but re-visiting

(already-checked) transitions; hence, the pruning is not needed. This prun-

ing only removes incompatible orderings, hence it maintains soundness and

completeness.

In order to perform this check we use our consistency SMT encoding,

that also allows for the use of incrementality yielding very good perfor-

mances.

In addition, if the search is performed using ordered states, the added

constraint can be strengthened to represent the order encoded in the state.

Cadd =̇ {xi+1 − xi ∈ [0,∞] | 〈x1, · · ·xn〉 = P, i ∈ [1, n− 1]}

∪ {y − xn ∈ [0,∞] | 〈x1, · · ·xn〉 = P, y ∈ T \ P}

Intuitively, we exploit the total order stored within states to build a stronger

constraint: we force the order of time-points using [0,∞] constraints and

assert that all the other (not-yet-happened) time points occur after the last

time point in the ordering. This constraint is stronger than the previous

one (hence, it yields a more effective pruning). Moreover, it is smaller in

size: the previous constraint is quadratic in the number of time points, this

one is linear.

11.5 Experimental Evaluation

In this section we evaluate the merits of the TGA encoding and the direct

synthesis technique on a number of DTNU benchmarks, both considering

the immediate-reaction semantics.

We implemented the DTNU-to-TGA using an automated encoder that

takes in input a DTNU and outputs a TGA in the input language of the

state-of-the-art TGA solver Uppaal-TIGA [BCD+07]. We implemented

both the flavors of the DTNU encodings discussed in section 11.3.2. In the

239

11.5. EXPERIMENTAL EVALUATION

following, we refer to the DNF encoding of section 11.3.2 as TIGA-DNF

and to the NNF encoding as TIGA-NNF.

We also implemented the validation and synthesis algorithms in a tool

called PyDc. The solver is written in the Python programming language

and used the PyDBM [Bul12] a Python front-end to the DBM library

used by Uppaal-TIGA [BCD+07] for the manipulation of time regions.

The pruning technique is implemented using the incremental interface of

the MathSAT5 [CGSS13] SMT solver via the PySMT [GM15] Python

interface.

We analyzed four versions of the synthesis algorithm: Unordered-

NoH, that is the synthesis algorithm with no pruning; Ordered-NoH,

that is the synthesis algorithm with no pruning that considers ordered

states, Unordered-SMT and Ordered-SMT that use incremental SMT

solving for pruning the unfeasible paths.

The benchmark set is the same we used for the weak controllability

strategy synthesis experiments in section 10.5. It is composed of 3465

randomly-generated instances (1354 STNU, 2112 DTNU). All the networks

are known to be weakly controllable, but only 2354 are dynamically con-

trollable. The benchmarks range from 4 to 50 time points.

The results, obtained with time and memory limits set to 600s and

10GB, are shown in figures 11.11 and 11.12. All the benchmarks as well as

the tools can be downloaded as indicated in section 1.2.

We first notice that our synthesis techniques are vastly superior to the

TGA-based approaches as shown in the cactus plot of figure 11.11. The

direct synthesis algorithm is able to solve 2543 instances, while the best

TGA based approach can only solve 799 instances. We observe run-times

differences between the two approaches of up to three orders of magnitude,

as shown by figure 11.12a.

The cactus plot in figure 11.11, also shows that the SMT-based prun-

240

CHAPTER 11. DYNAMIC CONTROLLABILITY

0 500 1000 1500 2000 2500

Number of solved instances

T
im

e
(s

ec
)

0.1

1

10

102

TIGA−NNF
TIGA−DNF
Unordered−NoH
Ordered−NoH
Unordered−SMT
Ordered−SMT

Figure 11.11: Results for the experimental evaluation. The logarithmic scale cactus plot shows

the different approaches (with and without SMT pruning) against the theoretical encoding solved

by the Uppaal-TIGA TGA solver.

ing yields a significant performance boost, both for the unordered case

(from 1531 to 2289 solved instances), and for the ordered case (from 1552

to 2543). Nonetheless we observe how the pruning is much more effec-

tive for the ordered case, thanks to the additional strength of the pruning

constraints.

Finally, the scatter plot in figure 11.12b shows that the ordered case

is almost always superior to the unordered one when the SMT pruning is

enabled. Further inspection shows that Unordered-SMT explores an

average of 2447.9 symbolic states, compared to the 95.8 of Ordered-

SMT. In the latter case, the ordering information allows the SMT solver

to detect unfeasible branches much earlier than in the unordered case.

241

11.5. EXPERIMENTAL EVALUATION

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+
+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Ordered−SMT

T
IG

A
−

D
N

F

●

0.5 1 5 10 50 100 300 600

0.5

1

5

10

50

100

300

600 + + +++ +++ ++++ ++ ++++ ++ ++ +++ ++ + ++ + ++ ++ +++++ + ++ ++ +++ ++ ++ ++++ + ++ +++ ++ + ++++ ++ ++ ++ ++++ +++ ++ ++ + ++ ++ ++ + +++ ++ +++ ++ + ++++ ++ ++ +++ ++++ + + + ++ + +++ + ++++ +++ + ++ ++ ++ +++ + +++++ ++ +++++ + +++ ++ +++ ++ ++ +++++ + + ++++ + + +++ +++ ++ ++++ + ++ +++ + +++ ++ ++ +++ ++ +++ +++ ++ +++ + + ++++ ++ + + +++ + +++ ++ + ++ ++++ ++ + + ++ ++ +++ + ++++++ + +++ ++ ++ + + +++ +++ ++ ++ + ++ ++ ++++ ++ ++ ++ ++ + ++ + ++ + ++ ++++ ++ ++ + ++ ++ + ++ ++ ++++ + ++ ++ ++ ++ + + ++ +++ + ++ +++ + +++ ++ +++ +++ + ++ +++ ++ ++ ++ +++ + ++ + + +++ ++ ++ + ++ ++ +++ ++ +++ ++ +++ ++ ++ +++ ++ + ++ + +++ ++ + +++ ++ ++ ++ ++ +++ ++ +++ +++ ++ ++ ++ +++ ++ ++ ++ + +++++ + +++ + ++ +++ ++ ++ ++++ ++ ++ ++ + + +++ ++ + ++ +++ + ++ ++ ++ ++++ + ++ + ++ + ++ + ++ +++ + ++ +++ ++ ++ ++ +++ ++++ ++++ ++++ + ++ ++ + ++ ++ ++ ++ + ++++ ++ +++ + +++ ++ + ++ + ++ +++++ ++ ++ ++ +++ + ++ +++ ++ + ++ + +++ + +++ + ++ +++ ++ ++ ++++ +++ + + ++ ++ +++ + + + +++ ++++++ ++ ++ + ++++ ++ +++ ++ + +++++ ++ +++++ ++ ++ +++ ++++ + ++ +++ +++ + ++ +++ +++ +++ ++ + ++ ++ + ++ ++ + + +++ + ++ ++ +++ ++++ + ++ +++ ++ + + ++ +++ ++ + ++ ++ ++ ++ + ++++ ++ ++ +++ +++ ++ ++++ + +++ ++ +++ ++ +++ + + ++ ++++ ++ ++ ++ + +++ + + +++ + ++ ++ ++ + + +++ ++ ++++ + +++ +++ + ++ +++ + ++++ + +++ ++ + ++ ++ ++++ +++ +++ +++ ++ ++ ++ ++ +++ ++ + +++ ++ ++++ +++ ++ +++ ++ ++ +++ +++ ++ + ++ + ++ + ++ ++++ + ++ ++++ ++ +++ +++ + ++ ++ + +++ ++ +++++ ++ +++++ +++++ + + ++ ++ + ++ + ++ + +++ + ++ + ++ ++ ++ ++++ + +++ ++ ++ + ++++ + +++ ++ ++++ +++ +++++ + ++ + +++ +++++ ++ + + ++ +++ + +++ + ++ + ++ +++ +++++ ++ +++ ++ ++ ++ +++ +++ + ++++ ++++ ++ + ++ ++++ ++ +++ + ++ ++ ++++ ++ ++ ++++ ++++++ +++ +++ + +++ +++ ++ ++ ++ +++ +++ + ++ +++ +++ ++ ++++ ++ + + ++ ++++++ +++ +++ +++ ++++ + ++ ++ ++ ++ ++++ + + ++ ++ ++ ++ ++ + ++++ ++ ++ ++ + ++ ++ ++ ++++ ++ ++ +++ + + ++++ + ++++++ +++ + ++++++ ++ ++ ++ ++ ++ + +++ +++ ++ +++ + ++++ + ++ + ++++ + ++ ++ ++++ + ++ +++ +++ ++ +++ ++ ++ ++++ ++ ++ ++++ + +++ ++ ++ + +++ + + ++ +++ +++ + ++ + ++ + +++ ++ ++ +++ + + +++ +++ ++++ ++ ++ + ++ +++ ++ ++++ ++ ++ +++ ++ +++ + + +++ ++ ++ + ++++++ + +++++ ++ + ++ + +++ ++ + ++ + + ++++ + ++ ++++ ++ +++ + ++ ++ +++ ++ +++ ++ ++ ++ ++ ++++++ ++ + +++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++++ +++ ++++++ ++ ++ ++++ ++ ++ ++ + ●● ●●● ● ●●●● ●●● ●● ● ●●●●● ● ● ●●● ●● ● ●● ●●●● ●●●● ●●●● ●●●● ●● ● ● ●● ●●● ● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●●● ●● ● ● ● ●● ● ● ●● ●● ●●● ● ● ●●● ●●● ●● ● ● ● ●● ●●●● ● ●● ● ● ●● ●● ● ● ●●● ●● ●●● ●● ●● ●● ●●● ●● ● ● ● TO
MO

TO M
O

●

DC
Non−DC

(a)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+
+

+

+
+

+

+
+

+

+

+
+

++

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

++

+

+

++

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

++

+

+
+

+

+

++
+

+

++++

+

+

++

+

+

++

+

+

+

+
+

+

++
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+
+

++

+

+

+

+

+

+

+

++

+++

+

+ +

+

++

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+
+ +

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+
+

+

+++
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

++++

+

+

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+++++

+

+

+

++

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

++

+

+

+++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

+

+

+

+

++

+

+++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+
+

+

+

+ +

+

+++
+

+

+

+

+

+

+

+

+

+

++

+

+

+ +

+

++

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

++
+

+

+

+
+++

+
+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+++
+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

++
+

+

+ +

+

+

+

+

+

++

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+
+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+
+

+
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+
+

++++

+

+

+
+

+

+

+
+

+

+

++

+
+

+

+
+

++

+

+
+

+++

+

+

+
+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+

+
+

++

+

+

+

++ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+
+
+

+

+

+

+

+

+

++

+

+

+

+

++

++
+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

++

+

+
++

+

+

+

+

++

++

+

+

+

+

+

+

++

+

+

+

+++

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

++

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+
++

+
+

+

+

+++

+

+

+

+

+

+
+

+

+

+
++

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+ +

+

++

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+
+++

+

+

+

+

+

+
+

+

+

++

+

+
+

+++

+

+

+

+

+

+

++

+

++
+

+

+

+

+

+
+++

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

+
+

++

+

+

+

+
+

+

+

+

+

+
+

++

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

++
++

+
+

+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+

+
+

+

+

+
+

+
+

+
+

++

+

+

+

+

++

++
+

+
+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+ ++

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+
+

++

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+
+

+
++

+

+

+

+

+

++

+

+

+

+

+

++

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

++++

+ +

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+
+

++

+

+

+
+

+++

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+
+

+

+
+

+

+

+

+

++

++

+

+

+

++

+

++
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

++

+

+

+
+

+

+

+
+

+

+

+

++

+

+

+

+

+
+

+
+

+

+

+

+

+

+

++
+

+

+
+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+
+ +

+

+
+

+

+

+

++

+

+

+

+
+

+

+

+

+

++
+

+

+
+

++

+

+

++

++

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+
+

+
+

++

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+ +

+

+

+

+

++

+

+

+

+++

+

+

+

+

++

++

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+ +

+
+

+

+

+
+

+

+

+

+
+
+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

++

++++

+
++

+

+

+

+
+

+

+

+

+

++

+

+

++

+

+

+ +

+

+

+

Ordered−SMT

U
no

rd
er

ed
−

S
M

T

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

● ●●
●●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

0.5 1 5 10 50 100 300 600

0.5

1

5

10

50

100

300

600 + + ++ +++ ++ ++++ + +++ ++ ++ ++ +++ ++++ + ++ + ++++ + + +++ ++ ++ + + ++ + + ++ + +++ + ++ ++ + +++ + ++ +++ ++ ++ ++ + ++ + + ++ ++ + +++ + ++ ++ ++ + ++ +++ + ++++ ++ +++ + ++ ++ ++ + ++ ++ ++ + ++ +++ + ++ ++ ++ ++ +++ ++ +++ ++ ++ ++ + ++ ++
++
++

++

●●●● ● ●● ●●● ●● ●●● ● ● ●● ● ● ●●● ●●●● ●●● ●●●●● ● ●●● ● ●● ●● ●● ●● ●●● ●● ● ● ● ● ●● ●● ● ●● ●●● ●● ● ● ● ●●●● ●● ● ● ●● ● ● ●●● ●● ● ●●● ● ● TO
MO

TO M
O

●

DC
Non−DC

(b)

Figure 11.12: Results for the experimental evaluation. The scatters compare the ordered SMT

approach with the theoretical encoding (a) and with the unordered solver (b).

242

Disjunctive Scheduling under

Temporal Uncertainty Conclusions

In this part of the thesis, we presented several new techniques to solve a

range of problem for Disjunctive Temporal Networks with Uncertainty.

Starting by encoding the consistency problems as SMT queries, we ad-

dressed the strong controllability problem by providing an effective reduc-

tion as a quantified SMT problem. For some DTNU sub-classes we also

show ways to avoid the cost of quantifier elimination fully exploiting the

SMT efficiency on quantifier-free formulae.

Considering the weak controllability problem, we discussed how to re-

duce the decision problem to an SMT query, analogously to what we did

for strong controllability and we also developed a number of approaches to

automatically synthesize executable weak strategies in closed form.

Finally, we solved the open problem of dynamic controllability for DTNU

by designing a reduction into a TGA reachability game that can be solved

by existing techniques. Moreover we pushed the efficiency of this approach

by developing an algorithm that follows the TGA reduction, but optimizes

it in many ways. Also in this case we resorted to the expressiveness and effi-

ciency of SMT solvers to achieve the effectiveness on the temporal problem

ah hand.

Future directions. This work can be extended in several directions.

First, according to the classification table (table 3.2) we presented in

243

11.5. EXPERIMENTAL EVALUATION

chapter 3, we only explored the “deterministic” row. A natural extension of

this work is to adapt the techniques to work also for the non-deterministic

case. With this respect, we started working [CHM+16] by combining the

disjunctions of the DTNU framework with conditionals in the CTN formal-

ism, obtaining the Conditional Disjunctive Temporal Problem with Uncer-

tainty (CDTNU). We extended the DTNU-to-TGA approach for solving

the dynamic controllability to this case using the timestrict semantics.

Another direction that may be pursued is optimization. All the ap-

proaches we presented are concerned in finding a solution for the control-

lability problems, in the from of a consistent schedule, a strong schedule

or a strategy: no distinction is imposed between two solutions. An impor-

tant direction to explore is the optimization of solutions in order to find

solutions that maximize some desired property. This could be very use-

ful in practice: for example, one may look for the strategy that minimizes

the time-span while respecting all the constraints, reducing the operational

costs.

Finally, since all the problem we presented are at least NP-hard in com-

plexity there is the never-ending quest for efficiency. We tried to exploit

as much as possible the SMT solving framework to take advantage of the

continuous improvement in heuristics and techniques in this field. The pre-

sented techniques would immediately benefit from any major advancement

in SMT.

244

Part III

Strong Temporal Planning with

Uncontrollable Durations

Introduction

In this part, we move from the realm of scheduling to the one of planning.

As discussed in chapter 5, the landscape of planning techniques is narrower

than the scheduling one. We discuss planning under temporal uncertainty,

focusing on strong temporal planning with uncontrollable durations.

Planning in real world domains often involves modeling and reasoning

about the duration of actions. For example, the activities of an exploratory

rover, such as navigation or data transmission, require non-negligible time

to be completed. Moreover, their successful execution is usually subject

to timing constraints. For example, a transmission action must match

precise time windows of availability for the communication with an orbiting

satellite. In some practical applications, however, the duration of actions

may be beyond the decision capabilities of the planner. For example, a

navigation task to a given location may take more or less time, depending

on external factors, such as bad weather conditions. Any plan to solve the

problem, may specify when to start an action, but the actual duration is

up to the environment. This is similar to the TNU framework we discussed

in the previous part, but here we have a formal model of the system and a

goal to achieve instead of a set of pre-specified time points to schedule.

In this context, we first focus on action-based languages (such as PDDL

or ANML) and we introduce the problem of Strong Temporal Planning

with Uncontrollable Durations (STPUD) corresponding to the “Duration-

only Plant, Time-Strong Executor” cell of table 3.2. This is the planning

247

problem where no discrete uncertainty is present, but the action durations

may be uncontrollable. In particular, we develop a formal language to ex-

press the problem and define its semantics, then we proceed by introducing

a portfolio of planning techniques to solve the problem. We devise a di-

rect technique to solve a sub-class of the general problem by extending a

state-of-the-art approach for temporal planning without uncertainty, then

we tackle the general problem showing a sound and complete compilation

technique that reduces any planning problem with uncontrollable duration

to a plain temporal planning problem preserving the strong plans.

Second, we restate the problem in the context of timeline planning. We

give a formalization of the problem also in this context and we present a

theoretical first-order encoding of the problem with bounded horizon. This

encoding is mainly theoretical, but can be solved by an SMT solver.

Structure of this part. This part is structured as follows. In chapter 12,

we discuss action based languages and the STPUD problem, while in chap-

ter 13 we move to the realm of timeline planning. We conclude the part in

section 13.3, by summarizing the contributions and the future works.

248

Chapter 12

Action-Based STPUD

In this chapter, we introduce the problem of Strong Temporal Planning with

Uncontrollable Durations (STPUD) for a general action-based planning

language. In this setting, the planner is only allowed to choose the start

of the actions, while their duration is chosen at run time, within known

bounds, by the environment. A solution plan is required to be temporally

strong, i.e. robust with respect to the uncontrollable action duration, and

to achieve the goal on all possible executions, despite the run-time choices

of the environment.

We explore two complementary approaches to solve STPUD. First, we

discuss a dedicated planning method, that generalizes the forward state-

space temporal planning (FSSTP, introduced in section 5.1.3) framework

in to deal with uncontrollable durations. Intuitively, FSSTP applies classi-

cal planning over an abstraction of the temporal domain, where temporal

precedences over events are taken into account at a qualitative level, to enu-

merate candidate plans. The quantitative aspects are then taken into ac-

count by solving the induced Simple Temporal Problem (STN) [DMP91b].

In order to deal with temporal uncertainty, we retain the main loop of the

FSSTP approach, dealing with the quantitative aspects by means of Tem-

poral Networks with Uncertainty (TNUs). We exploit the techniques for

249

strong controllability we presented in chapter 9. We remark that this ap-

proach is far from trivial. In fact, we show how simply replacing the STN

in with the corresponding STNU may result in an unsound technique.

Second, we present a radically different, compilation-based planning

method, that reduces any STPUD problem to a “classical” temporal plan-

ning problem, where actions have controllable durations. The reduction

eliminates uncontrollable durations by introducing intermediate effects.

Because many available planners (all the PDDL 2.1 planners, in fact) do

not support these, we propose an effective way to compile away intermedi-

ate effects.

We also investigate a domain transformation technique that is able to

eliminate some of the uncontrollable durations by reasoning in terms of

worst case execution. This technique preserves the space of plans and can

be combined as a simplifying pre-processor both to the translation-based

planner and to the direct planner.

The approaches described above have been implemented and experi-

mentally analyzed. We considered a large number of instances obtained by

extending with uncontrollable durations the temporal planning domains

available in the literature [CCO+12]. Our results demonstrate the practi-

cal applicability of our approaches, and provide interesting insights. First,

the planning approaches often exhibit complementary behaviors. Thus,

further efficiency can be achieved by combining them in a portfolio ap-

proach. Second, the simplification technique has negligible costs, but it

greatly pays off, in selected cases, for both planning approaches. Finally,

the proposed encoding for the elimination of intermediate effects yields

good performance.

250

CHAPTER 12. ACTION-BASED STPUD

12.1 The STPUD Problem

In this section, we formally define the syntax and semantics of the Strong

Temporal Planning with Uncontrollable Durations (STPUD) and we dis-

cuss the issues that arise in comparison to temporal planning without un-

certainty.

12.1.1 Syntax

We propose a rich language for temporal planning with duration uncer-

tainty that includes timed-initial-literals, and multi-valued variables. In

addition, we extend the language to allow conditions expressed over sub-

intervals of actions, and effects at arbitrary time points during an action.

These features turn out to be particularly useful for encoding many prob-

lems of interest, and for encoding our translation1.

In order to define the abstract syntax of our language we need to consider

four kinds of intervals, namely closed, left-open, right-open and open. We

will use these intervals to express durative conditions.

Definition 57. Given two numeric expressions a and b, we define the four

possible intervals having extremes a (lower bound) and b (upper bound) as:

• [a, b] closed interval

• (a, b] left-open interval

• [a, b) right-open interval

• (a, b) open interval

We write I(a, b) to indicate an instance of the above possibilities without

distinguishing its type.
1To simplify the presentation, we exclude some features that are orthogonal to our approach of handling

temporal uncertainty, such as numeric variables and domain axioms. Our techniques will work whether

or not those features are included.

251

12.1. THE STPUD PROBLEM

We can now define a STPUD planning problem P as a tuple 〈V, I, T, A,G〉
where:

• V = {f1, · · · fn} is a finite set of variables, each having a domain

Dom(fi).

• I is the initial state: a complete assignment of values to each variable

in V : for each variable f ∈ V , I(f) ∈ Dom(f).

• T is a set of timed-initial-literals, each of the form 〈[t] f := v〉 with

f ∈ V , v ∈ Dom(f) and t ∈ R+. The real number t is the wall-clock

time at which f will be assigned the value v.

• A is a set of durative actions each of the form a =̇ 〈[l, u], C, E〉 where:

– l, u ∈ R+, with l ≤ u being the action duration bounds. Let sta

and eta be the start and end times of action a, then the duration

of action a is an element of [l, u]. We write bounds(a) to indicate

the interval [l, u].

– C is the set of conditions; each element c ∈ C is of the form

〈I(stc, etc)
∨n
i=1 fi = vi〉 where each fi ∈ V and vi ∈ Dom(fi).

The expressions stc and etc indicate the start and end time points

of the condition c and are restricted to be equal to sta+δ or eta−δ
with 0 ≤ δ ≤ u.

– E is a set of instantaneous effects, each e ∈ E is of the form

〈[te] f := v〉 where f ∈ V , v ∈ Dom(f) and te =̇ sta + δ or

te =̇ eta − δ with 0 ≤ δ ≤ u.

• G is the set of disjunctive goal conditions, each of the form
∨n
i=1 fi =

vi, where each fi ∈ V and vi ∈ Dom(fi).

Moreover, we assume that the set of actions A is partitioned in two

sets Ac and Au of controllable and uncontrollable actions. This is needed

252

CHAPTER 12. ACTION-BASED STPUD

to distinguish between actions that can be terminated by the agent and

those that have uncontrollable durations. In both cases, the bounds on the

duration need to be satisfied, but analogously to TNU contingent links, if

an action is uncontrollable, its duration is assumed to take a value in the

specified bound.

The solution to a STPUD problem P is a plan π that assigns the starting

of all the actions and specifies the duration only for controllable actions.

Definition 58. A plan π of P is a finite set of tuples 〈t, a, d〉, in which

actions a ∈ A, t ∈ R, d ∈ R if a ∈ Ac and d = ⊥ if a ∈ Au.

Intuitively, an element 〈t, a, d〉 prescribes to start an action a at time

t, with duration d if a is a controllable action. This reflects the intuitive

notion of action uncontrollable duration: since the duration is not under

the control of the plan executor, the resulting plan cannot specify it.

12.1.2 Semantics

We give the semantics of the planning language by defining the validity of

a plan π for any given STPUD problem P . As usual, P admits a solution

if there exists a valid plan, otherwise the problem is said to be unsolvable.

We start by defining the projection of a STPUD. Intuitively, in a pro-

jected problem, we consider each action to be controllable and all the other

constraints are kept as in the original problem.

Definition 59 (Projected Problem). Given a STPUD problem P with du-

rative actions A =̇ Ac ∪ Au, the projected problem without uncertainty is a

STPUD ctrl(P) that is identical to P except for the set of actions that is

A′ =̇ A′c ∪ A′u with A′c =̇ Ac ∪ Au and A′u =̇ ∅.

The basic element of our semantics is a chronicle, that is used to assign

a value to each variable in V for each time instant x ≥ 0 ∈ R.

253

12.1. THE STPUD PROBLEM

Definition 60 (Chronicle). A chronicle τ for a STPUD problem instance

P =̇ 〈V, I, T, A,G〉 is a set of functions τf : R+ → Dom(f), one for each

f ∈ V .

Given a plan, we can now define the chronicle induced by it. In fact,

in our language we have three components that contribute to change the

state of a variable, namely the initial state, the TILs and action effects.

Apart for these events, each variable is assumed to maintain its value in

the other time instants. To formalize this concept we start by collecting

the set of change events in the execution of the plan.

Definition 61 (Set of Changes CH). Given a projected planning problem

ctrl(P) =̇ 〈V, I, T, A,G〉 and a plan π =̇ {〈ti, ai, di〉 | i ∈ [1, n]}, the set of

changes induced by π is a set CH(ctrl(P), π) defined as follows.

• for each f ∈ V , 〈0, f, I(f)〉 ∈ CH(ctrl(P), π)

• for each 〈[t] f := v〉 ∈ T , 〈t, f, v〉 ∈ CH(ctrl(P), π)

• for each 〈t, a, d〉 ∈ π with a =̇ 〈[l, u], C, E〉, for each 〈[sta+ δ]f := v〉 ∈
E, 〈t+ δ, f, v)〉 ∈ CH(ctrl(P), π) and for each 〈[eta − δ] f := v〉 ∈ E,

〈t− δ, f, v)〉 ∈ CH(ctrl(P), π).

Now, we can define the chronicle induced by a plan by imposing that

at each change point the chronicle changes its value and between any two

changes, the chronicle maintains the “older” value.

Definition 62 (Induced Chronicle). Given a projected planning problem

ctrl(P)=̇〈V, I, T, A,G〉 and a plan π =̇{〈ti, ai, di〉 | i ∈ [1, n]}, the chronicle

τπ induced by π is defined as follows.

For each x ≥ 0 ∈ R and each f ∈ V , τπf (x) = v with 〈t̂, f, v〉 ∈
CH(ctrl(P), π), t̂ =̇ x+min({t− x | 〈t, f, v〉 ∈ CH(ctrl(P), π), t > x}).

254

CHAPTER 12. ACTION-BASED STPUD

Note the strict inequality in the definition: we impose the value of an

effect immediately after the change is scheduled to happen. For example,

consider an effect 〈[eta] f := v〉 and suppose the action a terminates at

time 10. The value of f is not changed at time 10 but immediately after.

This means, that a condition requiring f to have value v is not satisfied a

ti time 10, but a positive amount of time is required to pass. This view is

compatible with the PDDL 2.1 specification (even though PDDL requires

a known minimal time quantum ε to pass) and also with the continuous

time version of the ANML language.

Given the induced chronicle, we can now define the validity of a plan

for a projected problem: it suffices to check that no pair of (different)

changes are applied in the same instant, that the durations specified in the

plan for each action are valid with respect to the action specification, that

each action condition holds in any time instant contained in the specified

intervals, and, finally, that each goal is also satisfied.

Definition 63 (Projected Problem Plan Validity). Given a projected prob-

lem ctrl(P) =̇ 〈V, I, T, A,G〉, a plan π =̇ {〈ti, ai, di〉 | i ∈ [1, n]} is valid, if

the following conditions hold:

1. for each t ∈ R and each f ∈ V ,

|{〈t, f, v〉 | 〈t, f, v〉 ∈ CH(ctrl(P), π)}| ≤ 1;

2. for each 〈t, a, d〉 ∈ π with a =̇ 〈[l, u], C, E〉, the following holds.

• d ∈ [l, u];

• for each 〈[sta + δs, sta + δe]
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ δs ≤ x ≤ t+ δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

• for each 〈(sta + δs, sta + δe]
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ δs < x ≤ t+ δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

255

12.1. THE STPUD PROBLEM

• for each 〈[sta + δs, sta + δe)
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ δs ≤ x < t+ δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

• for each 〈(sta + δs, sta + δe)
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ δs < x < t+ δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

• for each 〈[sta + δs, eta − δe]
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ δs ≤ x ≤ t+ d− δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

• for each 〈(sta + δs, eta − δe]
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ δs < x ≤ t+ d− δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

• for each 〈[sta + δs, eta − δe)
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ δs ≤ x < t+ d− δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

• for each 〈(sta + δs, eta − δe)
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ δs < x < t+ d− δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

• for each 〈[eta − δs, eta − δe]
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ d− δs ≤ x ≤ t+ d− δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

• for each 〈(eta − δs, eta − δe]
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ d− δs < x ≤ t+ d− δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

• for each 〈[eta − δs, eta − δe)
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ d− δs ≤ x < t+ d− δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

• for each 〈(eta − δs, eta − δe)
∨n
i=1 fi = vi〉 ∈ C, ∀x ∈ R.

((t+ d− δs < x < t+ d− δe)→
∨n
i=1 τ

π
fi

(x) = vi) holds;

3. for each (
∨n
i=1 fi = vi) ∈ G,

∨n
i=1 τ

π
fi

(x) = vi holds, for any x ∈
[tmax, tmax+ε] with tmax =̇max({t+d | 〈t, a, d〉 ∈ π}) and a sufficiently

small ε ∈ R.

Intuitively, condition 1 imposes that there are no two changes on the same

variable at the same time (preventing race conditions in the semantics);

condition 2 checks that all the conditions of all the actions used in the

256

CHAPTER 12. ACTION-BASED STPUD

plan are satisfied; and condition 3 requires that all the goals are reached

immediately after the end of the last action in the plan.

Finally, we can define the semantics of any STPUD problem P by im-

posing that each plan obtained by specifying a valid duration for each

uncontrollable action is valid for the projected problem of P . This cap-

tures the intuitive notion of strong plan: regardless of the actual duration

of each uncontrollable action specified in the plan, the execution is valid

and all the goals are satisfied.

Definition 64 (STPUD Plan Validity). Given a STPUD problem P , a

plan π =̇ {〈ti, ai, di〉 | i ∈ [1, n]} is valid, if all the plans π′ ∈ {〈t, a, d〉 |
〈t, a, d〉 ∈ π, a ∈ Ac}∪{〈t, a, t+k | 〈t, a, d〉 ∈ π, a ∈ Au, a=̇〈[l, u], C, E〉, k ∈
[l, u]〉} are valid for ctrl(P).

In the following, we call “strong plan” a valid plan for a given STPUD.

12.1.3 Example

We give a small example problem that will be used throughout the chapter.

A rover, initially at location l1, needs to transmit some science data from

location l2 to an orbiter that is only visible in the time window [14, 30].

The rover can move from l1 to l2 using an action move that has uncon-

trollable duration between 10 and 15 time units. The data transmission

action transmit (abbreviated trans) takes between 5 and 8 time units to

complete. The goal of the rover is to transmit the data to the orbiter.

Because of the harsh daytime temperatures at location l2 the rover cannot

arrive at l2 until the sun goes behind the mountains at time 15. Figure 12.1

illustrates this scenario, which we encode as:

257

12.1. THE STPUD PROBLEM

Figure 12.1: A graphical representation of the running example situation. The rover, initially

in l1 can move to l2 where it can transmit data to a satellite. Action durations are indicated in

black, the satellite visibility window is in green and the interval where the temperature in l2 is

favorable is indicated in red.

V =̇ {pos : {l1, l2}, visible : {T, F}, hot : {T, F}, sent : {T, F}}

I =̇ {pos = l1, visible = F, sent = F, hot = T}

T =̇ {〈[14] visible := T〉, 〈[30] visible := F〉, 〈[15] hot := F〉}

G =̇ {(sent = T)}

Ac =̇ ∅

Au =̇ {〈[10, 15], Cmove, Emove〉, 〈[5, 8], Ctrans, Etrans〉}

Cmove =̇ {〈[stmove, stmove] pos = l1〉, 〈[etmove, etmove] hot = F〉}

Ctrans =̇ {〈[sttrans, ettrans] pos = l2〉, 〈[sttrans, ettrans] visible = T〉}

Emove =̇ {〈[etmove] pos := l2〉}

Etrans =̇ {〈[ettrans] sent := T〉}
Figure 12.2 graphically shows a valid strong plan:

πex =̇ {〈6,move,⊥〉, 〈22, trans,⊥〉}

Note that all the actions in πex have uncontrollable duration; hence, the

strong plan does not specify their duration.

258

CHAPTER 12. ACTION-BASED STPUD

12.1.4 Discussion

In general, finding a strong plan for a problem with uncontrollable dura-

tions is different from simply considering the maximum or the minimum

duration for each action. Consider our rover example and its strong plan

shown in figure 12.2. The move action must terminate before the transmit

action can start and, at the same time, move cannot terminate before time

15 due to the temperature constraint. If we only consider the lower-bound

on the duration of move (i.e., planning with a fixed duration of 10 for move)

then one valid plan is: πlb =̇{〈11,move〉, 〈22, trans〉}. However, because of

the uncertainty in the actual execution duration of move, it may actually

take 14 time units to arrive at l2. Thus, the rover would start transmitting

at time 22 before it actually arrives at l2 at time 11 + 14 = 25. Thus,

plan πlb is invalid. Similarly, if we consider only the maximal duration

(i.e., planning with a fixed duration of 15), then one possible plan would

be: πub =̇{〈1,move〉, 〈22, trans〉}. However, during the actual execution of

move, it may again take only 11 time units (and not the planned maximum

of 15 time units) to arrive at l2. This would violate the constraint that the

rover should arrive at l2 after t = 15 to avoid the sun, so πub is also not

a valid plan. In section 12.5, we present a simplification technique aimed

at identifying the cases in which it is possible to soundly consider only the

maximal (or minimal) duration for an action. However, we remark that

this special-case optimization is not applicable in the general case: this

chapter is devoted to the development of dedicated techniques for solving

this problem.

Disjunctive Conditions. In contrast to ordinary temporal planning, given

an STPUD it is not possible to compile away disjunctive conditions using

the action duplication technique [GK97]. This is because the set of satis-

fied disjuncts in the presence of uncertainty can depend on the contingent

259

12.2. OVERVIEW OF THE PROPOSED APPROACHES

move transmit

visible = F visible = T visible = F

hot = T hot = F

time
...

6 16 21 22 271514 30

Figure 12.2: Graphical execution of πex. Striped regions represent the uncertainty in the action

duration.

execution. For example, consider an action a starting at time t where two

Boolean variables p1 and p2 are F. The action a has uncontrollable dura-

tion in [l, u], a starting effect e1 =̇ 〈[sta] p1 := T〉 and two ending effects

e2 =̇ 〈[eta] p1 := F〉 and e3 =̇ 〈[eta] p2 := T〉. An at-start condition p1 ∨ p2 of

another action b is satisfied anywhere between the start of the action a and

the next deletion of p2. Thus, b can start anytime within d =̇ (t+ l, t+ u].

However, if we compile away this disjunctive condition by replacing b with

two actions b1 and b2: one with an at-start condition p1 and the other with

an at-start condition p2, then b1 is not executable within d because there is

no time point in d in which we can guarantee that p1 = T (because a may

take the minimum duration l and thus the at-end effect e2 will occur at

t+ l to set p1 = F). Similarly, we cannot start b2 within d because we also

cannot guarantee that p2 = T at anytime point within d (because a may

take the maximum duration u and thus e3 that set p2 = T will not happen

until t + u). Thus, compiling away disjunctive conditions leads to incom-

pleteness when there are uncontrollable durative actions. For this reason

it is important to explicitly model disjunctive conditions in our language.

12.2 Overview of the Proposed Approaches

The planning problem formalism we described includes several features

that guarantee a significant expressiveness. In particular, we focus on two

260

CHAPTER 12. ACTION-BASED STPUD

Action Duration

Controllable Only Uncontrollable

C
o
n

d
it

io
n

/
E

ff
e
ct

T
im

in
g

Extremes + Overall Ctrl-Extr (PDDL 2.1) Unc-Extr

Arbitrary Intervals Ctrl-Arbit (ANML) Unc-Arbit

Table 12.1: Classification of relevant problem sub-classes. For each case, we indicated the

abbreviation name used in this thesis and a planning language representative in written in

parenthesis where available.

features, namely the presence of uncertainty in the action durations, that

constitutes the main objective of this work, and the presence of “interme-

diate” effects and conditions, that is the possibility of having action effects

and to impose conditions in sub-intervals of the action execution. This

latter feature is not new, languages such as ANML support it natively, but

it is not natively supported in other languages. For example, PDDL 2.1

does not allow for intermediate effects nor for conditions at times different

from the start the end or the whole action duration.

If we classify according to the presence or absence of these features, we

obtain the landscape of planning problem sub-classes depicted in table 12.1.

The table shows four classes of problems. Clearly, every class with arbitrary

intervals subsumes the class with extreme intervals having the same action

controllability. Similarly, each class having action uncertainty is strictly

more general than the class without it. Standing these subsumption rules,

the only two incomparable classes are Unc-Extr and Ctrl-Arbit: both

subsume Ctrl-Extr, but no obvious relation is present between the two.

Unc-Arbit is the most general class that subsumes every other case, more-

over it coincides with the language we discussed in the previous section.

The aim of this work is to define techniques to address problems in this

261

12.2. OVERVIEW OF THE PROPOSED APPROACHES

class.

Some of the reported problem classes are supported in the literature by

dedicated planning tools. In particular, Ctrl-Extr is the temporal plan-

ning problem addressed by all the planners supporting the PDDL 2.1 lan-

guage. Ctrl-Arbit is a sub-case of the features provided by the ANML

language, hence tools such as FAPE [DBMIG14] can natively reason on in-

stances of this class. Moreover, reduction techniques have been presented

for transforming an instance of the Ctrl-Arbit class to a problem in

Ctrl-Extr [FLH04].

Standing this classification, we now give an outline of the techniques

included in this chapter that have been developed to address the most

general Unc-Arbit class.

First, we focus on the Unc-Extr class and in section 12.3 we present a

dedicated solving technique that extends the Forward State-Space Tempo-

ral Planning (FSSTP) framework for dealing with uncontrollable durations

in the context of STPUD. We call this technique S-FSSTP (for Strong

FSSTP). We propose different variants of the technique one of which is

proven to be sound and complete.

Second, devise a compilation technique that transforms any instance of

the Unc-Arbit class into an instance of the Ctrl-Arbit class, effectively

removing the temporal uncertainty from the problem. The compilation

is such that any plan on the controllable instance admits a plan if and

only if the original Unc-Arbit planning problem has a valid strong plan.

This compilation, discussed in section 12.4, makes use of arbitrary-time

conditions and effects; hence, even if applied on a Unc-Extr instance, it

produces an equivalent Ctrl-Arbit instance.

We also present a simplification technique that is able to reduce (in

some cases, to remove) the temporal uncertainty in a planning instance.

This technique does not make use of intermediate effects nor conditions,

262

CHAPTER 12. ACTION-BASED STPUD

Action Duration

Controllable Only Uncontrollable

C
o
n

d
it

io
n

/
E

ff
e
c
t

T
im

in
g

Extremes

and

Overall

S-FSSTP

(section 12.4)

Arbitrary

Intervals

Compila
tio

n

(se
cti

on
12.4)

Compilation

(section 12.4)

In
te

rm
ed

ia
te

R
em

o
v
a
l

(f
o
r

P
D

D
L

2
.1

)

(s
ec

ti
o
n

1
2
.6

.2
)

S
im

p
lifi

ca
tio

n

(sectio
n

1
2
.5

)

S
im

p
lifi

ca
tio

n

(sectio
n

1
2
.5

)

Table 12.2: Overview of the proposed techniques in the Strong Temporal Planning with Un-

controllable Durations problem sub-classes landscape. Arrows stand for compilation techniques,

S-FSSTP indicates a dedicated technique for its cell. For each technique, the section where it

is discussed is reported.

hence it can be applied on both the Unc-Arbit and Unc-Extr classes

without ending up in a different problem class.

Finally, in the experimental evaluation section, we recall existing tech-

niques for removing intermediate conditions and effects in the context of

PDDL 2.1 (section 12.6.2). We discuss and extend existing techniques to

obtain an efficient compilation for the removal of intermediate effects and

conditions when no actions having uncontrollable duration are present.

Table 12.2 gives an overview of the aforementioned techniques and re-

duction in the problem classes landscape.

12.3 STPUD via Forward State-Space Search

In this section, we focus on the Unc-Extr problem class and we propose

a dedicated approach for solving STPUD, based on an extension of the

Forward State-Space Temporal Planning (FSSTP) framework. We first

recall and formalize the FSSTP temporal planning approach originally in-

263

12.3. STPUD VIA FORWARD STATE-SPACE SEARCH

troduced in chapter 5, then we generalize it to handle temporal uncertainty.

The resulting technique, that handles the Unc-Extr problem class, is re-

ferred to as S-FSSTP .

12.3.1 FSSTP

The idea behind the FSSTP approach is to create an interplay between a

state-based forward search planner to generate a plan sketch and a tem-

poral reasoner to check its temporal feasibility [CFH+09, CCFL12]. In-

tuitively, a temporal plan is a sequence of events in time, each with an

associated time-stamp. FSSTP builds a planning problem to generate se-

quences of events (encoded as classical planning actions) that are sound

from the propositional point of view, but might violate some temporal

constraint. For this reason, a scheduler is employed to check temporal

feasibility and to associate a time-stamp to each event. If the scheduling

succeeds a valid plan is constructed, otherwise the sequence of events is

refused an another one has to be found.

The original description of FSSTP is given within the PDDL 2.1 lan-

guage, that only allows effects at the start (at start) and at the end (at

end) of an action; instantaneous conditions are allowed to be specified at

the start or at the end of the action, while durative conditions are possible

only on the whole interval (sta, eta) (over all).

In FSSTP, each durative action a is expanded in a pair of classical

planning actions called snap actions : asta encoding the starting event of a,

and aeta corresponding to the ending of a. The action asta has the starting

conditions and effects of a as preconditions and effects, and, similarly, aeta
has the ending conditions and effects of a as preconditions and effects.

We force the planner to instantiate snap actions in pairs (each start is

coupled with exactly one end) and forbid any action threatening the overall

condition of a between the snap actions for A [CFH+09].

264

CHAPTER 12. ACTION-BASED STPUD

Algorithm 18 The FSSTP Framework

1: procedure FSSTP(P)

2: for all partial χ generated while solving abs(P) do

3: D := Durations(χ, P)

4: P := Precedences(χ, P)

5: if µ := TN.Solve((χ,D ∪ P)) then

6: if IsComplete(χ) then

7: return BuildTemporalPlan(µ, χ)

8: else

9: continue()

10: end if

11: else

12: reject(χ)

13: end if

14: end for

15: return ⊥
16: end procedure

Similarly, also timed initial literals are treated as instantaneous actions

that can be instantiated without preconditions and have the effect of the

TIL. For a TIL t, we indicate with TA(t) such instantaneous action.

Putting all together, we can now define the Domain Abstraction as a

classical planning problem derived from the PDDL 2.1 temporal planning

instance.

Definition 65 (Domain Abstraction). Given a temporal planning problem

P = 〈V, I,G, T,A〉 restricted to the Ctrl-Extr problem class, the ab-

straction of P (written abs(P)) is a classical planning problem defined as

〈V, I,G,
⋃
a∈A{asta, aeta} ∪ {TA(t) | t ∈ T}〉.

Given the abstract domain, we can enumerate the “discrete” plans that

are solution of the abstract problem. The overall idea of the FSSTP frame-

work is to plug a scheduling phase on top of such a plan enumeration, to

reject temporally-inconsistent plans.

265

12.3. STPUD VIA FORWARD STATE-SPACE SEARCH

The pseudo-code of a forward state-space temporal planner (FSSTP)

is shown in algorithm 18. A classical planner implemented as a forward

state-space search solves the abstract problem abs(P). The planner keeps

a totally-ordered partial plan χ composed of abstract actions we call steps.

We indicate a step corresponding to an instance of action a as sa. Each

time an action is added to the partial plan, the scheduling check is invoked

to assess the temporal consistency of the added action. The scheduling

check builds a TN2 that has the steps of χ as time points and has a set of

constraints composed of duration constraints D and precedence constraints

P . Duration constraints (created by the Durations function) are used

to bind pairs of snap actions instances (s
asta
i , s

aeta
j), forcing the duration of

each action to obey the domain specification (aeta − asta ∈ bounds(a)). In

addition, each TIL t=̇〈[k]f := v〉 is forced to happen at the predefined time

by imposing a temporal constraint3 TA(t) = k. Precedence constraints

(created by the Precedences function) are used to maintain causality in

the plan. If a step si is needed to achieve a precondition for another step

sj, we must impose a precedence among the two steps (sj−si > 0), in order

to inform the scheduler of such causal constraint4. Similarly, precedence

constraints are used to impose that the overall(a) conditions for an action

a are maintained.

When the TN is found to be consistent, two situations can occur. If

χ was a plan achieving the goal in abs(P), each s
asta
i is followed by a

corresponding s
aeta
j and all TILs appear in the plan (IsComplete returns

true), we can terminate the procedure, otherwise we continue the search

in the abstract domain (continue). To terminate, we build a temporal

2In this work, we only consider purely temporal planning. Other works cope with numeric fluents and

continuous effects by using linear programs instead of temporal problems [CCFL12].
3In practice, we introduce a reference time point z marking the beginning of time and we impose a

proper TN constraint TA(t)− z ∈ [k, k]
4In the PDDL 2.1 semantics we must impose the constraint b− a ≥ ε.

266

CHAPTER 12. ACTION-BASED STPUD

plan π from a consistent schedule µ of the TN5: each pair of snap actions

steps s
asta
i , s

aeta
j in χ is a step in π, the time for the step is µ(s

asta
i) and

the duration is µ(s
aeta
j)− µ(s

asta
i). If the TN is not consistent, the classical

planner backtracks, as χ is not temporally sound and cannot be further

extended.

Each step si of χ is an instance of a classical planning action. As such,

it has a set of effects, denoted as effects(si), where each effect is the

form {〈f := v〉. Moreover, we write conditions(si) to indicate the set of

preconditions of si, each in the form 〈f = v〉.

12.3.2 Handling Uncontrollable Durations

The general idea we pursue is to substitute the scheduling steps of al-

gorithm 18 to solve a strong controllability problem for a TNU instead of

consistency for a TN. The new general framework is shown in algorithm 19.

As in the purely controllable case, we first consider the abstract domain

enumerating the “discrete” plans that are solution of the abstract problem.

The overall idea of the FSSTP framework is to plug a scheduling phase on

top of such a plan enumeration, to reject temporally-inconsistent plans.

The steps of the abstract plan χ are time points for the temporal problem.

The TNU is built by first separating the controllable steps in χ from the

uncontrollable ones.

The technique we propose is limited to the Unc-Extr class of problems:

for each action a, effects can only be specified at times sta and eta, and

conditions are limited to timings [sta, sta], [eta, eta] or (sta, eta). Thanks

to this limitation, we can consider all the time points corresponding to

the action startings as controllable (the planner decides if and when an

action should be started), while ending time points are controllable if the

corresponding action is controllable, otherwise they are uncontrollable.

5We write µ(x) to indicate the value assigned to x by µ.

267

12.3. STPUD VIA FORWARD STATE-SPACE SEARCH

Algorithm 19 FSSTP for STPUD

1: procedure FSSTP(P)

2: for all partial χ generated while solving abstract(P) do

3: Xu := UncontrollableSteps(χ, P)

4: Dc := ControllableDurations(χ, P)

5: Du := UncontrollableDurations(χ, P)

6: P := Precedences(χ, P)

7: if µ := TNU.Solve((χ−Xu, Xu, Du, Dc ∪ P)) then

8: if IsComplete(χ) then

9: return BuildStrongPlan(µ, χ)

10: else

11: continue()

12: end if

13: else

14: reject(χ)

15: end if

16: end for

17: return ⊥
18: end procedure

The duration constraints are built analogously to the plain temporal

case, but are divided in two sets: Dc are the duration constraints for con-

trollable actions, Du are the ones for uncontrollable actions.

Building a strong plan σ from a strong schedule for the TNU is analogous

to the plain temporal planning case: each pair of neighboring 〈sastai , s
aeta
j 〉 ∈

χ is a step of σ, the time for the step is µ(s
asta
i) and, if a is controllable, the

duration is µ(s
aeta
j)−µ(s

asta
j). We do not set the duration for uncontrollable

durative actions.

The encoding of the precedence constraints P is crucial, because in pres-

ence of uncontrollability not all the techniques presented in the temporal

planning literature for the controllable case [CCFL12, CCFL10] are com-

plete. In the following, we consider two different encodings proposed in

the temporal planning literature and we show that they are incomplete

268

CHAPTER 12. ACTION-BASED STPUD

for solving the STPUD problem. Then, we borrow the idea of reordering

from [Bäc98] and we derive the first sound and complete approach for the

STPUD.

Total Order Encoding

A simple way of building the ordering constraints P , is to maintain the total

order (TO) of the partial plan χ. Forcing this total order, clearly main-

tains the causal soundness but, as noted in [CCFL10], is heavily dependent

on the order of actions chosen by the classical planner. Nevertheless, this

encoding is complete for plain temporal planning and is adopted in the

Colin and Crikey 3 planners [CCFL12]. We call PTO the set of prece-

dence constraints for a given totally ordered plan χ = (s1, . . . , sn), and we

define it as follows:

PTO =̇ {si < si+1 | i ∈ [1, n− 1]} .

We highlight that no disjunction is created, hence the encoding results in

an STNU. Despite its simplicity, this encoding is incomplete in presence

of temporal uncertainty. Indeed, at each step of algorithm 19, it might be

the case that no total order produces a strongly controllable TNU, even

if there exists a strong plan for the given problem. Thus, the planner can

explore the complete search space and declare the problem unsolvable even

if there exists a solution. Nonetheless, the approach is sound: if a solution

is returned, it is a valid plan.

As an example, let us consider the situation depicted in figure 12.3.

Let us suppose that both actions a and b must be started at the same

time6. Action a is uncontrollable and b must end between the earliest and

the latest possible ends of a. Literals p and q are initially true and no

6We just need that the end of b is forced to overlap with the interval in which a can uncontrollably

end.

269

12.3. STPUD VIA FORWARD STATE-SPACE SEARCH

a[5, 9]

q := T

p

b[7, 7]

q

p := T

Figure 12.3: Example problem for which the TO and LAD encodings cannot find a plan, while

a strong plan exists.

action falsify them. Let us focus on the relative order of s
aeta
i and s

betb
j . If

χ = (· · · , saetai , · · · , sbetbj , · · ·), then we (transitively) impose the constraint

s
aeta
i < s

betb
j , but this makes the STNU not strongly controllable, because,

if a takes longer than 7 time units, aeta can happen after betb violating the

constraint. If χ = (· · · , sbetbj , · · · , saetai , · · ·), then the situation is reversed

and again the STNU is not strongly controllable. Therefore, in both cases

χ is rejected and the planner returns ⊥. This is incomplete, because there

exists a simple strong plan for the problem: start both actions at time 0

(the two actions are non-interfering and all the conditions are satisfied as

p and q are never falsified).

In our running example, reported in section 12.1.3, the TO approach

can terminate yielding the strong plan πex when the following abstract

plan is generated by the classical planner and the relative total order is

considered.

χex=̇〈smovestmove1 , svisible:=T
2 , shot:=F

3 , s
moveetmove
4 , s

transsttrans
5 , s

transettrans
6 , svisible:=F

7 〉

This very same example of abstract plan that works for finding the plan

πex also works in the following approaches.

270

CHAPTER 12. ACTION-BASED STPUD

Last Achiever Deordering Encoding

Another encoding that has been proposed, is to lift totally ordered plans

to partially ordered plans [CCFL10]. The underlying idea is to use the

greedy algorithm proposed in [VPC90] to reconstruct the causal links as

precedence links. For each action in the plan requiring a literal l as pre-

condition, the algorithm searches for the last achiever of that literal in the

totally ordered plan, and imposes a precedence link between the two ac-

tions. In this way, it builds a partial order plan as a deordering [Bäc98]

of χ and possibly reduces the commit on the specific input ordering. Also

this encoding never introduces disjunctions, hence the resulting TNU is a

STNU.

We now define the Last Achiever Deordering (LAD). Using a common

trick in partial order planning, we consider two fictitious steps, s0 and sn+1,

representing the initial state and the goal condition, respectively. Step s0

has no preconditions and has the initial state I as effect. Step sn+1 has the

goal as precondition and no effect.

Given a variable f and a value v, we denote with achievers(f, v) the

set {si ∈ χ|〈f := v〉 ∈ effects(si)} of steps that achieve l and with

deleters(f, v) the set
⋃
v′∈Dom(f),v′ 6=v achievers(f, v

′). The intuition is that

the achievers(f, v) set gives the subset of steps in χ that set the variable

f to value v. Conversely, deleters(f, v) is the set of actions that set f to a

value different from v.

Given a step si, we denote with last(f, v, si) the step sj such that

sj ∈ achievers(f, v) and j is the maximum index strictly lower than i.

Intuitively, last(f, v, si) is the last action that sets f to value v before si

in χ.

In the following, we define the precedence constraints PLAD built using

this technique.

271

12.3. STPUD VIA FORWARD STATE-SPACE SEARCH

Definition 66. Given χ = (s0, · · · , sn+1), PLAD is as follows.

1. {(s0 < si), (si < sn+1) | i ∈ [1, n]} ⊆ PLAD.

For each si ∈ χ and for each 〈f = v〉 ∈ pre(a),

2. (last(f, v, si) < si) ∈ PLAD.

For each si ∈ χ and for each overall condition 〈(sta, eta) f = v〉 of the

action a,

3. {(sj < ssta) | sj ∈ deleters(f, v), j < i} ⊆ PLAD

4. {(seta < sj) | sj ∈ deleters(f, v), i < j} ⊆ PLAD.

This encoding is able to find a plan in many situations even in presence

of uncertainty, but it is not complete in general. For example, it fails on

the problem of figure 12.3: the encoding greedily assumes that the last

achiever is the one that must be preserved in the form of a causal link;

in reality there may be other achievers that could be used instead. Just

as in the previous case, if χ = (· · · , saetai , · · · , sbetbj , · · ·), then we impose

the constraint s
aeta<betb
i because s

aeta
i is the last achiever of p (required by

s
betb
j). Instead, if χ = (· · · , sbetbj , · · · , saetai , · · ·), we impose the constraint

s
betb
j < s

aeta
i because s

betb
j is the last achiever of q (required by s

aeta
i).

Disjunctive Reordering Encoding

In order to obtain a sound and complete reasoning, we need to relax the

total order produced by the state-space search, retaining the precedence

constraints needed to ensure plan validity. However, we must be careful

in not over-constraining the TNU, otherwise we may discard valid plans.

A solution is to consider all the reorderings [Bäc98] of the given plan that

are causally sound: we build a set of (disjunctive) precedence constraints

in such a way that all the orderings fulfilling the constraints are causally

272

CHAPTER 12. ACTION-BASED STPUD

sound. We call Disjunctive Reordering (written DR) the approach using

the precedence constraints PDR defined as follows. We show that, given

a partial plan χ, using DR to construct the precedences in algorithm 19,

yields a complete technique for the STPUD.

Given a variable f , a value v and a pair of actions a and r of χ, we

define the disjunctive temporal constraint ρ(f, v, a, r) as follows.

ρ(f, v, a, r) =̇ (a < r ∧
∧

si∈achievers(f,v)\{a,r}

(si < a ∨ si > r))

Intuitively, for a condition c =̇ 〈f = v〉, if a is an achiever of c and r

is an action having c as precondition, ρ(f, v, a, r) holds if a was the last

achiever of l before r. We now define the precedence constraints induced

by the DR approach, indicated as PDR. As before, s0 and sn+1, represent

the initial state the goal condition, respectively.

Definition 67. Given χ = (s0, · · · , sn+1), PDR is as follows.

1. {(s0 < si), (si < sn+1) | i ∈ [1, n]} ⊆ PDR.

For each a ∈ χ and for each 〈f = v〉 ∈ pre(a), the following constraints

belong to PDR:

2.
∨
sj∈achievers(f,v)\{a} ρ(f, v, sj, a);

3.
∧
sj∈achievers(f,v)(ρ(f, v, sj, a)→

∧
st∈deleters(f,v)\{a}(st < sj ∨ st > a)).

For each si ∈ χ and for each overall condition 〈(sta, eta) f = v〉 of the

action a, the following constraint is in PDR:

4.
∧
sj∈deleters(f,v)((sj < ssta) ∨ (sj > seta).

Intuitively, constraint 2 says that at least one action sj having as effect

the precondition l of action a, should occur before a. Constraint 3 says

that, if sj is the last achiever for the precondition l of action a, between sj

273

12.3. STPUD VIA FORWARD STATE-SPACE SEARCH

and a there must be no action falsifying 〈f = v〉. Conditions are cannot be

canceled between their extremal time points markers (constraint 4). The

following theorem states that DR is sound and complete. We give the full

proof of the theorem in appendix B.1.

Theorem 12.1 (DR Completeness). Given a STPUD admitting a valid

strong plan σ, if DR is used, algorithm 19 terminates with a valid strong

plan.

The intuition is that in DR the disjunctions encode all reorderings that are

causally sound in the form of a DTNU, allowing the scheduler to re-arrange

the actions independently of the total ordering of χ.

We highlight that the set of precedence constraints generated by the

DR approach, conjoined with the duration constraints, yields a TNU that

is not formally a DTNU. This is because of the use of strict inequalities

and negations that are not expressible in the DTNU framework. However,

if we take the PDDL 2.1. semantics, this is not a problem because such

semantics prescribes that there is always a minimal time quantum (called

ε) that is required to separate two events: each constraint si > sj can then

be rewritten as si− sj ≥ ε, and negations can be handled by reversing the

inequalities (e.g. ¬(si > sj) is equivalent to (si ≤ sj)). Therefore, we can

encode these constraints as a proper DTNU. Moreover, we remark that the

strong controllability techniques for the DTNU problem class we presented

in chapter 9 are applicable even in presence of strict inequalities (we only

exploit the absence of strict inequalities in the static quantification for

TCSNU, but never in DTNU).

The strong controllability of a DTNU is a NP-Hard problem [PVYS07]

(and the same is true for the generalized DTNU with strict inequalities),

thus the use of this encoding is quite costly; however, DR is important as

it overcomes the incompleteness limitation of the other encodings.

274

CHAPTER 12. ACTION-BASED STPUD

12.4 Compiling STPUD in Temporal Planning

In this section, we present our compilation technique, which can be used to

reduce any planning instance P having duration uncertainty into a tempo-

ral planning instance P ′ in which all actions have controllable durations.

The translation guarantees that P is solvable if and only if P ′ is solvable,

and it fully supports the Unc-Arbit problem class. Moreover, given any

plan for P ′ we can derive a plan for P . This approach comes at the cost

of duplicating some of the variables in the domain, but allows for the use

of off-the-shelf temporal planners.

12.4.1 Formal Compilation

The overall intuition behind the translation is the following. Consider the

transmit (i.e., trans) action in our example, and suppose it is scheduled to

start at time k. Let v be the value of sent at time k+5; since transmit has

an at-end effect 〈[ettrans] sent := T〉, we know that the value of the variable

sent during the interval (k + 5, k + 8] will be either v or T depending on

the duration of the action. After time k + 8 we are sure that the effect

took place, and we are sure of the value of sent until another effect is

applied7. Since we are not allowed to observe anything at run-time in

strong planning, we need to consider this uncertainty in the value of sent

and produce a plan that works regardless. Since sent could appear as a

condition of another action (or as a goal condition, as in our example) we

must rewrite such conditions to be true only if both T and v are values

that satisfy the condition.

To achieve this, we create an additional variable sentσ (called the shadow

variable of sent). This secondary variable stores the alternative value of

7Note that there cannot be another concurrent action in the plan having an effect on sent during the

interval [k + 5, k + 8] because this would allow for the possibility of two concurrent effects on the same

variable, that is forbidden in our semantics.

275

12.4. COMPILING STPUD IN TEMPORAL PLANNING

sent during uncertainty periods. When there is no uncertainty in the value

of sent, both sent and sentσ will have the same value. In this way, all the

conditions involving sent can be rewritten in terms of sent and sentσ to

ensure they are satisfied by both the values.

In general, our translation rewrites a STPUD problem P =̇〈V, I, T,G,A〉
into a new planning instance P ′ =̇ 〈V ′, I ′, T ′, G′, A′〉 that does not contain

actions with uncontrollable duration.

Uncertain Variables

The first step is to identify the set of variables L ⊆ V that appear as effects

of uncontrollable actions and are executed at a time depending on the end

of the action.

L =̇ {f | a ∈ Au, 〈[t] f := v〉 ∈ Ea, t = eta − δ}

Intuitively, this is the set of variables that can possibly have uncertain value

during plan execution. A variable that is modified only at times linked

to the start of actions or by timed initial literals, cannot be uncertain

as neither the starting time of actions nor the timed initial literals can

be uncertain in our model. In our running example, the set L becomes

{sent, pos}.
We now define the set V ′ as the original variables V plus a shadow

variable for each variable appearing in L.

V ′ =̇ V ∪ {fσ | f ∈ L}

We use the pair of variables f and fσ to represent uncertainty: if f = fσ

we know that there is no uncertainty in the value of f , while if f 6= fσ we

know that the actual value of f in the original problem is either f or fσ.

276

CHAPTER 12. ACTION-BASED STPUD

Disjunctive Conditions

At the end of section 12.1, we outlined the reason why existing approaches

of compiling away disjunctive conditions will not work with uncontrollable

action durations. In order to rewrite a durative, disjunctive condition

c =̇ 〈I(stc, etc)
∨n
i=1 fi = vi〉 we need to ensure that the result is satisfied if

and only if both the values of f and fσ for each f ∈ L are satisfying values

for c. For this reason, we define an auxiliary function γ(ψ) that takes a

single disjunctive condition without timing information and returns a set

of untimed disjunctive conditions.

γ(ψ) =̇

{〈f = v〉} if ψ =̇ 〈f = v〉, f 6∈ L

{〈f = v〉, 〈fσ = v〉} if ψ =̇ 〈f = v〉, f ∈ L

{r ∨ s | r ∈ γ(ψ1), s ∈ γ(ψ2)} if ψ =̇ ψ1 ∨ ψ2

For example, the condition of the trans action, pos = l2, is translated

as the two conditions pos = l2 and posσ = l2. Analogously, assuming

that both f and g are in L, a given condition (f = T) ∨ (g = F) in P

is translated by function γ as the set of conditions {(f = T) ∨ (g = F),

(fσ = T) ∨ (g = F), (f = T) ∨ (gσ = F), (fσ = T) ∨ (gσ = F)} in P ′.

Uncertain Temporal Intervals

We also need to identify the temporal interval in which the value of a given

variable can be uncertain. Given an action a with uncertain duration da

in [l, u], let λ(t) and ν(t) be the earliest and latest possible times at which

an at-end effect at t =̇ eta′ − δ may happen. Thus: λ(t) =̇ sta′ + l − δ and

ν(t) =̇ sta′ + u− δ. Both functions are equal to sta′ + δ if t =̇ sta + δ. For

example, consider the effect e1 =̇ 〈[ettrans] sent := T〉 of action trans. We

know that the duration of transmit is uncertain in [5, 8], therefore the effect

277

12.4. COMPILING STPUD IN TEMPORAL PLANNING

can be applied between λ(ettrans) =̇ sttrans′ + 5 and ν(ettrans) =̇ sttrans′ + 8

and the sent variable has an uncertain value within that interval.

Uncontrollable Actions

For each uncontrollable action a =̇ 〈[l, u], Ca, Ea〉) in Au in the original

model we create a new action a′ =̇ 〈[u, u], Ca′, Ea′〉 in A′c. Specifically, we

first fix the maximal duration u as the only allowed duration for a′ and

then insert appropriate effects and conditions during the action to capture

the uncertainty.

The effects Ea′ are partitioned in two sets El
a′ and Eu

a′ to capture possible

values within the uncertain action execution duration. The conditions Ca′

are also composed of two elements: the rewritten conditions CR
a′ and the

conditions added to protect the new effects CE
a′ (thus C ′ =̇ CR

a′ ∪ CE
a′).

Rewritten conditions CR
a′. Controllable conditions are compiled by rewrit-

ing existing action conditions by means of the γ function. The intervals

specifying the duration of the conditions are preserved; since the action du-

ration is set to its maximum, the intervals of the conditions are “stretched”

to match their maximal duration.

CR
a′ =̇ {〈I(λ(t1), ν(t2)) α〉 | α ∈ γ(ψ), 〈I(t1, t2) ψ〉 ∈ Ca}

Here, we keep the interval type (e.g. a [t1, t2) interval gets translated in

[λ(t1), ν(t2)]), but we “stretch” the bounds to match the earliest start and

latest possible end.

For example, the set CR
trans′ for the trans action is: {〈[sttrans′, sttrans′ +

8] pos = l2〉, 〈[sttrans′, sttrans′ + 8] posσ = l2〉, 〈[sttrans′, sttrans′ + 8] visible =

T〉}. This requires variables visible, pos and posσ to be true throughout

the execution of trans′.

278

CHAPTER 12. ACTION-BASED STPUD

Compiling action effects. The effects of the original action are duplicated:

both the affected variable f and its shadow fσ are modified, but at different

times. We first identify the earliest and latest possible times at which an

effect can happen due to the duration uncertainty (see earlier discussion

on λ(t) and ν(t)). We then apply the effect on fσ at the earliest time point

λ(t), and at the latest time point ν(t) we re-align f and fσ by also applying

the effect on f :

El
a′ =̇ {〈[λ(t)] fσ := v〉 | 〈[t] f := v〉 ∈ Ea}

Eu
a′ =̇ {〈[ν(t)] f := v〉 | 〈[t] f := v〉 ∈ Ea}

For example, the trans action has El
trans′ =̇ {〈[sttrans′ + 5] sentσ := T〉} and

Eu
trans′ =̇ {〈[sttrans′ + 8] sent := T〉}.

Additional conditions CE
a′ . Let t=̇eta−δ be the time of an at-end effect that

affects the value of f . In order to prevent other actions from changing the

value of f during the interval (λ(t), ν(t)] where the value of f is uncertain,

we add a condition in CE
a′ to maintain the value of fσ throughout the

uncertain duration (λ(t), ν(t)].

CE
a′ =̇ {〈(λ(t), ν(t)] fσ = v〉, | 〈[t] f := v〉 ∈ Ea}

Since the effect on fσ (belonging to El
a′) is applied at time λ(t), the condi-

tion is satisfied immediately after the effect and we want to avoid concur-

rent modifications of either f or fσ until the uncertainty interval ends at

ν(t).

For example, the trans action has CE
trans′=̇{〈(sttrans+5, sttrans+8]sentσ =

T〉}. Compilation of the trans action is depicted in figure 12.4.

Controllable Actions

Controllable actions are much simpler. For each a =̇ 〈[l, u], Ca, Ea〉 ∈ Ac we

introduce a replacement action a′ =̇〈[l, u], Ca′, Ea′〉 ∈ A′c, in which: (1) each

279

12.4. COMPILING STPUD IN TEMPORAL PLANNING

transmit

at l2, visible

sent := T

transmit′

at l2, visible, at l2σ
sentσ

sentσ := T sent := T

Figure 12.4: Graphical view of the original transmit action (top) and its compilation (bottom).

Durative conditions are represented over the actions, while effects are reported under each action.

We indicate closed interval extremes with circles and open ends with arrows. For example, the

condition sentσ is open to the left and closed to the right.

condition in C is rewritten to check the values of both the variables and

their shadows, and (2) each effect is applied to a variable and its shadow,

if any.

Ca′ =̇ {〈I(λ(t1), ν(t2)) α〉 | α ∈ γ(ψ), 〈I(t1, t2) ψ〉 ∈ Ca}

Ea′ =̇ Ea ∪ {〈[t] fσ := v〉 | f ∈ L, 〈[t] f := v〉 ∈ Ea}

Initial State I

The initial state is handled by initializing variables and their corresponding

shadow variables in the same way as in the original problem.

I ′(x) =̇

I(x) if x ∈ V

I(f) if x = fσ

For example, the initial state of our running problem is the original initial

state plus {sentσ = F, posσ = l1}.

Timed Initial Literals

Timed Initial Literals T ′ are set similarly to the effects.

T ′ =̇ T ∪ {〈[t] fσ := v〉 | f ∈ L, 〈[t] f := v〉 ∈ T}

280

CHAPTER 12. ACTION-BASED STPUD

V ′ =̇ V ∪ {posσ : {l1, l2}, sentσ : {T, F}}
I ′ =̇ I ∪ {posσ = l1, sentσ = F}
T ′ =̇ {〈[14] visible := T〉, 〈[30] visible := F〉, 〈[15] hot := F〉}
G′ =̇ {〈[etπ, etπ] sent = T〉, 〈[etπ, etπ] sentσ = T〉}
A′c =̇ {〈[15, 15], Cmove′ , Emove′〉, 〈[8, 8], Ctrans′ , Etrans′〉}

Cmove′ =̇ {〈[stmove, stmove] pos = l1〉, 〈[stmove, stmove] posσ = l1〉,
〈[etmove, etmove] hot = F〉, 〈(stmove + 10, stmove + 15] posσ = l2〉,

Ctrans′ =̇ {〈[sttrans, ettrans] pos = l2〉, 〈[sttrans, ettrans] posσ = l2〉,
〈[sttrans, ettrans] visible = T〉, 〈(sttrans + 5, sttrans + 8] sentσ = T〉,

Emove′ =̇ {〈[stmove + 10] posσ := l2〉, 〈[stmove + 15] pos := l2〉}
Etrans′ =̇ {〈[sttrans + 5] sentσ := T〉, 〈[sttrans + 8] sent := T〉}

Figure 12.5: The compiled STPUD obtained by applying the compilation approach to the rover

example.

In our example, we do not have timed initial literals operating on uncertain

variables, thus T =̇ T ′.

Goal Conditions

The goal conditions G are augmented to consider both the original and

shadow variables, without modifying the application times, since they are

fixed and cannot be uncertain.

G′ =̇
⋃
g∈G

γ(g)

In our example, the set G′ becomes {(sent = T), (sentσ = T)}.

12.4.2 Example

The full compilation for our example problem is reported in figure 12.5.

281

12.4. COMPILING STPUD IN TEMPORAL PLANNING

12.4.3 Discussion

This compilation is sound and complete. Theorem 12.2 states that the

original problem is solvable if and only if the resulting problem is solvable

and any plan for the rewritten temporal planning problem is automatically

a strong plan for the original problem (with the obvious mapping from the

rewritten to the original actions). We report the complete proof of this

theorem in appendix B.2.

Theorem 12.2 (Soundness and Completeness). Let P =̇ 〈V, I, T,G,A〉 be

a planning instance and R =̇ 〈V ′, I ′, T ′, G′, A′〉 be its translation. P has a

strong plan π if and only if R has a temporal plan σ.

The compilation produces a problem that has: (i) at most twice the

number of variables of the original problem, (ii) at most twice the initial

and timed assignments and (iii) exactly the same number of actions. The

only point in which the compilation might produce exponentially large

formulae is in the application of the γ function, which is exponential in the

number of disjuncts constraining variables appearing in L. Since this only

happens for disjunctive conditions, and the number of disjuncts is typically

small, this is normally not a serious issue.

Finally, we remark that any technique can be used to solve the compiled

temporal planning problem, and any valid plan corresponds to a strong

plan. Therefore, this technique allows for the mix of controllability and

flexibility we claimed in section 6.1: if we employ a planner that is able

to produce flexible solutions (i.e. an STN of possible solutions), all those

solutions will be valid strong plans. This is an example of flexible-strong

planning.

282

CHAPTER 12. ACTION-BASED STPUD

12.5 Simplification

As we discussed in section 12.1.4, it is in general impossible to solve the

STPUD problem by considering uncontrollable actions as taking either

the maximal or minimal duration in their duration interval: this moti-

vates the development of the S-FSSTP and the compilation approaches

we presented. Nonetheless, under some conditions, it is possible to soundly

remove uncertainty simply by fixing the maximal or the minimal duration

of an action. In this section, we report a set of sufficient conditions that can

be statically checked on a planning instance to simplify the uncertainty of

an uncontrollable action. For the sake of simplicity, we consider the Unc-

Extr problem class, but the same reasoning can be extended also to the

general Unc-Arbit class.

12.5.1 Maximal-Duration Simplification

In order to soundly lengthen an uncontrollable action a=̇〈[l, u], C, E〉 to its

maximum duration u without changing its conditions or its effects, we need

to make sure that there is no other action condition that could occur within

the time window [l, u] that would be fooled by encoding the end conditions

and end effects considering only the maximal duration. Furthermore, we

need to ensure that no other action can have an effect that can occur within

the time window [l, u] that would conflict with the overall conditions, end

conditions or end effects of a.

To keep the execution safe, we require the following.

1. For each end effect 〈[eta] f := v〉, no other action b can have an effect

on f that could occur within [l, u].

This prohibition is necessary because such an effect might happen

at the same time as 〈[eta] f := v〉 if a has duration shorter than u

283

12.5. SIMPLIFICATION

(simultaneous effects on the same variable are prohibited). Note that

if a has an overall condition on the variable s this will prevent any

effect on f during [l, u] so the condition is automatically satisfied in

this case. Thus, in practice, we only need to consider the variables

affected by end effects that are not protected by an overall condition.

2. For each end effect 〈[eta] f := v〉, no other action b can have an

incompatible condition on f that could occur within [l, u].

This prohibition is necessary because such a condition might happen

at the same time as 〈[eta] f := v〉 if a has duration shorter than u.

Note that if a has an overall condition on the variable f this will

prevent any inconsistent condition.

3. For each end condition 〈[eta, eta] φ〉, no other action b can have an

effect incompatible with φ that can occur within [l, u].

This prohibition ensures that b does not change any of the variables

in φ making the condition false during the uncertain interval. Note

that if f is also affected by and end effect, then this is already covered

by (1).

4. For each end condition 〈[eta, eta] φ〉, no other action b can have a

condition inconsistent with φ that can occur within [l, u].

Since a could end earlier, this condition ensures that b does not have

a conflicting condition with φ during [l, u].

It might seem like we also need the condition that no other action b can

depend on an overall condition of a within [l, u]. However, this prohibition

is not necessary. If the variables in the overall condition are affected by an

end effect, then this is already covered by prohibition (2). If not, then the

overall condition prevents any effect on these variables during (l, u), which

means that if a ends early, the condition will necessarily persist until u.

284

CHAPTER 12. ACTION-BASED STPUD

As a result, having an action b with a condition on threatening an overall

condition that occurs during [l, u] does not cause any problem as long as

conditions (1)-(4) are satisfied.

12.5.2 Minimal-Duration Simplification

In order to soundly shorten an uncontrollable action a =̇ 〈[l, u], C, E〉 to its

minimum duration l, we need to make sure that there is no other action

or condition that could occur within the time window [l, u] that would

be fooled by encoding the end conditions and the end effects at l, or by

the premature ending of the overall conditions. Furthermore, we need

to ensure that no other action can have an effect that can occur within

the time window [l, u] that would conflict with the overall conditions, end

conditions or the end effects.

The following conditions are sufficient to simplify an uncontrollable ac-

tion fixing its minimal duration.

1. For each end effect 〈[eta] f := v〉, no other action b can have an effect

on f that could occur within [l, u].

This prohibition is necessary because such an effect might happen at

the same time as 〈[eta] f := v〉 if a takes longer than l, and simulta-

neous effects on the same variable are prohibited.

2. For each end effect 〈[eta]f := v〉, no other action b can have a condition

implied by 〈[eta] f := v〉 that could occur within [l, u]

This condition assures that b does not depend on the end condition

of a prematurely, since a might not really end until as late as u.

3. No other action b can have an effect or condition inconsistent with

either an overall or end condition that can occur within [l, u]

285

12.5. SIMPLIFICATION

This condition and effect prohibition is necessary because the overall

and end conditions might last or happen until u, creating and incon-

sistency with b.

Clearly the requirements will be satisfied if the prohibited conditions

and effects do not exist at all. However, there are some cases where it is

possible to infer something stronger. In particular, for every action b with

a condition or effect that might violate one of the three conditions above,

we can show that the troublesome condition or effect cannot occur in [l, u]

if the following three conditions are satisfied:

1. The offending effect or condition for b is at the end of b.

This condition is necessary because if b had an offending condition or

effect at the start, or offending condition overall there would be no

way of guaranteeing that b would not start within [l, u].

2. b has minimum duration greater than u− l.

This condition is necessary to guarantee that if b starts after l its end

conditions and effects will end after u and therefore won’t cause a

problem.

3. Either:

• b cannot overlap with a (a and b are mutually exclusive)

• or b cannot start during a and b has max duration less than the

min duration of a.

This condition is necessary to assure that b cannot start during or

before a but end during [l, u]. This will be satisfied if b and a cannot

overlap at all or if b cannot start during a, and is short enough that

if it starts before a it will end before l.

286

CHAPTER 12. ACTION-BASED STPUD

Note that this set of conditions is correct, but not complete. There

may be other cases where it is possible to prove that an action b with

an offending condition or effect cannot occur within [l, u]. However, this

proof is likely to be more complex and involve some sort of reachability

argument.

12.5.3 Discussion

The conditions we listed above are sufficient to soundly simplify away un-

controllable durations fixing either the maximal or minimal duration.

The lengthening conditions are much easier to satisfy than the condi-

tions for shortening an action to its minimum duration. The reason for this

is that the lengthening process extends the overall condition of the action

a, which tends to prevent bad things from happening during [l, u]. On the

contrary, the condition for shortening an action are much harder to satisfy

because they impose some outside-of-action requirements that are rarely

met in practice.

Considering the maximal-duration simplification, there is a simpler, suf-

ficient condition to ensure all the rules we listed: for every threatening ac-

tion b (an action that might violate at least one rule), a and b are mutually

exclusive. Mutual exclusion is not a new idea and there are techniques to

check it even for temporal planning problems [BS11].

12.6 Experimental Evaluation

We now empirically evaluate the approaches and simplifications we pre-

sented. First we discuss the experimental setting, then we explain how

to use PDDL 2.1 planners for dealing with the compilation output, and

finally we discuss the results.

287

12.6. EXPERIMENTAL EVALUATION

12.6.1 Experimental Set-Up

We implemented the direct approaches for the Unc-Extr problem class

(described in section 12.3) as an extension of the Colin [CCFL12] plan-

ner. Colin can handle temporal domains expressed in PDDL+ [FL06] (an

extension of PDDL 2.1), and its temporal reasoning component is modular

with respect to the rest of the code base: it has a clear notion of scheduler

for checking temporal consistency.

To enable for the specification of durative actions with uncontrollable

durations, we extended the PDDL 2.1 grammar with the addition of an

uncontrollable-durative-action specification: the construct is analo-

gous to the durative-action construct, but marks the action as uncon-

trollable. We refer to this extension of the language as PDDL-U. The

parser and the internal structures of Colin have been modified to support

the processing of this extension.

We added three new schedulers to Colin, each implementing one of

the defined encodings. We write TO to refer to the encoding based on

total ordering, LAD for the Last Achiever Deordering and DR for the Dis-

junctive Reordering. The heuristic for the forward search planner was left

unchanged. The temporal solvers for strong controllability were imple-

mented in C++, following the approach presented in chapter 9, using the

MathSAT [CGSS13] SMT solver as workhorse.

The compilation described in section 12.4 has been implemented as a

Java translator in two versions. The first takes in input a PDDL-U spec-

ification and produces a plain PDDL 2.1 temporal planning problem, the

second works in the context of ANML and takes in input an ANML prob-

lem with uncontrollable durations and emits a fully controllable ANML

problem. In this experimental evaluation, we limit ourselves to PDDL 2.1

problems leaving a thorough ANML evaluation for future work.

288

CHAPTER 12. ACTION-BASED STPUD

We highlight how the formal translation is designed to generate a Ctrl-

Arbit problem even when starting from an Unc-Extr instance. For this

reason, the first version of translator is equipped with a technique to remove

intermediate effects and conditions in the PDDL setting. We discuss in de-

tail this technique in section 12.6.2. Since the direct approaches have been

implemented using a modification of the Colin planner, we used Colin

to solve the temporal planning instances produced by the compilation.

Finally, the maximal-duration simplification has been implemented as

a Java re-writer that takes in input a PDDL-U instance and produces a

(possibly simplified) PDDL-U specification. We highlight that in some

cases the simplifier is able to remove all the temporal uncertainty from the

problem and, thanks to the way PDDL-U is defined, a plain PDDL 2.1

planning problem is produced by the simplifier. In this experiments we did

not use the minimal-duration simplification.

We considered the temporal planning domains from the temporal track

of the International Planning Competition 2011 [CCO+12]: these domains

are written in the PDDL 2.1 language. We modified them by declaring

some actions uncontrollable and by enlarging the duration intervals of ac-

tions and by creating several versions of each domain. Our resulting bench-

mark set is composed of a total of 901 planning instances. Since both the

compilation and the simplification techniques manipulate the domain spec-

ifications and automated planners are usually very sensitive to the input,

we implemented a tool that randomly “scrambles” PDDL input problems.

The tool always generates a problem instance that is absolutely equivalent

to the input one, but it changes the order of actions, conditions and effects

in the concrete specification. Using this tool, we executed each experiment

5 times (with different random seeds to obtain different “scramblings”),

considering each run as a separate experiment. Thus, we are left with a

virtual benchmark set of 4505 planning instances.

289

12.6. EXPERIMENTAL EVALUATION

All the experiments were executed on a Scientific Linux 64 bit, 12 cores

Intel Xeon at 2.67GHz, with 96GB RAM. We used a timeout of 10 minutes,

and a memory limit of 8GB.

All the tools and the benchmark set can be downloaded as indicated in

section 1.2.

12.6.2 Intermediate Effects

Given a PDDL-U planning instance, the theoretical compilation approach

(described in section 12.4) produces an instance having no uncontrollable

durations, but with intermediate effects and conditions. In particular, for

the Unc-Extr case that is expressible by PDDL-U, the algorithm intro-

duces an intermediate effect and a durative condition for each uncontrol-

lable action.

We now discuss how to get rid of these intermediate effects and condi-

tions assuming a PDDL 2.1 semantics. In fact, it is in general not possible

to compile away intermediate effects in a language having a real-time se-

mantics, but PDDL 2.1 semantics assumes a minimum time quantum called

ε forcing each pair of time points in the plan to be separated by at least ε

time. We can exploit this semantics to compile away intermediate effects.

The work in [FLH04] presents some ideas on how to encode intermedi-

ate events in PDDL 2.1. It assumes actions having a fixed duration and

proposes some standard constructs to encode several features as polyno-

mial transformation of the PDDL domain. In particular, the clip-action

construct forces two or more time points (either the start or the end of

actions) to happen simultaneously or to be separated by exactly ε. The

construction uses one additional action with duration 2ε (or 3ε in case an

ε separation is required). The clip action defined as follows.

290

CHAPTER 12. ACTION-BASED STPUD

clip =̇ 〈[2ε, 2ε], {〈(stclip, etclip)fs = >〉}, {〈[stclip]fs := >〉, 〈[etclip]fs := ⊥〉}〉

Intuitively, the clip is an action that sets a fresh, dummy variable fs to

true when it starts and resets it upon termination. We can now clip time

points to impose the condition fs = > exactly at that time points. Since

in PDDL 2.1 no two events can happen with distance lower than ε, the

clip guaranteed simultaneous execution. If the time points being clipped

have mutually-exclusive effects, we need a clip of duration 3ε to achieve an

ε separation of the two time points.

This construction can be used to encode intermediate effects and condi-

tions by splitting an action duration in pieces, one for each sub-interval of

the action duration delimited by an intermediate effect or condition bound.

This technique works perfectly for fixed duration actions, but also when

the duration is controllable. Note that this is enough to handle the out-

come of the uncertainty compilation, because each uncontrollable action

is transformed in a fixed-duration action and no other intermediate effects

or conditions are artificially added. Figure 12.6 shows an example of the

construction for the action trans′ derived from the running example action

trans by means of the uncertainty compilation.

The clip action is not the only construction that can be used to encode

intermediate effects and conditions. A second relevant technique [Smi03]

uses a container action that spans the whole duration of the original action

that exactly contains a number of sub-actions, one for each sub intervals.

Both these techniques suffer from a significant overhead: to remove an

intermediate effect or condition, a single action is substituted with three ac-

tions, increasing the plans length, and some additional variables are added

to the problem description, widening the search space. However, we can

exploit a characteristic common to both these compilation techniques to

291

12.6. EXPERIMENTAL EVALUATION

time0 5 85− ε 5 + ε

transmit′

at l2, visible, at l2σ
sentσ

sentσ := T sent := T

Ctrl-Arbit

trans′s

trans′e

c

at l2, visible, at l2σ fc

(sentσ], at l2,

visible, at l2σfc

sentσ := T sent := T

fc := T fc := F

fc

Ctrl-Extr

Figure 12.6: Clip action construction example: the action trans′ derived from the running

example action trans by means of the compilation is rewritten as an equivalent triplet of actions.

The condition fc that is the base of the construction is imposed at time 5 at the end of the

action trans′s and at the begin of the action trans′e; moreover it is an overall condition of the

clip action c. For space problems, we indicated the condition 〈(5, 8] sentσ = T〉 together with

the other conditions in the interval [5, 8].

guide the planners and limit this overhead. Both these encodings are de-

signed in such a way that when a container action is started, or the first

piece of the decomposed action is started, the others follow in a pre-ordered

fashion with no possibility of choice for the planner. However, even if the

search takes this decision, nothing is telling the planner to avoid useless

search on branches where the structure has not been correctly instantiated.

Surely, we can devise a planner that recognizes a construction such as the

clip and expands it accordingly, but we can also exploit the PDDL 2.1

292

CHAPTER 12. ACTION-BASED STPUD

time0 5 85− ε 8− εε

transmit′

at l2, visible, at l2σ
sentσ

sentσ := T sent := T

Ctrl-Arbit

trans′s

trans′e

c

f 1
c

f 1
c := F

f 2
c := T

f 2
c , (sentσ]

sentσ := T f 2
c := F

f 3
c := T

f 1
c := T sent := T

f 3
c := F

at l2, visible, at l2σ f 3
c

Ctrl-Extr

Figure 12.7: Container action construction example: the action trans′ derived from the running

example action trans by means of the compilation is rewritten as an equivalent triplet of actions.

features to force the planner into this choice. What we want to ensure is

that the planner has no choice but to expand the clip just before the action

terminates and to start the next piece before terminating the clip. This can

be achieved by means of “exclusion literals”. We introduce a fresh Boolean

variable for each clip action, that is initially true and is falsified during the

clip action. This literal is added as condition for starting and terminating

every action in the problem except for the clip and the two clipped actions

extremes. In this way, the planner has no choice but to exactly instantiate

293

12.6. EXPERIMENTAL EVALUATION

the two actions during the clip, greatly pruning the search space. The

same idea can be applied also to the container construction by imposing

mutual exclusion on the “holes” within the container action to force the

planner to immediately expand the next action in the sequence. All these

techniques have been implemented as a post-processing of the compilation

result and are evaluated in the following sections.

12.6.3 Overall Results

Figure 12.8 gives an overview of the performance of the presented tech-

niques in our experiments. We indicate with COLIN-Container the

compilation approach solved with the Colin planner where we used the

container technique with effect removal. COLIN-Container-Exclusion

is again the compilation approach solved with the Colin planner where we

used the container technique with effect removal, but adding the mutual

exclusion literal to guide the solver. Similarly, COLIN-Clip and COLIN-

Clip-Exclusion are the compilation technique solved by Colin using the

clip construction to remove intermediate effects. The S-FSSTP techniques

are referred to as TO-approach, LAD-approach and DR-approach,

for the TO, LAD and DR techniques, respectively. First, we consider the

direct approach obtained extending the FSSTP planning framework. We

note how the LAD approach performs much better than TO approach, that

in turn performs better than the DR approach. In fact, LAD it is able to

solve almost twice as many instances as DR. However, we remark that the

LAD and TO techniques are not complete and in some cases could spuri-

ously detect that no plan exists. However, in our experiments this scenario

never occurred and both the techniques always returned valid plans.

Concerning the compilation technique, we note how the performance

dramatically depends on the technique used to compile away intermediate

effects and conditions. The clip construction proved to be more effective

294

CHAPTER 12. ACTION-BASED STPUD

0 500 1000 1500 2000 2500

Number of solved instances

T
im

e
(s

ec
)

0.1

1

10

50

100

300

600

COLIN−Container
COLIN−Container−Exclusion
COLIN−Clip
COLIN−Clip−Exclusion
DR approach
LAD approach
TO approach
VBS

Figure 12.8: Log-scale cactus plot showing the performance of the solvers. The “VBS” line is

the Virtual Best Solver that is computed taking for each instance the performance of the fastest

solver among all the others.

than the container construction. Moreover, both the techniques benefit

from the mutual exclusion improvement that prunes the search.

In order to compare the compilation technique with the direct approach,

we reported in figure 12.9 the result of the best-performing compilation

technique with the two native approaches. The situation is evidently split

with no clear winner. This means that the two techniques exhibit a comple-

mentary behavior: on some instances the direct approach is vastly superior,

on others it is beaten by the compilation. This is confirmed by the perfor-

mance of the Virtual Best Solver (VBS) in figure 12.8: the performance

of the VBS is obtained by taking the results of the fastest solver for each

instance. The VBS line in the plot solves far more instances than any

actual solver; hence, the various solvers that contribute to the VBS are

295

12.6. EXPERIMENTAL EVALUATION

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

COLIN−Clip−Exclusion

D
R

 a
pp

ro
ac

h

TO
MO

TO M
O

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

COLIN−Clip−Exclusion

LA
D

 a
pp

ro
ac

h

TO
MO

TO M
O

Figure 12.9: Scatter plot comparing the best technique for solving the compilation approach

with the complete DR method (a) and the incomplete LAD method (b).

able to solve different sets of instances.

We analyzed several features of the instances without finding a clear

correlation with the better solver. We leave the use of automated data

mining techniques for the best solver prediction as future work.

12.6.4 Impact of Simplifications

We implemented the simplifier following the maximal-duration simplifica-

tion described in section 12.5. Since the simplification requires a mutual

exclusion generator to operate, we provided a simple generator based on

syntactical rules. Moreover, to strengthen the exclusion predicated we

manually checked for all the domains that all the uncontrollable actions

were mutually exclusive with themselves, and we forced this information

in the mutual-exclusion generator.

The results are reported in figure 12.10. We differentiate a technique

from its version in which simplification is applied as pre-processing by

296

CHAPTER 12. ACTION-BASED STPUD

0 500 1000 1500

Number of solved instances

T
im

e
(s

ec
)

0.1

1

10

50

100

300

600

DR approach
LAD approach
TO approach
DR approach + Simplification
LAD approach + Simplification
TO approach + Simplification

0 500 1000 1500 2000

Number of solved instances

T
im

e
(s

ec
)

0.1

1

10

50

100

300

600

COLIN−Container−Exclusion
COLIN−Clip−Exclusion
COLIN−Container−Exclusion + Simplification
COLIN−Clip−Exclusion + Simplification

Figure 12.10: Log-scale cactus plot showing the impact of simplification in our experiments.

adding a “+ Simplification” to the technique name.

The simplification pre-processing turns out to be useful in all the cases

except for the LAD and TO approaches where it is not beneficial nor

detrimental. This is because there is little overhead in solving a STNU

with respect to a DTNU and the simplification technique, removing some

of the uncertainty, only changes some time points from uncontrollable to

controllable by keeping the same constraint structure.

We also analyzed in detail the performance of the best-performing solvers

of compilation and direct approach and we report the scatter plots in fig-

ure 12.11. Also in this case, there is an evident complementary behavior

of the two techniques.

297

12.6. EXPERIMENTAL EVALUATION

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

COLIN−Clip−Exclusion + Simplification

D
R

 a
pp

ro
ac

h
+

 S
im

pl
ifi

ca
tio

n

TO
MO

TO M
O

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

COLIN−Clip−Exclusion + Simplification

LA
D

 a
pp

ro
ac

h
+

 S
im

pl
ifi

ca
tio

n

TO
MO

TO M
O

Figure 12.11: Scatter plots comparing the two best complete techniques.

298

Chapter 13

Timelines with temporal uncertainty

Differently from action-based languages, timeline-based formalisms repre-

sent the planning problem as a sort of sequential constraint problem. Many

practical planners use this representation, because it is very powerful and

compositional.

To the best of our knowledge, no work addresses the problem of un-

controllable durations in timeline-based formalisms: existing planners are

either employed using re-planning when the contingencies gets unaligned

with the model, or rely on flexible solutions.

We propose a principled, dedicated formalism that includes support for

uncontrollable durations. We first define the general planning problem.

Then, similarly to SATPlan approaches, we formalize the bounded plan-

ning problem given a time horizon and we give a theoretical, sound and

complete encoding in First Order Logic modulo the LRA theory. The

encoding is intended to clarify the semantics and to give a baseline for

future approaches, but it is solvable by any SMT solver supporting the

(quantified) LRA theory.

299

13.1. PROBLEM DEFINITION

Visible

[10, 11]

Hidden

[10, 12]

Send1

[5, 5]

D
U
R
IN

G

Idle

[1,∞]

Send2

[5, 5]

D
U
R
IN

G

Satellite

Device

Figure 13.1: Timeline Running Example. The system is modeled as two generators: each state

is a value with duration specified in brackets. Synchronizations are shown as dashed arrows

labeled with Allen relations.

13.1 Problem Definition

In this section, we define the abstract syntax and semantics of a timeline-

based language supporting temporal uncertainty in the interval durations.

The language is similar to the APSI [CCF+09] and NDDL [BWMB+05]

formalisms, but here we focus on the temporal uncertainty, disregarding

advanced features such as resources or token parameters.

As an example, consider a communication device that can send data

packets of two different types to a satellite during the time period in which

the satellite is visible. The visibility window of the satellite is not con-

trollable by the communication device and it ranges between 10 and 11

hours, while the satellite remains hidden in the following 10-12 hours (also

uncontrollably). The device needs 5 hours to send each packet of data and

a transmission has to happen during the visibility window. Notice that

both the satellite and the device can be in each state more than once. The

satellite is initially hidden, and the device is idle. The goal is to send one

data packet per type. The situation is depicted in figure 13.1.

300

CHAPTER 13. TIMELINES WITH TEMPORAL UNCERTAINTY

Syntax. We introduce an abstract notation for timeline-based domain de-

scriptions. We retain all the features of the concrete languages used in

timelines applications. Intuitively, the timeline framework can be thought

of as a “sequential version” of Allen’s algebra, where the same activity can

be instantiated multiple times. The instantiations are obtained by means

of generators.

Definition 68. A generator G is a tuple 〈V, T, δ〉 such that V is a finite

set of values, T ⊆ V × V is a transition relation, δ is a temporal labeling

function associating to each value v ∈ V an interval of possible durations

[l, u].

A generator represents a state variable over values V in a timeline frame-

work1. The transition relation T is used to logically describe the evolution

of the generator. If T (vi, vj), then the end of (an instance of) activity vi

can be followed by the start of (an instance of) activity vj. In our satellite

example, the system is composed of two generators: the Satellite and the

Communicator. The Satellite generator has values {V isible,Hidden}, the

transition relation imposes the alternation of V isible and Hidden values,

and the δ function imposes the minimal and maximal duration of each

value (V isible→ [10, 11), Hidden→ [10, 12)). The Communicator gener-

ator is three-valued (Idle, Send1, Send2), the transition relation imposes

the automaton shape depicted in figure 13.1 and the duration constraints

are Idle→ [1,∞), Send1→ [5, 5) and Send2→ [5, 5).

In order to express the constraints between different generators, we in-

troduce the notion of synchronization.

Definition 69. Let Gi =̇ 〈Vi, Ti, δi〉 be generators, with i ∈ {0, . . . , n}. An

n-ary synchronization σ is a triple 〈〈G0, v0〉, {〈G1, v1〉, . . . , 〈Gn, vn〉}, C〉,
such that, for all i ∈ {0, . . . , n}, vi ∈ Vi, and C is a set of Allen constraints

1Without loss of generality, we disregard the parametrization used in some timeline languages.

301

13.1. PROBLEM DEFINITION

in the form vh ./ vk, with h, k ∈ {0, . . . , n}, with ./ being a metric Allen

operator.

The synchronizations are based on Allen’s temporal operators applied to

generator values. The interpretation, however, is quite different from [All83].

For example, “Send1 during [0,∞) V isible” means that every instance of

Send1 occurs during some instance of V isible; and, similarly, “V isible

during−1 [0,∞) Send1” means that during every visibility window some

Send1 occurs. Therefore, the algebraic properties of [All83] are not re-

tained here. In figure 13.1, we indicated two synchronizations using dashed

arrows. These synchronizations are used to require that the packet of data

is sent during the visibility window.

A set of generators and a set of synchronizations are sufficient to define

a planning domain. For what concerns the planning problem, we do not

distinguish between facts and goals: we just require an execution that

exhibits a set of (temporally-extended and temporally constrained) facts.

Definition 70. Let G =̇ 〈V, T, δ〉 be a generator. A unary fact is a tuple

〈G, v, Is, Ie〉, where v ∈ V and Is, Ie are two closed intervals. Let f1 and f2

be two unary facts and let ./ be a metric Allen operator. A binary fact is

a constraint in the form f1 ./ f2.

A unary fact prescribes the existence of a value v in the execution

of G, that starts during Is and ends during Ie. A binary fact is use-

ful to impose constraints (e.g. precedence, containment) between the in-

tervals in the corresponding unary facts. In our satellite example, we

use two unary facts to force the initial condition of the system: f1 =̇

〈Satellite,Hidden, [0, 0], [0,∞)〉 forces the satellite to be in Hidden state

at 0. Similarly, f2 =̇ 〈Communicator, Idle, [0, 0], [0,∞)〉 constrains the

initial state of the communicator to be idle.

302

CHAPTER 13. TIMELINES WITH TEMPORAL UNCERTAINTY

Similarly, to express the goals we introduce g1 and g2 defined as follows.

g1 =̇ 〈Communicator, Send1, [0,∞), [0,∞)〉

g2 =̇ 〈Communicator, Send1, [0,∞), [0,∞)〉

The goals require the communicator to be eventually in Send1 state and

in Send2 state. If we need to order the goals, prescribing that the packet 1

must be sent before packet 2, we can impose a binary fact (g1 before[0,∞)

g2). Notice that the goals are temporally extended, i.e. they do not simply

require to reach a final condition, but allow constraints throughout the

execution.

The above definitions characterize timelines in the classical sense. In

order to deal with temporal uncertainty, we now introduce an annotation

to distinguish controllable and uncontrollable elements. This is similar

to the subdivision in controllable and uncontrollable durative actions we

presented in the previous chapter, but here we also allow uncontrollable

starting points, hence we end up with four possible cases.

Definition 71. A CU-annotation for a set of generators G =̇ {〈Vi, Ti, δi〉 |
i ∈ [1, n]} is a function β : G ×

⋃
i Vi → {c,u}× {c,u}. A CU-annotation

for a set of synchronizations S is a function β : S → {c,u}.

With a slight abuse of notation, we overload the β function. The u flag

identifies an uncontrollable element, therefore the flagged time instant is

not under the control of the agent. Instead, the c flag identifies control-

lable elements. Consider again the running example. If we flag both the

states of the satellite with (u,u) and all the rest as controllable, we are

modeling a situation in which the satellite visibility is not decidable by the

communicator, the only possible assumption is the minimal and maximal

durations. We now define what a planning problem is.

303

13.1. PROBLEM DEFINITION

Definition 72. Let G be a generator set, Σ a set of synchronizations over

the generators in G, F and R be sets of unary and binary facts, respectively.

Let β be a CU-annotation. A timeline controllability problem P is a tuple

〈G,Σ,F ,R, β〉.

In this work, possible solutions are time-triggered plans, defined as fol-

lows.

Definition 73. A time-triggered plan is a (possibly infinite) sequence

〈G1, v1, cmd1, t1〉; 〈G2, v2, cmd2, t2〉; . . . where, for all i ≥ 1, vi is a value

for Gi, cmdi ∈ {s,e}, and ti ≤ ti+1.

Intuitively, at a specific time point, a time triggered plan may specify

one or more start/end commands to be executed on a specific generator

and value. This definition is syntactic; the executability of a time-triggered

plan is defined at the semantic level. This plan formulation is completely

analogous to the one in definition 58, we simply cast the same idea in the

timeline framework. This definition allows for infinitely-long plans, but

we will disregard infinite plans when we introduce the bounded planning

problem.

Semantics. In the following we assume that a timeline description is given.

We provide an interpretation of timelines by means of streams, i.e. possibly

infinite sequences of time-labeled activity instances.

Definition 74. Let G =̇ 〈V, T, δ〉 be a generator. A stream S for G is

a (possibly infinite) sequence 〈v1, d1〉; 〈v2, d2〉; . . . such that, for all i ≥ 1,

vi ∈ V , 〈vi, vi+1〉 ∈ T , di ∈ δ(vi).

Given a stream S, we use the following notation:

• V alue(S, i) =̇ vi;

• StartT ime(S, i) =̇
∑i−1

j=1 dj;

304

CHAPTER 13. TIMELINES WITH TEMPORAL UNCERTAINTY

• EndTime(S, i) =̇ StartT ime(S, i) + di;

• Interval(S, i) =̇ 〈StartT ime(S, i), EndT ime(S, i)〉.

We can now define the compatibility of a stream with the problem con-

straints.

Definition 75. Let G0, . . . , Gn be generators, and let σ be a synchroniza-

tion 〈〈G0, v0〉, {〈G1, v1〉, . . . , 〈Gn, vn〉}, C〉. For 0 ≤ i ≤ n, let Si be a

stream for Gi. {S0, . . . , Sn} fulfills σ if and only if for all j0 such that

(V alue(S0, j0) = v0), there exist j1, . . . , jn such that for every constraint

(vh ./ vk) ∈ C, Interval(Sh, jh) ./ Interval(Sk, jk) holds.

Notice that, in general, n-ary synchronizations, cannot be expressed in

terms of binary synchronizations only. This is true only in the case where

each Allen constraint involves one value from G0 and one from another

Gi. In the case of constraints between Gi and Gj, with i, j > 0 a binding

between the activities in Gi and Gj is introduced, but the binding is further

constrained by G0.

Definition 76. Let G be a generator, and let S be a stream for G. S

fulfills the unary fact 〈G, v, Is, Ie〉 at i if and only if V alue(S, i) = v,

StartT ime(S, i) ∈ Is and EndTime(S, i) ∈ Ie.

Definition 77. Let f1 ./ f2 be a binary fact, where fi =̇ (Gi, vi, Isi, Iei). Let

S1 and S2 be streams for G1 and G2 respectively. S1 and S2 fulfill f1 ./ f2

if and only if S1 fulfills f1 at i1, S2 fulfills f2 at i2, and Interval(S1, i1) ./

Interval(S2, i2).

Definition 78. A time-triggered plan 〈G1, v1, cmd1, t1〉; 〈G2, v2, cmd2, t2〉; . . .
induces a stream S on G=̇〈V, T, δ〉 if and only if for all i ≥ 1, when G = Gi,

there exists j ≥ 1 such that :

1. if cmdi = s then StartT ime(S, j) = ti;

305

13.1. PROBLEM DEFINITION

2. if cmdi = e then EndTime(S, j) = ti.

Definition 79. A time triggered plan 〈G1, v1, cmd1, t1〉; 〈G2, v2, cmd2, t2〉; . . .
obeys a CU-annotation β if and only if for each i ≥ 1:

1. if cmdi = s then β(Gi, vi) ∈ {〈c,c〉, 〈c,u〉};

2. if cmdi = e then β(Gi, vi) ∈ {〈c,c〉, 〈u,c〉}.

Intuitively, this means that each assigned time point is labeled as con-

trollable.

Definition 80. Let π be a time-triggered plan, β a CU-annotation and G
the set of generators controlled by π. π is complete with respect to β if for

each G ∈ G and for each stream S =̇ 〈v1, d1〉; 〈v2, d2〉; . . . of G induced by π

and for each i:

1. if β(G, vi) ∈ {〈c,c〉, 〈c,u〉} then 〈G, vi, s, StartT ime(S, i)〉 ∈ π;

2. if β(G, vi) ∈ {〈c,c〉, 〈u,c〉} then 〈G, vi,e, EndT ime(S, i)〉 ∈ π.

In other words, if π is complete, each controllable time point of an

induced stream S is assigned by π.

Definition 81. Given the CU-annotation β, a stream 〈v1, d1〉; 〈v2, d2〉; . . .
for generator G =̇ 〈V, T, δ〉 is said to satisfy contingencies of G if and only

if for each i ≥ 1, vi ∈ V , 〈vi, vi+1〉 ∈ T and if β(Gi, vi) ∈ {〈u,u〉, 〈u,c〉}
then di ∈ δ(vi).

In other words, a stream satisfies the contingencies of a generator if it

is compatible with the generator constraints on the uncontrollable values.

Definition 82 (Solution to strong controllability problem). A time-triggered

plan π is a strong solution for P =̇ 〈G,Σ,F ,R, β〉 if and only if it obeys

and is complete w.r.t β, and all the streams induced by π that are com-

patible with the consistencies of the generators in G and that fulfill the

306

CHAPTER 13. TIMELINES WITH TEMPORAL UNCERTAINTY

Hidden Visible Hidden Visible

Idle Send1 Idle Send2

Satellite

Device

0 10 12 15 20 23 30 35 40

Figure 13.2: An execution of the satellite example that fulfills the problem constraints. The

striped regions are uncertain: depending on the actual duration of the intervals the satellite can

be either in Hidden or in Visible state.

synchronizations labeled as u, also fulfill each generator, the rest of Σ, F
and R.

Intuitively, we are searching for a plan that constrains the execution in

such a way that for every possible evolution of the uncontrollable parts

(fulfilling the assumed contingencies), all the problem constraints are sat-

isfied.

In many practical problems, we are interested in finding solutions to a

strong controllability problem within a given temporal horizon H.

Definition 83 (Bounded solution to strong controllability problem). A fi-

nite time-triggered plan π is a strong bounded solution for P =̇〈G,Σ,F ,R, β〉
for a time horizon H ∈ R+ if and only if the following conditions hold:

1. π obeys and is complete with respect to β;

2. all the streams compatible with π finish after H;

3. each stream S that is compatible with the contingencies of the gener-

ators in G and that satisfies the synchronizations labeled as u, also

satisfies the generator constraints, F , R, and the rest of Σ is satisfied

for every interval of S that ends before H.

Note that we chose to impose no constraint on intervals that end after

the horizon, but other semantics are possible.

307

13.2. BOUNDED ENCODING IN FOL

We highlight that searching for a time-triggered plan means searching

for a fixed assignment of controllable decisions in time. For instance, in

the satellite example it is possible to produce a time triggered plan for

sending each packet once as shown in figure 13.2. However, it is not possible

to send more packets, because the uncertainty in the satellite compresses

the guaranteed visibility window. Consider again figure 13.2, the next

guaranteed visibility window of the satellite would be [58, 60) that is too

short for sending another packet.

13.2 Bounded Encoding in FOL

We now reduce the problem of finding a solution for a bounded strong

controllability problem to an SMT problem. Intuitively, we aim at finding

a finite sequence of intervals, that completely covers the time-span between

0 and the horizon H, that fulfill all the problem constraints. Note that no

synchronization constraints are imposed on intervals that end after the

horizon bound.

We resort to an encoding that resembles a SAT-Plan [KS92] encoding

of a planning problem: the underlying idea is to logically model a set of

bounded streams and to impose the problem constraints on the streams. If

the resulting formula is satisfiable, it means that a model for the formula

codifies a stream that witnesses a solution for the original problem.

Let H ∈ R+ be the horizon, a generator G =̇ 〈V, T, δ〉 is associated with

a maximum number of intervals (assuming each δ(v) > 0). A coarse upper

bound MG is given dividing H by the minimal duration associated with

any value in V :

MG =̇ d H

minv∈V start(δ(v))
e.

We use two set of variables for each generator G: V alueOfG(j) and

EndOfG(j), whose interpretation defines the stream for G. V alueOfG(j)

308

CHAPTER 13. TIMELINES WITH TEMPORAL UNCERTAINTY

gives the value of the j-th interval, while EndOfG(j) encodes the end time

point of the j-th interval. Thus, for each generator G=̇〈V, T, δ〉, we can use

MG variables V alueOfG(j) ranging over the domain V , and MG variables

EndOfG(j) of type R+ to model a bounded stream that is guaranteed to

cover the interval [0, H].

EndOfG(j) defines time points in which the stream changes its value.

Unfortunately, whether a time point is controllable or not cannot be de-

tected statically in general. In fact, depending on the discrete path encoded

in the assignments to V alueOfG(j), the j-th time point can be either

controllable or uncontrollable. For this reason, we have to introduce MG

new variables, called UG(j), that model the uncertain values (analogous to

EndOfG(j)). In order to properly capture the strong controllability of the

execution, we consider EndOfG(j − 1) and V alueOfG(j) as existentially-

quantified variables, and UG(j) as universally quantified variables. We

indicate with UG the set of all the UG(j) variables. In order to impose the

proper constraints on either EndOfG(j) or UG(j) we have to condition

the constraint on the controllability of the j-th interval that is decided at

solving time. Therefore we introduce two macros SG(j, UG) and EG(j, UG)

that encapsulate this conditioning and return the proper value that en-

codes the start or the end of the j-interval respectively. The first formula,

SG(j, UG), is defined as follows.

SG(j, UG) =̇ ite(j = 0, 0, ite(β(G, V alueOfG(j)) ∈ {〈c,c〉, 〈c,u〉},

EndOfG(j − 1),

UG(j − 1)))

Similarly, EG(j, UG) is defined as

ite(β(G, V alueOfG(j)) ∈ {〈c,c〉, 〈u,c〉}, EndOfG(j), UG(j)) .

Let UsedG(j) be the predicate defined as EG(j, UG) ≤ H. The encod-

ing is defined as follows. For each generator G =̇ 〈V, T, δ〉, we define

309

13.2. BOUNDED ENCODING IN FOL

V alueG =̇
∧MG

j=1 V alueOf
G(j) ∈ V to force the domain of V alueOfG(j)

and TransG =̇
∧MG−1
j=1 T (V alueOfG(j), V alueOfG(j + 1)) to codify the

transition relation of G.

We split the constraints encoding the interval durations in two distinct

formulae as follows.

ΓG(UG) =̇
∧MG

j=1((β(G, V alueOfG(j)) ∈ {〈c,u〉, 〈u,u〉})→

(EG(j, UG)− SG(j, UG) ∈ δ(V alueOfG(j))))

ΨG(UG) =̇
∧MG

j=1((β(G, V alueOfG(j)) ∈ {〈c,c〉, 〈u,c〉})→

(EG(j, UG)− SG(j, UG) ∈ δ(V alueOfG(j))))

For every uncontrollable synchronization

σ =̇ 〈〈G0, v0〉, {〈G1, v1〉, . . . , 〈Gn, vn〉}, C〉

with (β(σ) = u), we define Γσ(UG0, . . . , UGn) as follows.∧MG0

j0=1(V alueOf
G0(j0) = v0 ∧ UsedG0(j0))→

(
∨MG1

j1=1

(
V alueOfG1(j1) = v1 ∧ UsedG1(j1)

)
∧ . . .

(
∨MGn

jn=1(V alueOf
Gn(jn) = vn ∧ UsedGn(jn))∧∧

vk./vh∈C ξ(./, S
Gk(jk, U

Gk), EGk(jk, U
Gk),

SGh(jh, U
Gh), EGh(jh, U

Gh))) . . .)

Where ξ(./, s1, e1, s2, e2) is the LRA encoding of the Allen constraint I1 ./

I2 with the interval Ii being [si, ei].

We also define Ψσ(UG0, . . . , UGn) in the very same way for each con-

trollable synchronization (β(σ) = c). The formula encoding unary facts

is obtained by imposing the existence of a compatible interval in the con-

sidered stream. For each unary fact f =̇ 〈G, v, Is, Ie〉 we define Ψf(U
G)

as:

Ψf(U
G) =̇

MG∨
j=1

Fact(UG, j)

310

CHAPTER 13. TIMELINES WITH TEMPORAL UNCERTAINTY

where Fact(UG, j) is defined as:

UsedG(j) ∧ (V alueOfG(j) = v) ∧ SG(j, UG) ∈ Is ∧ EG(j, UG) ∈ Ie .

For every binary fact requirement r =̇ f1 ./ f2, where fi =̇ 〈Gi, vi, Isi, Iei〉
we define Ψr(U

G1, UG2) as
∨MG1

j1=1

∨MG2

j2=1(Fact(U
G1, j1)∧Fact(UG2, j2)∧ ξ(./

, SG1(j1, U
G1), EG1(j1, U

G1), SG2(j2, U
G2), EG2(j2, U

G2))).

Finally, let Σu be the subset of Σ of the uncontrollable synchronizations

and let Σc be Σ/Σu. The overall encoding for the problem is:

∧
G∈G V alueG ∧

∧
G∈G TransG ∧ ∀UG0, . . . , UGn.

((
∧
G∈G ΓG(UG) ∧

∧
σ∈Σu

Γσ(UG0, . . . , UGn))→

(
∧
G∈G ΨG(UG) ∧

∧
σ∈Σc

Ψσ(UG0, . . . , UGn)∧∧
f=〈G,v,Is,Ie〉∈F Ψf(U

G)∧∧
r=〈G1,v1,Is1 ,Ie1〉./〈G2,v2,Is2 ,Ie2〉∈R

Ψr(U
G1, UG2))).

The universal quantification captures the “universality” of the solution:

for each possible allocation of the uncontrollables, given by UG0, . . . , UGn,

we impose that the contingent part of the problem implies the require-

ments. The encoding admits a model if and only if there exist a bounded

solution to the original problem and the model can be used to build a com-

plete time-triggered plan for the original bounded strong controllability

problem. This formula is a first-order quantification over a finite set of real

variables. Therefore, it can be decided by a SMT(LRA) solver equipped

with a quantifier elimination procedure.

13.3 Discussion

The first-order encoding we reported is sound and complete for the bounded-

horizon problem. However, the approach is quite naive and preliminary

311

13.3. DISCUSSION

experiments show it does not scale well even on very small problems. This

is due to cost of quantifier elimination: the universal quantifier modeling

the uncontrollable behaviors covers the entire encoding, requiring a huge

monolithic elimination to be handled.

We remark that the value of the encoding is to give a base-line for future

improvements and to clarify the semantics of the problem.

We think that two directions are promising for extending this work.

First, the encoding is similar to SAT-Plan, hence we can try to adapt the

different optimizations that have been proposed in classical planning to

improve scalability [Rin12]. A second direction is to extend the plan-space

search approaches that are commonly used in timeline-based planners to

deal with uncertainty. This is similar but different to the work we did to

define the S-FSSTP approaches, because the operators in the plan-space

search framework are radically different. Nonetheless, we imagine that

similar issues to the one we addressed in S-FSSTP will arise.

312

Strong Temporal Planning with

Uncontrollable Durations

Conclusions

In this part, we pushed the temporal planning techniques to the “Duration-

only Plant, Time-Strong Executor” cell of table 3.2. We analyzed in detail

the case of action-based formalisms and started extending the concepts to

the timeline languages. The work primarily concentrated in developing

techniques that exploit the experience gained when dealing with Temporal

Networks with Uncertainty. In fact, the DR approach directly exploits the

strong controllability encodings we developed, the compilation approach

generalizes to real of planning the static elimination techniques for STNU

and TCSNU.

This work can be extended in many different directions. First, we plan

to continue the research line in timeline planning, proposing practical al-

gorithms for dealing with the strong planning problem. With this respect

a promising idea is to work on extending Plan-Space Search techniques

analogously to what we did for FSSTP.

Second, resources are not considered by the current approach. As we ex-

plained in chapter 6, resources can also be a source of uncertainty much like

the action duration and this is currently not supported by our approaches.

Another direction that is very important is the support for continuous

change (sometimes called hybrid planning).

313

13.3. DISCUSSION

An orthogonal future work is surely to push these techniques towards

dynamic planning (The “Duration-only Plant, Time-Dynamic Executor”

cell of table 3.2). This step is not just a matter of substituting the strong

controllability solver with a dynamic controllability technique: in planning,

if the executor is allowed to observe at runtime, it is also allowed to execute

different sets of actions depending on an observation. Hence, the shape of

plans is no longer linear, but is rather a strategy (analogously to contingent

planning in the non-temporal case). Nonetheless a middle-ground between

these techniques and dynamic planning with duration uncertainty can be

found and the development of dynamic planning techniques is surely a very

important open problem.

314

Chapter 14

Thesis Conclusion

In this thesis, we analyzed the problem of planning and scheduling in pres-

ence of temporal uncertainty from different perspectives. First, we ratio-

nalized the problem by proposing a novel classification schema based on

the interplay of an abstract plan executor and a plant. The derived classi-

fication table (table 3.2) is used as a guide in the landscape of scheduling

and planning problems.

We started by surveying the state-of-the-art concerning temporal net-

works scheduling and temporal planning, then we contributed in several

directions.

1. We improved the state-of-the-art on the problem of strong controlla-

bility for DTNU using a set of novel encodings of the problems in the

SMT framework.

2. We tackled the weak controllability problem for DTNU, proposing a

number of algorithms for strategy synthesis that exploit SMT solvers

for quantitative reasoning as well as encodings for deciding if a given

network is weakly controllable.

3. We discussed the open problem of dynamic controllability for DTNU,

showing a reduction from dynamic controllability problem of temporal

315

14.1. FUTURE WORK

networks to reachability game in a Timed Game Automaton and also

dedicated synthesis and validation algorithms.

4. In the planning context, we dealt with the problem of Strong Temporal

Planning with Uncontrollable Durations in action-based languages,

proposing a portfolio of techniques to deal with the landscape of sub-

classes of the problem.

5. Finally, we defined the strong temporal planning problem for timeline-

based planning, providing a novel formalization of the problem and a

theoretical formalization of a bounded-horizon solution.

14.1 Future Work

There are several directions for extending this work.

First, it would be important to go beyond strong planning looking into

dynamic planning (i.e. considering the next column of table 3.2). This is

surely important for practical applications, but is non-trivial. In fact, if

we allow the executor to observe the duration of actions at run-time, then

different sets of actions may be chosen according to different observation.

In this respect, a dynamic plan would be similar to Conditional Planning

in Non-Deterministic domains [CPRT03]. Moreover, as we discussed in

section 3.6.1, it would be interesting to explore the middle-ground between

strong and dynamic controllability and between dynamic controllability

and weak controllability (also in the planning case).

As a second direction, in both the scheduling and planning parts we

disregarded resources (controllable or even uncontrollable), but resources

are extremely important in practical applications and are widely studied

in the scheduling community. Extending our scheduling techniques for

dealing with resources is possible, but presents some challenges: in some

316

CHAPTER 14. THESIS CONCLUSION

parts of our reasoning we exploit the fact that temporal constraints are

limited to a specific form in QF RDL, but we often use very expressive

SMT theories, such as QF LRA, that can accommodate at least some

classes of resources. Similarly, our planning approaches can be extended

to deal with resources.

Third, in this thesis work we focused on the problems of schedulability

check, strategy synthesis and plan generation, but other important prob-

lems are open in the context of planning and scheduling under temporal

uncertainty.

Plan validation is the problem of checking the validity of a given plan

against a planning instance. It is a fundamental problem because it allows

the cross-checking of the synthesis tools correctness and the validity as-

sessment of hand-written plans. The plan validation problem is relatively

easy in the context of plain temporal planning: it suffices to simulate the

domain controlled by the plan and ensure that no action condition is vio-

lated and that the goals are satisfied by the execution trace. When we add

uncertainty to the domain, however, the problem becomes much harder

as the validation must consider all the possible evolutions of the environ-

ment and ensure that the plan is valid for each of them. In this sense, the

problem can be seen as a model-checking problem of a timed system.

As any other model-based technique, also planning results are as good

as the model provided in input, for this reason any technique that goes in

the direction of improving models is important for the development of the

field. Domain validation is the problem of checking the planning instance

specification against a set of desired and undesired behaviors to improve the

confidence in the adherence of the specification with the modeled reality.

This is traditionally treated as a model checking problem for the case

without uncertainty: a set of formal properties are checked against the

planning specification. When we add uncertainty, the issue becomes much

317

14.1. FUTURE WORK

harder as we are formally checking a set of properties on a two-party game

formalism. Moreover, if we consider continuous resources in the problem

specification, the validation problem enters the realm of Hybrid Automata

verification that is largely an open field. We believe that these issues are

largely under-estimated in the planning community and require a deeper

investigation.

Fourth, the work in this thesis is focused on finding a solution (if any)

to the problems we addressed, but, as in many other fields of computer

science, when multiple solutions are possible the issue of finding the best

solution according so some criteria arises. This is true for scheduling, where

we might seek the optimal scheduling strategy, but also for planning if we

look for an optimal plan (e.g. the shortest possible plan).

Fifth, the non-deterministic rows of table 3.2 are very important for the

practical applications, but are currently uncovered by existing techniques.

Finally, there is the never-ending quest for performance: all the tech-

niques we presented have worst-case exponential computational complexity

(because the addressed problems are not polynomial), hence scalability is

the main issue for the adoption of such techniques in practical applications.

All the empirical tests we presented go in this direction: we always try to

push the performance of our technique as much as possible.

318

Bibliography

[ACG99] Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-

based procedures for temporal reasoning. In ECP, pages 97–108, 1999.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical

Computer Science, 126(2):183–235, 1994.

[AF92] David Avis and Komei Fukuda. A pivoting algorithm for convex hulls and

vertex enumeration of arrangements and polyhedra. Discrete and Compu-

tational Geometry, 8(1):295–313, 1992.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Commu-

nications of ACM, 26(11):832–843, 1983.

[ATZ04] Douglas Aberdeen, Sylvie Thiébaux, and Lin Zhang. Decision-theoretic

military operations planning. In ICAPS, pages 402–412, 2004.

[BA01] Fahiem Bacchus and Michael Ady. Planning with resources and concur-

rency: A forward chaining approach. In IJCAI, pages 417–424, 2001.

[Bäc98] Christer Bäckström. Computational aspects of reordering plans. Journal of

Artificial Intelligence Research, 9:99–137, 1998.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and

Yunshan Zhu. Bounded model checking. Advances in Computers, 58:117–

148, 2003.

[BCD+07] Gerd Behrmann, Agns Cougnard, Alexandre David, Emmanuel Fleury,

KimG. Larsen, and Didier Lime. Uppaal-Tiga: Time for playing games!

In CAV, pages 121–125. 2007.

319

BIBLIOGRAPHY

[BCF+08] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Grig-

gio, and Roberto Sebastiani. The MathSAT 4 SMT solver. In CAV, pages

299–303, 2008.

[BD11] James Boerkoel and Ed Durfee. Challenges in maintaining minimal, decom-

posable disjunctive temporal problems. In IJCAI - AILog Workshop, pages

494–502, 2011.

[BDM+02] John L. Bresina, Richard Dearden, Nicolas Meuleau, Sailesh Ramakrishnan,

David E. Smith, and Richard Washington. Planning under continuous time

and resource uncertainty: A challenge for AI. In UAI, pages 77–84, 2002.

[BDM+13] Clark Barrett, Morgan Deters, Leonardo Moura, Albert Oliveras, and Aaron

Stump. 6 years of SMT-COMP. Journal of Automated Reasoning, 50:243–

277, 2013.

[Ben02] Johan Bengtsson. Clocks, DBM, and States in Timed Systems. PhD thesis,

Uppsala University, 2002.

[BF97] Avrim Blum and Merrick L. Furst. Fast planning through planning graph

analysis. Artificial Intelligence, 90(1-2):281–300, 1997.

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhe-

dra Library: Toward a complete set of numerical abstractions for the analy-

sis and verification of hardware and software systems. Science of Computer

Programming, 72(1–2):3–21, 2008.

[BL11] Bahareh Badban and Martin Lange. Exact incremental analysis of timed

automata with an SMT-solver. In Formal Modeling and Analysis of Timed

Systems, pages 177–192. 2011.

[BPST10] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsi-

tovich. The OpenSMT solver. In TACAS, pages 150–153, 2010.

[BS11] Sara Bernardini and David E. Smith. Automatic synthesis of temporal

invariants. In SARA, 2011.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.

Satisfiability modulo theories. In Handbook of Satisfiability, pages 825–885.

IOS Press, 2009.

320

BIBLIOGRAPHY

[BST+10] Clark Barrett, Aaron Stump, Cesare Tinelli, Sascha Boehme, David Cok,

David Deharbe, Bruno Dutertre, Pascal Fontaine, Vijay Ganesh, Alberto

Griggio, Jim Grundy, Paul Jackson, Albert Oliveras, Sava Krstić, Michal

Moskal, Leonardo De Moura, Roberto Sebastiani, To David Cok, and Jochen

Hoenicke. The SMT-LIB standard: Version 2.0. Technical report, 2010.

[Bul12] Peter Bulychev. The uppaal pydbm library —

http://people.cs.aau.dk/ adavid/udbm/python.html, 2012.

[BWMB+05] Tania Bedrax-Weiss, Conor McGann, Andrew Bachmann, Will Edgington,

and Michael Iatauro. Europa2: User and contributor guide. Technical

report, NASA Ames Research Center, 2005.

[CCF+09] Amedeo Cesta, Gabriella Cortellessa, Simone Fratini, Angelo Oddi, and

Riccardo Rasconi. The APSI framework: a planning and scheduling soft-

ware development environment. In ICAPS - Application Showcase Program,

Thessaloniki, Greece, 2009.

[CCFL10] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long. Forward-

chaining partial-order planning. In ICAPS, pages 42–49, 2010.

[CCFL12] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long. Colin:

Planning with continuous linear numeric change. Journal of Artificial In-

telligence Research, 44:1–96, 2012.

[CCO+12] Amanda Jane Coles, Andrew Coles, Angel Garćıa Olaya, Sergio Jiménez

Celorrio, Carlos Linares López, Scott Sanner, and Sungwook Yoon. A survey

of the seventh international planning competition. AI Magazine, 33(1),

2012.

[CDF+05] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand

Larsen, and Didier Lime. Efficient on-the-fly algorithms for the analysis

of timed games. In CONCUR, pages 66–80, 2005.

[CFH+09] Andrew Coles, Maria Fox, Keith Halsey, Derek Long, and Amanda Smith.

Managing concurrency in temporal planning using planner-scheduler inter-

action. Artificial Intelligence, 173(1):1–44, 2009.

[CFLS08] Andrew Coles, Maria Fox, Derek Long, and Amanda Smith. Planning with

problems requiring temporal coordination. In AAAI, pages 892–897, 2008.

321

BIBLIOGRAPHY

[CG67] Harold S. M. Coxeter and Samuel L. Greitzer. Collinearity and concurrence.

In Geometry Revisited, pages 51–79. Mathematical Association of America

Textbooks, 1967.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and

Roberto Sebastiani. The MathSAT5 SMT solver. In TACAS, 2013.

[CH91] George E. Collins and Hoon Hong. Partial cylindrical algebraic decomposi-

tion for quantifier elimination. Journal of Symbolic Computation, 12(3):299–

328, 1991.

[CHM+14] Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato,

and Marco Roveri. Sound and complete algorithms for checking the dynamic

controllability of temporal networks with uncertainty, disjunction and ob-

servation. In TIME, pages 27–36, 2014.

[CHM+16] Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato,

and Marco Roveri. Dynamic controllability via timed game automata. Acta

Informatica, page to appear, 2016.

[CHMR14] Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, and Marco Roveri.

Using timed game automata to synthesize execution strategies for simple

temporal networks with uncertainty. In AAAI, pages 2242–2249, 2014.

[CKMW07] William Cushing, Subbarao Kambhampati, Mausam, and Daniel S. Weld.

When is temporal planning really temporal? In IJCAI, pages 1852–1859,

2007.

[CM06] Scott Cotton and Oded Maler. Fast and flexible difference constraint prop-

agation for dpll(t). In SAT, pages 170–183, 2006.

[CMR12a] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Solving temporal

problems using SMT: strong controllability. In CP, pages 248–264, 2012.

[CMR12b] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Solving temporal

problems using SMT: weak controllability. In AAAI, 2012.

[CMR13] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Timelines with

temporal uncertainty. In AAAI, pages 195–201, 2013.

322

BIBLIOGRAPHY

[CMR14] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Solving strong con-

trollability of temporal problems with uncertainty using SMT. Constraints,

2014.

[CMR15a] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. An SMT-based

approach to weak controllability for disjunctive temporal problems with

uncertainty. Artificial Intelligence, 224:1–27, 2015.

[CMR15b] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Strong temporal

planning with uncontrollable durations: A state-space approach. In AAAI,

pages 3254–3260, 2015.

[CMR16] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Dynamic con-

trollability of disjunctive temporal networks: Validation and synthesis of

executable strategies. In AAAI, page to appear, 2016.

[CO96] Amedeo Cesta and Angelo Oddi. Gaining efficiency and flexibility in the

simple temporal problem. In TIME, pages 45–50, 1996.

[CPRT03] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso.

Weak, strong, and strong cyclic planning via symbolic model checking. Ar-

tificial Intelligence, 147(1-2):35–84, 2003.

[CRK+00] Steve Chien, Gregg Rabideau, Russell Knight, Robert Sherwood, Barbara

Engelhardt, Darren Mutz, Tara Estlin, Benjamin Smith, Forest Fisher, et al.

Aspen-automating space mission operations using automated planning and

scheduling. In SpaceOps, 2000.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-

erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd

edition, 2001.

[CWwH06] Yixin Chen, Benjamin W. Wah, and Chih wei Hsu. Temporal planning

using subgoal partitioning and resolution in sgplan. Journal of Artificial

Intelligence Research, 26:323–369, 2006.

[CYF+15] Jing Cui, Peng Yu, Cheng Fang, Patrik Haslum, and Brian C. Williams.

Optimising bounds in simple temporal networks with uncertainty under

dynamic controllability constraints. In ICAPS, pages 52–60, 2015.

323

BIBLIOGRAPHY

[DBMIG14] Filip Dvorak, Arthur Bit-Monnot, Felix Ingrand, and Malik Ghallab. A

flexible anml actor and planner in robotics. In ICAPS - Planning and

Robotics Workshop, 2014.

[DdM06a] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic

solver for DPLL(T). In CAV, pages 81–94, 2006.

[DdM06b] Bruno Dutertre and Leonardo Mendonça de Moura. The Yices SMT solver.

Tool paper at http://yices.csl.sri.com/tool-paper.pdf, 2006.

[DK03] Minh Binh Do and Subbarao Kambhampati. Sapa: A multi-objective metric

temporal planner. Journal of Artificial Intelligence Research, 20:155–194,

2003.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine pro-

gram for theorem-proving. Communications of ACM, 5(7):394–397, 1962.

[dlT90] Thierry de la Tour. Minimizing the number of clauses by renaming. In Mark

Stickel, editor, CADE, volume 449 of LNCS, pages 558–572. Springer, 1990.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT

solver. In TACAS, pages 337–340, 2008.

[DMP91a] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks.

Artificial Intelligence, 49(1-3):61–95, 1991.

[DMP91b] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks.

Artificial Intelligence, 49(1-3):61–95, 1991.

[EH04] Stefan Edelkamp and Jörg Hoffmann. PDDL2.2: The language for the clas-

sical part of the 4th international planning competition. Technical Report

195, 2004.

[FJ03] Jeremy Frank and Ari Jónsson. Constraint-based attribute and interval

planning. Constraints, 8(4):339–364, 2003.

[FL03] Maria Fox and Derek Long. PDDL2.1: An extension to pddl for express-

ing temporal planning domains. Journal of Artificial Intelligence Research,

20:61–124, 2003.

[FL06] Maria Fox and Derek Long. Modelling mixed discrete-continuous domains

for planning. Journal of Artificial Intelligence Research, 27:235–297, 2006.

324

http://yices.csl.sri.com/tool-paper.pdf

BIBLIOGRAPHY

[FLH04] Maria Fox, Derek Long, and Keith Halsey. An investigation into the ex-

pressive power of PDDL2.1. In ECAI, pages 328–342, 2004.

[FN71] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the

application of theorem proving to problem solving. Artificial Intelligence,

2(34):189–208, 1971.

[GFL02] Antonio Garrido, Maria Fox, and Derek Long. A temporal planning system

for durative actions of PDDL2.1. In ECAI, pages 586–590, 2002.

[GHL+09] Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yan-

nis Dimopoulos. Deterministic planning in the fifth international planning

competition: PDDL3 and experimental evaluation of the planners. Artificial

Intelligence, 173(5-6):619–668, 2009.

[GK97] B. Cenk Gazen and Craig A. Knoblock. Combining the expressiveness of

UCPOP with the efficiency of Graphplan. In Sam Steel and Rachid Alami,

editors, ECP - Recent Advances in AI Planning. Springer-Verlag, New York,

1997.

[GL94] Malik Ghallab and Hervé Laruelle. Representation and control in ixtet, a

temporal planner. In AIPS, pages 61–67, 1994.

[GM15] Marco Gario and Andrea Micheli. pySMT: a solver-agnostic library for fast

prototyping of SMT-based algorithms. In SAT - SMT Workshop, 2015.

[GNT04] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning -

theory and practice. Elsevier, 2004.

[GSS03] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Planning through

stochastic local search and temporal action graphs in LPG. Journal of

Artificial Intelligence Research, 20:239–290, 2003.

[Gt12] Torbjörn Granlund and the GMP development team. GNU MP: The GNU

Multiple Precision Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.

org/.

[HA96] Robert B. Hughes and Michael R. Anderson. Simplexity of the cube. Dis-

crete Mathematics, 158(13):99–150, 1996.

325

http://gmplib.org/
http://gmplib.org/

BIBLIOGRAPHY

[HG01] Patrik Haslum and Héctor Geffner. Heuristic planning with time and re-

sources. In ECP, 2001.

[HPC12] Luke Hunsberger, Roberto Posenato, and Carlo Combi. The dynamic con-

trollability of conditional STNs with uncertainty. In ICAPS - PlanEx Work-

shop, pages 1–8, 2012.

[Hun09] Luke Hunsberger. Fixing the semantics for dynamic controllability and

providing a more practical characterization of dynamic execution strategies.

In TIME, pages 155–162, 2009.

[Hun10a] Luke Hunsberger. A fast incremental algorithm for managing the execution

of dynamically controllable temporal networks. In TIME, pages 121–128,

2010.

[Hun10b] Luke Hunsberger. A fast incremental algorithm for managing the execution

of dynamically controllable temporal networks. In TIME, pages 121–128,

Los Alamitos, CA, USA, 2010. IEEE Computer Society.

[Hun13] Luke Hunsberger. A faster execution algorithm for dynamically controllable

stnus. In TIME, pages 26–33, 2013.

[Hun14] Luke Hunsberger. A faster algorithm for checking the dynamic controllabil-

ity of simple temporal networks with uncertainty. In ICAART, 2014.

[IG14] Felix Ingrand and Malik Ghallab. Deliberation for autonomous robots: A

survey. Artificial Intelligence, 2014.

[KD00] Jonas Kvarnström and Patrick Doherty. Talplanner: A temporal logic based

forward chaining planner. Annals of Mathematics and Artificial Intelligence,

30(1-4):119–169, 2000.

[Kes96] Christoph W. Kessler. Parallel fourier-motzkin elimination. In Euro-Par,

pages 66–71, 1996.

[KJN12] Roland Kindermann, Tommi Junttila, and Ilkka Niemelä. Beyond lassos:

Complete SMT-based bounded model checking for timed automata. In

Formal Techniques for Distributed Systems, pages 84–100. 2012.

[Kle67] Stephen C. Kleene. Mathematical Logic. J. Wiley & Sons, 1967.

326

BIBLIOGRAPHY

[KS92] Henry A. Kautz and Bart Selman. Planning as satisfiability. In ECAI, pages

359–363, 1992.

[KSJ09] Hyondeuk Kim, Fabio Somenzi, and HoonSang Jin. Efficient Term-ITE

conversion for satisfiability modulo theories. In SAT, pages 195–208, 2009.

[LAT05] Iain Little, Douglas Aberdeen, and Sylvie Thiébaux. Prottle: A probabilistic

temporal planner. In AAAI, pages 1181–1186, 2005.

[LF03] Derek Long and Maria Fox. Exploiting a graphplan framework in temporal

planning. In ICAPS, pages 52–61, 2003.

[LP98] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theorey of

Computation. Prentice-Hall, Inc., 2 edition, 1998.

[LW93] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimina-

tion. Computer Journal, 36(5):450–462, 1993.

[McD00] Drew V. McDermott. The 1998 AI planning systems competition. AI Mag-

azine, 21(2):35–55, 2000.

[MDS15] Andrea Micheli, Minh Do, and David E. Smith. Compiling away uncertainty

in strong temporal planning with uncontrollable durations. In IJCAI, 2015.

[MM05] Paul H. Morris and Nicola Muscettola. Temporal dynamic controllability

revisited. In AAAI, pages 1193–1198, 2005.

[MMV01] Paul H. Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of

plans with temporal uncertainty. In IJCAI, pages 494–502, 2001.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an efficient sat solver. In DAC, pages

530–535, 2001.

[MNPW98] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C.

Williams. Remote agent: To boldly go where no ai system has gone be-

fore. Artificial Intelligence, 103(1-2):5–47, 1998.

[Mon08] David Monniaux. A quantifier elimination algorithm for linear real arith-

metic. In LPAR, pages 243–257, 2008.

327

BIBLIOGRAPHY

[Mor06] Paul Morris. A structural characterization of temporal dynamic controlla-

bility. In CP, pages 375–389, 2006.

[Mor14] Paul Morris. Dynamic controllability and dispatchability relationships. In

Helmut Simonis, editor, CPAIOR, volume 8451 of Lecture Notes in Com-

puter Science, pages 464–479. Springer, 2014.

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete

controllers for timed systems. In STACS, pages 229–242, 1995.

[MSCD91] Nicola Muscettola, Stephen F. Smith, Amedeo Cesta, and Daniela D’Aloisi.

Coordinating space telescope operations in an integrated planning and

scheduling architecture. In ICRA, 1991.

[MW08] Mausam and Daniel S. Weld. Planning with durative actions in stochastic

domains. Journal of Artificial Intelligence Research, 31:33–82, 2008.

[PdWvdK12] Léon Planken, Mathijs de Weerdt, and Roman van der Krogt. Computing

all-pairs shortest paths by leveraging low treewidth. Journal of Artificial

Intelligence Research, 43:353–388, 2012.

[Ped89] Edwin P. D. Pednault. ADL: exploring the middle ground between STRIPS

and the situation calculus. In KR, pages 324–332, 1989.

[PVYS07] Bart Peintner, Kristen B. Venable, and Neil Yorke-Smith. Strong control-

lability of disjunctive temporal problems with uncertainty. In CP, pages

856–863, 2007.

[PW94] J. Scott Penberthy and Daniel S. Weld. Temporal planning with continuous

change. In AAAI, pages 1010–1015, 1994.

[Rin12] Jussi Rintanen. Engineering efficient planners with SAT. In ECAI, pages

684–689, 2012.

[Rin15a] Jussi Rintanen. Discretization of temporal models with application to plan-

ning with SMT. In AAAI, pages 3349–3355, 2015.

[Rin15b] Jussi Rintanen. Models of action concurrency in temporal planning. In

IJCAI, pages 1659–1665, 2015.

[RLT06] Silvio Ranise, Loria, and Cesare Tinelli. The SMT-LIB standard: Version

1.2. Technical report, 2006.

328

BIBLIOGRAPHY

[Sch98] Alexander Schrijver. Theory of Linear and Integer Programming. J. Wiley

& Sons, 1998.

[SD05] Ji-Ae Shin and Ernest Davis. Processes and continuous change in a sat-

based planner. Artificial Intelligence, 166(1-2):194–253, 2005.

[SFC08] David E. Smith, Jeremy Frank, and William Cushing. The ANML language.

In ICAPS - Poster session, 2008.

[SK00] Kostas Stergiou and Manolis Koubarakis. Backtracking algorithms for dis-

junctions of temporal constraints. Artificial Intelligence, 120(1):81–117,

2000.

[Smi03] David E. Smith. The case for durative actions: A commentary on PDDL2.1.

Journal of Artificial Intelligence Research, 20:149–154, 2003.

[ST12] Roberto Sebastiani and Silvia Tomasi. Optimization in SMT with LA(Q)

cost functions. In IJCAR, pages 484–498, 2012.

[SV98] Eddie Schwalb and Llúıs Vila. Temporal constraints: A survey. Constraints,

3(2/3):129–149, 1998.

[SW99] David E. Smith and Daniel S. Weld. Temporal planning with mutual ex-

clusion reasoning. In IJCAI, pages 326–337, 1999.

[TP03] Ioannis Tsamardinos and Martha E Pollack. Efficient solution techniques

for disjunctive temporal reasoning problems. Artificial Intelligence, 151(1–

2):43–89, 2003.

[TVP03] Iohannis Tsamardinos, Thierry Vidal, and Martha Pollack. Ctp: A new

constraint-based formalism for conditional, temporal planning. Constraints,

8(4):365–388, 2003.

[VF99a] Thierry Vidal and Hélène Fargier. Handling contingency in temporal con-

straint networks: from consistency to controllabilities. Journal of Experi-

mental and Theoretical Artificial Intelligence, 11(1):23–45, 1999.

[VF99b] Thierry Vidal and Hélène Fargier. Handling contingency in temporal con-

straint networks: from consistency to controllabilities. Journal of Experi-

mental and Theoretical Artificial Intelligence, 11(1):23–45, 1999.

329

BIBLIOGRAPHY

[VPC90] Manuela M. Veloso, M. Alicia Perez, and Jaime G. Carbonell. Nonlinear

planning with parallel resource allocation. In DARPA Workshop on In-

novative Approaches to Planning, Scheduling, and Control, pages 207–212.

Morgan Kaufmann, 1990.

[VPL10] Gérard Verfaillie, Cédric Pralet, and Michel Lemâıtre. How to model

planning and scheduling problems using constraint networks on timelines.

Knowledge Engineering Review, 25(3):319–336, 2010.

[VVPYS10] Kristen Brent Venable, Michele Volpato, Bart Peintner, and Neil Yorke-

Smith. Weak and dynamic controllability of temporal problems with dis-

junctions and uncertainty. In ICAPS - COPLAS Workshop, pages 50–59,

2010.

[Wil93] Doran K. Wilde. A library for doing polyhedral operations. Technical report,

1993.

[XC03] Lin Xu and Berthe Y. Choueiry. A new efficient algorithm for solving the

simple temporal problem. In TIME, pages 212–222, 2003.

[YS03] H̊akan L. S. Younes and Reid G. Simmons. VHPOP: versatile heuristic

partial order planner. Journal of Artificial Intelligence Research, 20:405–

430, 2003.

[ZDDD93] Monte Zweben, Eugene Davis, Brian Daun, and Michael Deale. Scheduling

and rescheduling with iterative repair. IEEE Transactions on Systems, Man,

and Cybernetics, 23(6):1588–1596, 1993.

330

Appendix A

Scheduling Proofs

A.1 Consistency Proofs

Theorem 8.1 (Switch Correctness). The temporal network P is consistent

if and only if equation (8.3) is satisfiable (and a consistent schedule can be

derived from any model of equation (8.3)).

Proof. We prove that equation (8.3) is equi-satisfiable to equation (8.2)

and that the model of equation (8.3) is always an extension of a model of

equation (8.2) from which a consistent schedule can be extracted.

First we prove that a model µ of equation (8.2) can be extended to a

model µ′ of equation (8.3). For each i, there exists ̄ such that ((xi,̄−yi,̄) ≥
`i,̄)∧((xi,̄−yi,̄) ≤ ui,̄). Let µ′=̇µ∪{si,̄ = >|∀i}∪{si,j = ⊥|∀i,∀j : j 6= ̄}.
µ′ is a model of equation (8.3) because (1)

∨Di

j=1 si,j is satisfied by si,̄, and

(2) each conjunct is satisfied because in µ′, si,j is false for all j 6= ̄ and

thus the i-j-conjunct is satisfied and the i-̄-conjunct is such that xi,̄ and

yi,̄ fulfill ((xi,̄ − yi,̄) ≥ `i,̄) ∧ ((xi,̄ − yi,̄) ≤ ui,̄).

We now prove that a model µ′ of equation (8.3) can be reduced to a

model µ of equation (8.2). Let µ be the restriction of µ′ to the xi,j and yi,j

variables only. µ′ fulfills
∨Di

j=1 si,j, therefore there is a ̄ such that si,̄ is true

in µ′. xi,̄ and yi,̄ are such that ((xi,̄ − yi,̄) ≥ `i,̄) ∧ ((xi,̄ − yi,̄) ≤ ui,̄),

331

A.1. CONSISTENCY PROOFS

therefore, also equation (8.2) is satisfied.

Theorem 8.2 (Mutex Switch Correctness). If P is a TCSN, P is consis-

tent if and only if equation (8.4) is satisfiable (and a model of equation (8.4)

yields a consistent schedule).

Proof. We prove that for any TCSN, equation (8.4) is logically equivalent

to equation (8.3).

We highlight that equation (8.4) is analogous to equation (8.3), but it

adds a new constraint in the form
∧Di

j=1

∧Di

k=j+1(¬si,j ∨ ¬si,k).
Let µ be a model of equation (8.3). Since the network is a TCSN we

know that in each constraint the intervals are disjoint. Therefore, for each

constraint ci, there exists exactly one si,̄ that is true, while all the other si,j

are assigned to false. Clearly, µ is also a model for equation (8.4) because

the added term
∧Di

j=1

∧Di

k=j+1(¬si,j ∨ ¬si,k) is satisfied: only si,̄ is set to

true, therefore in each conjunct at least one variable is set to false.

Let µ′ be a model of equation (8.4). Because of the added term, there

exists exactly one si,̄ that is true, while all the other si,j are assigned

to false. For the same reasoning followed above, µ′ is also a model of

equation (8.3).

Theorem 8.3 (Hole Encoding Correctness). If P is a TCSN, P is consis-

tent if and only if equation (8.5) is satisfiable (and a model of equation (8.5)

yields a consistent schedule for P).

Proof. Assuming that P is a TCSN, we prove that equation (8.5) is equiv-

alent to equation (8.2).

We start from a the formula in equation (8.2), and we consider a single

constraint in isolation:
∨Di

j=1(((xi − yi) ≥ `i,j) ∧ ((xi − yi) ≤ ui,j)). This

sub-formula is in Disjunctive Normal Form, and can be transformed in

an equivalent exponential-size CNF by applying the distributive rule. We

obtain a formula with 2Di clauses of Di disjuncts each. Each clause is a

332

APPENDIX A. SCHEDULING PROOFS

permutation obtained by picking a conjunct for each disjunct of the original

formula.

One clause in this CNF formula is composed of all the upper bound

constraints:
∨Di

k=1((xi−yi) ≤ ui,k), this clause can be trivially simplified to

((xi− yi) ≤ ui,Di
) as ui,Di

is bigger than any other upper bound. Similarly,

the clause
∨Di

k=1((xi − yi) ≥ `i,k) becomes ((xi − yi) ≥ `i,1).

The remaining clauses contain both upper and lower constraints. Each

clause c can be reduced to a binary clause in the form ((xi − yi) ≥ Li,c) ∨
((xi − yi) ≤ Ui,c), where Li,c is the minimum of the lower bounds and Ui,c

is the maximum of the upper bounds. The obtained 2-CNF formula is

exponential in the size of the original constraint. For each j, the clause

((xi−yi) ≤ ui,j)∨ ((xi−yi) ≥ `i,(j+1)) subsumes all the binary clauses with

bigger upper bound and smaller lower bound.

We can apply this reasoning to all the conjuncts of equation (8.2), and

we obtain the formulation in equation (8.5). Since the two formulations

are equivalent, they have the same models, a consistent schedule can be

extracted from each model of equation (8.5)

A.2 Strong Controllability Proofs

Theorem 9.1 (Offset Encoding Correctness). The TNU P is strongly con-

trollable if and only if equation (9.2) is satisfiable (and a strong schedule

can be extracted from any of its models).

Proof. Equation (9.2) is obtained by rewriting equation (9.1) with the off-

sets, we prove that it is equivalent to equation (9.1). We show this property

by refutation.

Suppose µ is a model of equation (9.1) but it is not a model of equa-

tion (9.2). Then, there exist a ~Yu such that Γ(~Yu) holds but Ψ(µ, ~Yu) does

not hold. Let ~Tu =̇ 〈αe + ye | ye ∈ ~Yu〉. By definition, (
∧
ci∈CJciK)(

~Tc, ~Tu)

333

A.2. STRONG CONTROLLABILITY PROOFS

does not hold and Jρ(L)K(~Tc, ~Tu) holds. But this is absurd because this

makes equation (9.1) unsatisfiable.

Similarly we can show that any model of equation (9.2) is also a model

of equation (9.1).

Theorem 9.2 (Distributed Encoding Correctness). If the TNU P is con-

sistent, it is strongly controllable if and only if equation (9.3) is satisfiable

(and each model yields a strong schedule).

Proof. We show that equation (9.3) is equivalent to equation (9.2).

We start from equation (9.2). and we rewrite it as follows.

∀~Yu.(Γ(~Yu)→ Ψ(~Tc, ~Yu))

⇔ ∀~Yu.(¬Γ(~Yu) ∨Ψ(~Tc, ~Yu))

We can now replace Ψ(~Tc, ~Yu) with its CNF formulation and distribute the

disjunction over the big conjunction.

⇔ ∀~Yu.(¬Γ(~Yu) ∨
∧H
h=1 ψh(

~Tch,
~Yuh))

⇔ ∀~Yu.
∧H
h=1(¬Γ(~Yu) ∨ ψh(~Tch, ~Yuh))

By distribution of ∀ over ∧ we obtain the following formulation.

⇔
∧H
h=1 ∀~Yu.(¬Γ(~Yu) ∨ ψh(~Tch, ~Yuh))

Let ~Yuk
.
= ~Yu \ ~Yuh be the variables of ~Yu not appearing in the h-th clause.

The clauses of Γ(~Yu) can be split in two parts depending on the offset

variables they constrain, because every clause contains exactly one offset

variable by construction.

⇔
∧H
h=1 ∀~Yu.(¬Γ(~Yu)|Yuh ∨ ¬Γ(~Yu)|Yuk ∨ ψh(~Tch, ~Yuh))

The universal quantification ∀~Yu can be split in ∀~Yuk.∀~Yuh.
⇔
∧H
h=1 ∀~Yuk.(¬Γ(~Yu)|Yuk ∨ ∀~Yuh.(¬Γ(~Yu)|Yuh ∨ ψh(~Tch, ~Yuh)))

334

APPENDIX A. SCHEDULING PROOFS

Since Γ(~Y) is assumed to be non-contradictory, Γ(~Yu)|Yuk cannot be false

for every ~Yuk. Therefore, ¬Γ(~Yu)|Yuk reduces to ⊥. We can then remove

this disjunct and the relative quantification become useless.

⇔
∧H
h=1 ∀~Yuk.(∀~Yuh.(¬Γ(~Yu)|Yuh ∨ ψh(~Tch, ~Yuh)))

⇔
∧H
h=1 ∀~Yuh.(¬Γ(~Yu)|Yuh ∨ ψh(~Tch, ~Yuh))

This is exactly the formulation of equation (9.3).

Theorem 9.3 (EFE Encoding Correctness). The TNU P is strongly con-

trollable if and only if equation (9.3) is satisfiable (and a strong schedule

can be extracted from a model of equation (9.3)).

Proof. Equation (9.4) derives from equation (9.3) by resolving the universal

quantifier using a quantifier elimination procedure. Since the elimination

procedure builds equivalent formulae, equations (9.3) and (9.4) are logically

equivalent.

A.3 Weak Controllability Proofs

Proposition 10.2 (Assumption Extraction Correctness). Equation (10.2)

and equation (10.3) are logically equivalent.

Proof. We show how to convert equation (10.2) into equation (10.3), using

logically equivalent rewritings.

¬∃~Tc.(Γ(~Yu)→ Ψ(~Tc, ~Yu))

⇔¬∃~Tc.(¬Γ(~Yu) ∨Ψ(~Tc, ~Yu))

⇔¬((∃~Tc.¬Γ(~Yu)) ∨ (∃~Tc.Ψ(~Tc, ~Yu)))

⇔¬(¬Γ(~Yu) ∨ (∃~Tc.Ψ(~Tc, ~Yu)))

⇔ Γ(~Yu) ∧ ¬(∃~Tc.Ψ(~Tc, ~Yu))

335

A.3. WEAK CONTROLLABILITY PROOFS

Theorem 10.1 (Weak Controllability Skolemization). A TNU 〈T , C,L〉
is weakly controllable if and only if the formula

∀~Yu.Γ(~Yu)→ Ψ(f(~Yu), ~Yu) (10.4)

is satisfiable.

Proof. equation (10.4) is the result of applying the skolemization [Kle67]

procedure to equation (10.1). Since skolemization produces an equi-satisfiable

formula, equation (10.4) is equi-satisfiable to equation (10.1). Since equa-

tion (10.1) has no free variables nor has uninterpreted terms, satisfiability

coincides with validity. Therefore, equation (10.1) is valid if and only if

equation (10.4) is satisfiable, and proposition 10.1 states that the TNU is

weakly controllable if and only if equation (10.1) is valid.

Theorem 10.4 (Vertex Encoding Correctness). Let P =̇ 〈T , C,L〉 be an

STNU, 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉 be its encoding and let f̄ : R|Yu| → R|Xc| be

a linear strategy. If f̄ fulfills Ψ(~Tc, ~Yu) in all the vertexes vi ∈ VΓ, then f̄

is a weak linear strategy for P .

Proof. For the sake of contradiction, let us suppose that there exists a point

p̄ in the space of ~Yu such that Γ(p̄) holds and Ψ(f̄(p̄), p̄) does not hold.

Then, there must exist a free constraint ck that is violated by p̄. Since

the problem is an STNU, each free constraint is geometrically either a half-

space (for example a − b ∈ [1,∞)) or the intersection of two half-spaces

(for example, a− b ∈ [10, 15] is the intersection of the half-space a− b ≤ 15

with a − b ≥ 10). Therefore, p̄ does not belong to one of the half-spaces

encoded by ck. Let H be the violating half-space.

However, for each vertex vi ∈ VΓ, f̄(vi) must belong to H because the

free constraints are fulfilled in all the vertexes.

The point f̄(p̄) belongs to the convex hull of the points f̄(vi), but then

it must belong to the half-space H. Hence, we have a contradiction.

336

APPENDIX A. SCHEDULING PROOFS

Theorem 10.5 (Simplex Strategy Existence). Let P be an encoded weakly

controllable STNU 〈~Tc, ~Yu,Γ(~Yu),Ψ(~Tc, ~Yu)〉. For each |Yu|-simplex σ(~Yu)

such that σ(~Yu) ⊆ Γ(~Y) there exists a valid weak linear strategy f such that

∀~Yu.((σ(~Yu) ∧ ~Tc = f(~Yu))→ Ψ(~Tc, ~Yu)) is valid.

Proof. Let m =̇ | ~Yu| and V be the set of m + 1 vertexes of σ(~Yu). By

definition of simplex, σ(~Yu) is the convex hull of the points in V . P is

weakly controllable by assumption, therefore for each vi ∈ V , there exists

a point ti that extends vi in the space of ~Tc ∪ ~Yu such that ti ∈ Ψ(~Tc, ~Yu).

Let T be {ti|vi ∈ V }.
Let f be a linear strategy A · ~Yu+~c, such that for each controllable time

point bi ∈ Xc, bi = Ai,1yAe + · · · + Ai,mym + ci is the hyperplane passing

through all the points ti ∈ T . Such a hyperplane exists and is unique

because it is the m-hyperplane containing the m + 1 not-collinear [CG67]

points ti ∈ T (points in T are not collinear as they are the results of an

extension of the points in V that are not collinear because are the m + 1

vertexes of a simplex).

We now prove that f is a strategy such that ∀~Yu.(σ(~Yu)∧ ~Tc = f(~Yu))→
Ψ(~Tc, ~Yu) is valid by showing that the hyperplane bi = Ai,1yAe + · · · +

Ai,mym + ci is contained in Ψ(~Tc, ~Yu) for each ~Yu |= σ(~Yu). Since the hy-

perplane contains all the ti ∈ T , for each point k in the convex hull of

V , the hyperplane computed in k is contained in Ψ(~Tc, ~Yu) because of the

convexity of Ψ(~Tc, ~Yu). This proves the thesis because σ(~Yu) is the convex

hull of the points in V .

A.4 STNU Execution Semantics

This section introduces a novel formulation of the time-strict execution se-

mantics for dynamic controllability of STNUs as a two-player game. This

formalization and the relative proof has been developed by Luke Huns-

337

A.4. STNU EXECUTION SEMANTICS

berger in the context of a joint paper [CHM+16].

The game is played between Agnes (the agent) and Vera (the environ-

ment), where Agnes controls the execution of controllable time points and

Vera controls the contingent durations. Agnes seeks an execution strategy

that will ensure the satisfaction of all constraints in C no matter what du-

rations Vera chooses; Vera seeks a strategy that will ensure that at least

one constraint in C is unsatisfied no matter what Agnes does.

This formulation highlights an important asymmetry in the execution

semantics: Agnes is not able to react instantaneously to observations of

uncontrollable time points executing, but Vera is able to react instanta-

neously to executions of controllable time points.

A partial schedule represents the current state of the game (i.e., the set

of time points that have executed so far)1.

Definition 84 (Partial Schedule). A partial schedule for an STNU, 〈T , C,L〉,
is a set, PS, of variable assignments to time points in T . TPs(PS) ⊂ T
denotes the set of time points appearing in PS; Vals(PS) ⊂ R denotes the

set of values appearing in PS; for any X ∈ TPs(PS), PS(X) denotes

the value assigned to X; and nowPS = max{v | v ∈ Vals(PS)} is the time

of the latest execution event in PS. (If PS = ∅, let nowPS = −∞.) time

points in TPs(PS) are said to be executed. A partial schedule is called

respectful if its assignments do not violate the bounds on any contingent

link.

Given a partial schedule PS, Agnes must decide what to do next. She

has two options: (1) wait for Vera to (eventually) do something; or (2) con-

ditionally commit to executing a set of controllable time points at some

time, tc > nowPS. For example, given PS = {〈A2, 0〉, 〈X, 1〉}, for which

nowPS = 1, Agnes could decide to wait until Vera eventually executes C2.

1Definition 84 definition 85 are drawn from [Hun09].

338

APPENDIX A. SCHEDULING PROOFS

Alternatively, she could decide that “if nothing happens before time 7, I

shall execute A1 at time 7.”

The decisions available to Agnes are called real-time execution decisions

(RTEDs).

Definition 85 (RTED, for Agnes). Let PS be a respectful partial schedule.

An RTED for Agnes has one of two forms: wait or 〈tc, χf〉. A wait

decision is applicable if at least one uncontrollable time point, C, is active

in PS (i.e., C’s activation time point has already been executed, but C has

not). A 〈tc, χf〉 decision (i.e., “If nothing happens before time tc, execute

the time points in χf at time tc”) is applicable if tc > nowPS and χf is a

non-empty subset of unexecuted controllable time points (i.e., χf 6= ∅ and

χf ∩ TPs(PS) = ∅).

The kinds of decisions available to Vera are different in two important

respects. First, Vera’s version of an RTED (called an RTED?) allows a

decision of the form, “if nothing happens before or at time tu, then I shall

execute the uncontrollable time points in the set χu ⊆ Tu at time tu.”

Note that when time tu arrives, should Vera observe Agnes executing any

time points at time tu, Vera has the option of instantaneously changing her

mind. Second, in such cases, Vera may instantaneously react by executing

some other uncontrollable time points at time tu. Such decisions are called

instantaneous reactions. For example, suppose Vera had decided that “if

nothing happens before or at time 7, then I shall execute C2 at time 7”,

but when time 7 arrived, she observed Agnes executing some time point(s).

Vera could withdraw her decision to execute C2 and instantaneously react

by deciding to execute some other uncontrollable time point(s) at time 7.

Definition 86 (RTED?, for Vera). Let PS be a respectful partial schedule.

A before-or-at RTED (RTED?) has one of two forms: wait or 〈tu, χu〉. A

wait decision is only applicable if no uncontrollable time points are cur-

339

A.4. STNU EXECUTION SEMANTICS

rently active in PS. A 〈tu, χu〉 decision (i.e., “If nothing happens before-

or-at time tu, I shall execute the time points in χu at time tu”) is applicable

only if tu > nowPS, and χu is a non-empty subset of currently-activated un-

controllable time points each of whose execution window includes tu; and

all other uncontrollable time points that are unexecuted in PS are either

unactivated in PS or have execution windows that extend beyond tu.

Definition 87 (Instantaneous reaction, for Vera). Let PS be a respectful

partial schedule. Let χ◦ be the (probably empty) set of uncontrollable time

points that are currently active in PS whose execution windows happen

to terminate precisely at nowPS; and let χ? be any (possibly empty) sub-

set of the uncontrollable time points that are currently active in PS whose

execution windows include nowPS, but also extend beyond nowPS. An in-

stantaneous reaction is a decision (by Vera) to execute the uncontrollable

time points in the set χ◦ ∪ χ? at the time nowPS.

To accommodate Vera’s ability to react instantaneously, the outcome

for a pair of decisions (one by Agnes, one by Vera) is defined in two stages:

partial and full.

Definition 88 (Partial Outcome). Let PS be a respectful partial schedule;

let ∆f be an RTED for Agnes; and let ∆u be an RTED? for Vera. The

partial outcome, Op(PS,∆f ,∆u), is defined as follows2.

2Note that a wait decision cannot be simultaneously applicable for both Agnes and Vera.

340

APPENDIX A. SCHEDULING PROOFS

ψ

Op(ψ, (Tf , χf),∆u)

ψ′

Execute time

points in χf

at time Tf

Execute time

points in Υu

at time Tf

Execute time points in χu at time Tu

Figure A.1: Deriving the outcome PS′ of decisions by Agnes and Vera from the partial schedule

PS.

(1a) Op(PS, wait, 〈tu, χu〉) = PS ∪ {〈C, tu〉 | C ∈ χu}.

(1b) Op(PS, 〈tc, χf〉, 〈tu, χu〉) = PS ∪ {〈C, tu〉 | C ∈ χu}, if tu < tc.

(2a) Op(PS, 〈tc, χf〉, wait) = PS ∪ {〈X, tc〉 | X ∈ χf}.

(2b) Op(PS, 〈tc, χf〉, 〈tu, χu〉) = PS ∪ {〈X, tc〉 | X ∈ χf}, if tc ≤ tu.

Note that in cases (1a) and (1b), the partial outcome includes only the

execution of the uncontrollable time points in χu at time tu. Cases (2a) and

(2b) are analogous, in that the partial outcome includes only the execution

of the controllable time points in χf at time tc, except that Vera is also

able to instantaneously react by executing one or more uncontrollable time

points, also at time tc, as described below.

Definition 89 (Full Outcome). Let PSp = Op(PS,∆f ,∆u) be a partial

outcome, as described above; and let Υu be a set of uncontrollable time

points that constitute an instantaneous reaction to PSp. The full outcome,

O(PS,∆f ,∆u,Υu), is the same as PSp, except that in cases (2a) and (2b),

the schedule is augmented to include the execution of the time points in Υu

at time tc.

341

A.4. STNU EXECUTION SEMANTICS

PS = {〈A2, 0〉, 〈X, 1〉}; ∆f = 〈7, {A1}〉; ∆u = 〈6, {C2}〉.

PS ′ = {〈A2, 0〉, 〈X, 1〉, 〈C2, 6〉}; Υu irrelevant.

PS = {〈A2, 0〉, 〈X, 1〉}; ∆f = 〈7, {A1}〉; ∆u = 〈8, {C2}〉.

PS ′ = {〈A2, 0〉, 〈X, 1〉, 〈A1, 7〉, 〈C2, 7〉}, where Υu = {C2}.

PS = {〈A2, 0〉, 〈X, 1〉}; ∆f = 〈7, {A1}〉; ∆u = 〈8, {C2}〉.

PS ′ = {〈A2, 0〉, 〈X, 1〉, 〈A1, 7〉}, where Υu = ∅.

Table A.1: The outcomes PS′ for sample decisions by Agnes and Vera for the STNU from

figure 11.1.

Figure A.1 illustrates the possible pathways from a partial schedule PS

to the full outcome PS ′ = O(PS,∆f ,∆u,Υu). Note that nowPS′ is either

tc or tu, depending on which pathway is taken. Note, too, that the full

outcome, PS ′, is typically a partial schedule, except at the very end when

all of the time points have been executed. Table A.1 shows the outcomes

that result from sample decisions by Agnes and Vera in the case of the

STNU from figure 11.1. In each case, PS ′ = O(PS,∆f ,∆u,Υu).

Definition 90 (Execution Strategies). An RTED-based strategy (for Agnes)

is a mapping from respectful partial schedules to RTEDs. An RTED?-based

strategy (for Vera) is a pair of mappings, 〈f1, f2〉, where f1 is a mapping

from respectful partial schedules to RTED?s; and f2 is a mapping from

respectful partial schedules to instantaneous reactions.

Definition 91 (Outcomes of Strategies). Let PS be a respectful partial

schedule; R an RTED-based strategy; and R? = 〈f1, f2〉 an RTED?-based

strategy. The one-step outcome, O1(PS,R,R?), is defined by:

O1(PS,R,R?) = O(PS,R(PS), f1(PS), f2(Op(PS,R(PS), f1(PS))))

342

APPENDIX A. SCHEDULING PROOFS

The terminal outcome, O∗(R,R?), is the complete schedule that re-

sults from the following recursive definition: PS0 = ∅ and PSi+1 =

O1(PSi, R,R
?).

The constraints on the decisions generated by R?, namely, that Vera

must observe the bounds on the contingent durations, ensure that each

PSi in the sequence will be respectful, given that PS0 = ∅ is trivially

respectful.

Given the above execution semantics for STNUs, the definition of dy-

namic controllability is straightforward.

Definition 92 (Dynamic Controllability). An STNU, 〈T , C,L〉, is dynam-

ically controllable if there exists an RTED-based strategy R, such that for

all RTED?-based strategies R?, the variable assignments in the complete

schedule, O∗〈PS0, R,R
?〉, satisfy all of the constraints in C.

Theorem A.1. Definition 92 is equivalent to the definition of dynamic

controllability given in [Hun09].

Proof. Let S = 〈T , C,L〉 be any STNU. First, suppose that S is dynam-

ically controllable according to the RTED-based semantics. Then there

exists an RTED-based execution strategy R such that for any situation

ω, the full schedule that results from following R in ω satisfies all of the

constraints in C. Let that strategy R be the one chosen by Agnes in the

two-player game semantics. Let R∗ = 〈f1, f2〉 be any strategy for Vera. It

will be shown that the terminal outcome O∗(R,R∗) that results from Agnes

and Vera playing these two strategies against each other necessarily satis-

fies the constraints in C. In particular, it will be shown by induction that

each (partial or full) schedule obtained at any point during the execution

phase by following R and R∗ according to the two-player game semantics

can also be obtained by following R in some situation in the RTED-based

semantics.

343

A.4. STNU EXECUTION SEMANTICS

• Base Case. Let PS0 be the empty partial schedule. This is the

starting partial schedule in either semantics.

• Recursive Case. Let PS be any partial schedule obtained by fol-

lowing R and R∗ in the two-player game semantics. There are three

sub-cases to consider.

1. R(PS) = wait; R∗(PS) = 〈tu, χu〉. In this case, the partial out-

come involves the execution of the uncontrollable time points in

χu at the time tu. Since the applicability conditions for Vera’s

RTED∗ decision requires the execution times for uncontrollable

time points to respect the lower and upper bounds on the cor-

responding contingent links, the resulting partial outcome is a

partial schedule obtainable from any situation ω that is respected

by PS and includes the durations specified by the uncontrollable

time points in χu.

2. R(PS) = 〈tc, χf〉; R∗(PS) = 〈tu, χu〉, where tu < tc. This case is

essentially the same as the first case, since tu < tc.

3. R(PS) = 〈tc, χf〉; R∗(PS) = wait. In this case, the partial out-

come involves the execution of the executable time points in χf .

Since Vera can only use the wait decision when the partial sched-

ule PS does not contain any currently active contingent links, this

must be the outcome in the RTED-based semantics, too. There

can be no instantaneous reaction by Vera in this case.

4. R(PS) = 〈tc, χf〉; R∗(PS) = 〈tu, χu〉, where tc ≤ tu. This case

is the same as the preceding case except that Vera may choose

to react instantaneously (i.e., f2(PS) may not be empty). The

applicability conditions of instantaneous reactions require the un-

controllable time points in f2(PS) to be currently active in PS,

and such that their execution windows include the time nowPS. In

344

APPENDIX A. SCHEDULING PROOFS

addition, any uncontrollable time points that happen to have their

execution window terminate precisely at nowPS must be included

in f2(PS). Thus, the full outcome is the same as in the preceding

case except that some uncontrollable time points may also execute

at the time tc. Again, this corresponds to any situation ω that is

respected by PS, while also respecting the contingent durations

determined by the execution of the uncontrollable time points in

f2(PS).

For the other direction, suppose that S is not dynamically controllable

according to the RTED-based semantics. In other words, for any RTED-

based strategy R, there is a situation ωR such that the outcome O∗(R,ωR)

that results from following the strategy R in the situation ωR does not

satisfy the constraints in C. (Any situation with this property will be

said to thwart the strategy R.) It will be shown that there must be a

strategy R∗ = 〈f1, f2〉 for Vera that will ensure that Agnes loses the two-

player game. The proof is by induction. The proposition to prove is the

following:

Let PS be any partial schedule that can be reached by following any

RTED-based strategy R in any thwarting situation ωR, according to the

RTED-based semantics. Then there is an RTED∗ decision ∆u (that de-

pends only on PS, not on R) and an instantaneous reaction Υu for Vera

such that the full outcome obtained from R(PS),∆u and Υu according

to the two-player game semantics is a schedule that is identical to one

obtained by following R in some thwarting situation ωR.

Let PS be a partial schedule that can be reached by following some

RTED-based execution strategy R in some thwarting situation ωR, accord-

ing to the RTED-based semantics. Now, if no uncontrollable time points

are currently active in PS, then Agnes must choose a 〈tc, χf〉 decision, and

Vera must choose the wait decision. But in that case, the outcome is fully

345

A.4. STNU EXECUTION SEMANTICS

determined: the time points in χf will be executed at time tc. Further-

more, the outcome is the same whether using the RTED-based semantics

or the two-player game semantics.

On the other hand, suppose that at least one uncontrollable time point

is currently active in PS. Let ΘPS be the set of RTED-based execution

strategies for Agnes that can generate the partial schedule PS at some

point during the execution of the network, if followed in some thwarting

situation. For each t > nowPS, let Θ(t) be the subset of ΘPS that contains

all strategies θ whose decisions, θ(PS), specify execution times greater than

t. Now, for any strategy θ ∈ Θ(t), there must be a situation ωθ that thwarts

θ; however, that situation may involve the execution of uncontrollable time

point(s) at some time before t (i.e., at some time ρ, where now < ρ <

t). Of particular interest are the values of t > nowPS for which all of

the strategies in Θ(t) can be thwarted by situations that do not involve

executing any uncontrollable time points before time t. In particular, let

Γ be the set of real numbers t > nowPS for which every strategy θ ∈ Θ(t)

can be thwarted by a situation that is consistent with no new contingent

executions occurring before time t (i.e., at any time ρ such that nowPS <

ρ < t).

Now, suppose that Γ = ∅. Let Agnes adopt the following strategy: wait

until some uncontrollable time point happens to execute.

Let t > nowPS be the time of that next contingent execution. Since

t 6∈ Γ, there must be some strategy, θ ∈ Θ(t), that could only be thwarted

by situations that involve the execution of uncontrollable time points before

time t. Since no uncontrollable time points executed before time t, that

strategy is not thwarted by the current situation and, thus, is a winning

strategy for Agnes, which is a contradiction. Thus, Γ 6= ∅.
Next, let tu = inf{t | t > nowPS and t 6∈ Γ}. Now, tu is well defined

since Γ is non-empty and bounded below by nowPS. Consider the possibility

346

APPENDIX A. SCHEDULING PROOFS

that tu = nowPS. This implies that for any time t > nowPS, there is a time

t′ ∈ 〈nowPS, t〉 such that t′ 6∈ Γ. But then a similar argument as that

used to show that Γ is not empty can be used to show that tu cannot equal

nowPS. In this case, given the time t of the next contingent execution, there

must be a time t′ ∈ 〈nowPS, t〉 such that t′ 6∈ Γ and, hence, some strategy

θ ∈ Θ(t′) that could only be thwarted by contingent executions before time

t′ < t. Since no such executions occurred, that strategy could be followed

by Agnes as a winning strategy, a contradiction. Thus, tu > nowPS. It

remains to be seen whether tu ∈ Γ.

Next, let Γ∗ be the subset of (nowPS, tu] such that for each t ∈ Γ∗, there

exists a (possibly empty) set χ(t) of uncontrollable time points such that

every strategy θ ∈ Θ(t) can be thwarted by a situation that is consistent

with (1) no new contingent executions before time t; and (2) the execution

of all of the uncontrollable time points in χ(t) at time t. Now, suppose

Γ∗ were empty. Then let t ∈ 〈nowPS, tu〉 ⊆ Γ be arbitrary; and consider

the following strategy for Agnes: wait until the time t, or the execution

of the next uncontrollable time point, whichever happens first. If no un-

controllable time points happen to execute before time t, then let t′ = t;

otherwise, let t′ be the time at which the first uncontrollable time point

executed. In either case, since t′ ∈ Γ, but t′ 6∈ Γ∗, there could not be

a single set χ(t′) as described earlier. Therefore, there would have to be

at least two strategies, θ1 and θ2, in Θ(t′) whose thwarting would require

two different sets of uncontrollable time points executing at time t′. Agnes

could then choose to follow whichever strategy, θ1 or θ2, was not thwarted

by the execution events that occurred at time t′. Since that chosen strategy

could only have been thwarted by execution events which did not occur, it

must be a winning strategy, which is a contradiction. Therefore Γ∗ 6= ∅.

Next, let t∗u = inf{t | t > nowPS and t 6∈ Γ∗}. Consider the possibility

that t∗u = nowPS. Then for any t > nowPS, there exists a t′ such that

347

A.4. STNU EXECUTION SEMANTICS

nowPS < t′ < t and t′ 6∈ Γ∗. Let Agnes wait until the time of the next con-

tingent execution, say at time t > nowPS. Then there exists a time t′ strictly

between nowPS and t such that t′ 6∈ Γ∗. In that case, there exist strate-

gies θ1 and θ2 in Θ(t′) whose thwarting situations required different sets of

contingent executions at time t′ < t. Since no such contingent executions

occurred, Agnes can simply choose whichever strategy has thereby become

a winning strategy, yielding a contradiction. Therefore, t∗u > nowPS.

There are now three cases to consider:

• Case 1: t∗u = tu, but tu 6∈ Γ. Suppose that for all t ∈ 〈nowPS, tu〉,
χ(t) = ∅. In other words, for each t ∈ 〈nowPS, tu〉, every θ ∈ Θ(t) can

be thwarted by situations in which no uncontrollable time points exe-

cute at or before time t. But that implies that every θ ∈ Θ(tu) can be

thwarted by situations in which no uncontrollable time points execute

before time tu and, hence, that tu ∈ Γ, a contradiction. Therefore, it

must be that for some t∗ ∈ 〈nowPS, tu〉, χ(t∗) 6= ∅. Let Vera’s RTED∗

decision be 〈t∗, χ(t∗)〉.

• Case 2: t∗u = tu ∈ Γ. Suppose that t∗u 6∈ Γ∗. Then there must be two

strategies, θ1 and θ2, in Θ(t∗u) that can only be thwarted by situations

involving two different sets of uncontrollable time points at time t∗u.

But then Agnes could simply wait until time t∗u to see which of the

two strategies was not thwarted, to yield a winning strategy. But that

is a contradiction. Therefore, t∗u ∈ Γ.

Now, suppose that χ(t∗u) = ∅. That is, every strategy in Θ(t∗u) can

be thwarted by situations that do not involve any new contingent

executions at or before t∗u. Let Agnes employ the following strategy:

wait until the next contingent execution. Suppose it happens at some

time t > t∗u. By the definition of tu and the fact that tu ∈ Γ, it follows

that there must be some t′ strictly between tu and t such that t′ 6∈ Γ.

348

APPENDIX A. SCHEDULING PROOFS

But then there must be a strategy θ ∈ Θ(t′) whose thwarting requires

the execution of a uncontrollable time point before time t′ < t. Since

no such execution occurred, Agnes can employ θ as a winning strategy,

which is a contradiction. Thus, χ(t∗u) 6= ∅. Vera’s RTED∗ decision can

then be 〈t∗u, χ(t∗u)〉.

• Case 3: t∗u < tu. As in Case 2, it follows here that t∗u ∈ Γ∗. Now,

let t be any time such that t∗u < t < tu. Let Agnes wait until the

next contingent execution or the time t, whichever comes first. Let

t† be that time. By the definition of t∗u as an infemum, and the fact

that t∗u ∈ Γ∗, it follows that there is some t′ strictly between t∗u and

t† such that t′ 6∈ Γ∗, but t′ ∈ Γ (since t′ < tu). But then there

exist strategies θ1 and θ2 in Θ(t′) whose thwarting situations require

different sets of uncontrollable time points to execute at time t′ < t† ≤
t. Since no such contingent executions occurred, Alice can simply

choose whichever strategy has thereby become a winning strategy,

yielding a contradiction. Therefore, it cannot be that t∗u < tu.

Only Cases 1 and 2 avoid a contradiction; and in each of those cases

generates a decision for Vera of the form ∆u = 〈t, χ〉, where χ is a set of

uncontrollable time points that are to be executed at time t if Agnes does

not execute any time points at or before t. It remains to show that all

possible outcomes of the decisions of Agnes and Vera result in a schedule

that can be obtained by following a strategy R in some thwarting situation

ωR.

First, suppose Agnes uses a wait decision. In that case, the uncontrol-

lable time points in χ will be executed at time t. By the construction of

the χ set (cf. the definition of Γ∗), it follows that all strategies in Θ(t), of

which wait is one, can be thwarted by situations that are consistent with

this outcome. Similar remarks apply to Agnes using a 〈tc, χf〉 decision

349

A.4. STNU EXECUTION SEMANTICS

where tc > t.

Second, suppose Agnes uses a 〈tc, χf〉 decision where tc ≤ t. Then the

partial outcome will involve the execution of the executable time points in

χf at time tc ≤ t, but not the uncontrollable time points in χ. Now, since

tc ≤ t, it follows that tc ≤ t∗u. Thus, for each time t′ < tc, all strategies

in Θ(t′), of which, Agnes’ 〈tc, χf〉 is one, must be thwartable by situations

involving no new uncontrollable time points before time t′. But then, for

any t† < tc, there is some t′ such that t† < t′ < tc, from which it follows

that no uncontrollable time points need be executed at or before t†. Thus,

no uncontrollable time points need be executed before time tc. However,

thwarting the strategies that involve the execution of the time points in χf

at time tc may require the execution of some uncontrollable time points at

time tc. A single set of such time points must be sufficient; otherwise, it

would contradiction the thwartability of those strategies. That set of time

points constitutes an instantaneous reaction by Vera.

Thus, in all cases, Vera has a decision 〈t, χ〉 available (that only depends

on PS, not on R) that, together with a possible instantaneous reaction,

generates an outcome according to the two-player game semantics that

is identical to an outcome that is obtained by following an RTED-based

strategy in a thwarting situation.

The dynamic controllability problem for DTNUs is defined analogously

to the STNU case [PVYS07, VVPYS10]. In fact, disjunctive free con-

straints simply give more freedom to the agent, while disjunctions in con-

tingent links allow the environment to choose among a set of intervals, but

this does not change the semantics of the dynamic controllability problem.

350

APPENDIX A. SCHEDULING PROOFS

A.5 STNU to TGA Formal Correctness

Here we present the theoretical results that confirm the correctness of the

encoding, and the correspondence between strategies for the STNU and its

TGA counterpart. This proof has been developed by Luke Hunsberger in

the context of a joint paper [CHM+16].

Theorem A.2. Let S = 〈T , C,L〉 be any STNU; and let Θ be the encoding

of S as a TGA, as described in section 11.3.1. Then, Θ correctly captures

the execution semantics for S in the sense that any sequence of partial

schedules that can be generated for S according to the execution semantics

for STNUs corresponds to a run for Θ that can be generated by following

its transitions according to the TGA semantics.

Proof. The following invariant is proved by induction. Each respectful

partial schedule PS that can be generated for S corresponds to a state

of Θ in which the location is env, δ = 0, nowPS = t̂, for each executed

time point X, PS(X) = t̂ − tX, and for each unexecuted time point Y ,

PS(Y) = t̂. For the base case, the initial partial schedule, PS0 = ∅,
corresponds to the initial state of Θ in which the location is env, all clocks

are at zero, and all time points are unexecuted. Note that PS0 is trivially

respectful.

Now, suppose that PS is a respectful partial schedule that can be gen-

erated according to the execution semantics for STNUs, and that satisfies

the hypothesized invariant. Let θ be the corresponding state of the TGA.

Since δ = 0, the only transitions that are immediately enabled are the

loops whereby uncontrollable time points are executed. These transitions,

if taken, correspond to the instantaneous reaction decisions for Vera, in

which a set Υu of one or more uncontrollable time points can be executed

simultaneously. However, suppose that Vera does not make any such tran-

sitions at δ = 0. Once δ > 0, both Agnes and Vera have transitions that

351

A.5. STNU TO TGA FORMAL CORRECTNESS

they could make at any time. For example, Vera might decide to execute

one or more uncontrollable time points when δ = 3. That would corre-

spond to an RTED?-based decision, (Tu, χu), where Tu = nowPS + 3 and

χu contains the time points to be executed. Since each transition by Vera

resets δ to 0, Agnes is unable to interrupt Vera’s simultaneous execution

of uncontrollable time points. The resulting outcomes are equivalent to

the partial schedules that arise in Cases (1a) and (1b) of definition 88.

The guards on Vera’s transitions, which enforce the duration bounds for

the contingent links, ensure that the resulting partial schedule is respect-

ful. Also, when Vera’s sequence of “simultaneous” transitions complete, t̂

equals the time of the most recent execution (i.e., nowPS + 3). In addition,

for each newly executed time point, C, the clock tC is set to 0, ensuring

that t̂ − tC equals the execution time of C. Since both clocks will never

again be reset, this difference remains fixed forever.

On the other hand, suppose that Agnes decided to execute the time

points in χf at an earlier time, say, nowPS+2. This would correspond to her

making the transition to the ctrl location and instantaneously executing

the time points in χf at that time and, then, immediately returning to

the env location. Since ctrl is an urgent state, the global clock equals

nowPS +2 when the return transition is made. This sequence of transitions

corresponds to the partial outcomes in Cases (2a) and (2b) in definition 88,

where Agnes’ decision is 〈Tf , χf〉, where Tf = nowPS + 2. Furthermore, if

Vera chooses to instantaneously execute some uncontrollable time points

at that same time, nowPS + 2, that will correspond to an instantaneous

reaction, as specified in definition 87.

Finally, if at time nowPS, Agnes and Vera both decided to execute some

time points at time nowPS + 1, then the STNU semantics ensures that

Agnes’ time points will be executed, and that Vera will be able to in-

stantaneously react, if she chooses. This corresponds to Agnes’ transition

352

APPENDIX A. SCHEDULING PROOFS

having priority over Vera’s transition. Agnes transitions to the ctrl state,

executes her time points, and returns to the env state, with the global

clock ending up at nowPS + 1.

Since, in all cases, the resulting state of the TGA satisfies the desired

invariant property, the result is proven.

Theorem A.3. Let S be any STNU; let Θ be the encoding of S; and

let σ be a winning TGA counter-strategy for Agnes. Then there is an

equivalent RTED-based strategy for Agnes that will ensure the satisfaction

of all constraints in S no matter how the contingent durations turn out.

Proof. Let S,Θ and σ be as described in the statement above. Therefore,

σ : L×RX>=0 → Actu∪{λ}, where Actu is the set of uncontrollable actions

(for Agnes).

Suppose the TGA has just entered the state, 〈env, v〉, where v represents

the vector of clock values. As has already been noted, for any time point

X and associated clock x: (1) before X executes, x = t̂; and (2) after X

executes, x < t̂ and the fixed difference, t̂−x, equals the time at which X

executed. Thus, the vector of clock values specifies a partial schedule, PS.

Now, suppose that nowPS < t̂ (i.e., that some positive time has elapsed

since the last execution event in PS). The only way that could have

happened is if the state 〈env, v〉 had been preceded by one or more useless

loops (i.e., loops using only the gain and pass transitions to go back

and forth between env and ctrl without executing any time points). Let

〈env, v′〉 be the state immediately preceding the first such useless loop.

Then for some positive ε, v = v′ + ε (i.e., the clock values in v are ε

units larger than their corresponding values in v′). And by construction,

nowPS = v′(t̂).

Next, let D be the minimum time that can elapse from v before the

strategy σ recommends a non-trivial transition to the ctrl location. That

353

A.5. STNU TO TGA FORMAL CORRECTNESS

is: D = min{d | σ(env, v′ + d) 6= λ, σ(ctrl, v′ + d) 6= pass}. Let v0 =

v′ +D. The unique sequence of execution transitions at the ctrl location

is: τ1 = σ(ctrl, v0), τ2 = σ(ctrl, v1), τ3 = σ(ctrl, v2), . . ., where each vi+1

is the same as vi, except that the clock for the just-executed time point is

0 in vi+1. This sequence must terminate, since there are only finitely many

time points, and each can be executed only once. If τm is the last execution

transition, it follows that pass = σ(ctrl, vm). That transition leads back

to the state, 〈env, vm〉, where vm is the same as v′, except that the clocks

for the time points executed by the transitions, τ1, . . . , τm, are all zero in

vm.

Next, let Tf = v0(t̂) be the global time at which σ recommends its first

non-trivial transition to ctrl; and let χf be the set of time points that cor-

respond to the execution transitions, τ1, . . . , τm. Then 〈Tf , χf〉 is an RTED

for PS that corresponds to what the strategy σ recommends at 〈env, v′〉.
Note that Vera may decide to instantaneously react by executing some

uncontrollable time points also at time Tf , an outcome that is sanctioned

by the execution semantics for STNUs. Finally, it may happen that Vera

decides to intervene before time Tf arrives, by executing one or more un-

controllable time points and effectively generating a new partial schedule,

PS∗. In that case, the same procedure could be applied to PS∗ to generate

an appropriate RTED. Since the guard on the transition from env to ctrl

requires a positive time delay, that RTED is properly prohibited from any

kind of instantaneous reaction (by Agnes).

This procedure provides a mapping from any 〈env, v〉 state that is reach-

able following the winning strategy σ. In addition, the sequences of partial

schedules generated by following the RTEDs correspond to runs that can

be produced by σ. Thus, the complete schedules generated by the RTEDs

are guaranteed to satisfy all STNU constraints assuming Vera observes the

bounds on all contingent links.

354

APPENDIX A. SCHEDULING PROOFS

A.6 Dynamic Controllability Proofs

Theorem 11.1 (Sufficient Syntax). A DTNU is dynamically controllable

if and only if it admits a solution strategy expressible as per definition 56.

Proof. Following the correct TGA encoding in section 11.3, we know that a

memory-less TGA strategy exists for every dynamically controllable prob-

lem. Our strategy can be seen as a representation of the computation tree

of that TGA strategy.

Theorem 11.2 (Correctness). With no pruning, the algorithm terminates

and returns ⊥ if and only if the TNU is not dynamically controllable.

Proof. (Sketch) The search space explored by algorithm is a restriction of

the one for the TGA in section 11.3 that captures the dynamic controlla-

bility problem semantics. We remove states whose winning set is empty

as they cannot satisfy the free constraints: this is a sound and complete

restriction. Algorithm 15 is derived from [CDF+05] that correctly solves

any TGA.

355

A.6. DYNAMIC CONTROLLABILITY PROOFS

356

Appendix B

Planning Proofs

B.1 Proof of DR Approach Completeness

In this section, we prove theorem 12.1.

Definition 93 (Abstract Plan χ). Given a time-triggered, strong plan

σ =̇{〈t1, a1, d1〉, · · · , 〈tn, an, dn〉}, an abstract plan χ is the ordered sequence

of steps obtained by exploding each action ai of σ in its snap components

and considering the order given by the time of the happenings: each s
asta
i

happens at time t if it corresponds to a 〈t, a, d〉, each s
aeta
i happens at time

t + d if it corresponds to a 〈t, a, d〉 with d 6= ⊥, or at time t + x with

x ∈ bounds(a) if it corresponds to a 〈t, a,⊥〉.

Lemma B.1. Given a strong plan σ and any abstract plan χ of σ, σ is

valid for a STPUD if and only if the DTNU K created by algorithm 19

with DR is strongly controllable.

Proof. Clearly, K is defined over all (and only over) the snap actions of the

action appearing in σ.

First, we prove that if σ is valid, then K is strongly controllable. Let µ

be the assignment to the controllable time points of K, defined as follows.

µ(x) =

t(x) if x = s
asta
i for some action a

t(asta + δ(a)) if x = s
aeta
i for some controllable a

357

B.1. PROOF OF DR APPROACH COMPLETENESS

We now prove that µ is a strong schedule for K. For the sake of contradic-

tion, suppose it is not. Then, there exists a duration for the uncontrollable

actions for which one of the free constraints in K is violated. It is impossi-

ble to violate a duration constraint, therefore one of the three constraints

in definition 67 must be violated for some ā. This is impossible, because

sigma is a valid plan and if we violate constraint 2 or constraint 3, it

means that there the preconditions of the action in σ corresponding to ā

are unsatisfied, if we violate constraint 4, then the overall conditions of the

action in σ corresponding to ā are unsatisfied.

Now, we prove that if K is strongly controllable, σ is valid. Reversing

the argument before, we assume to have a strong schedule µ for K, and

we prove that setting each step s of sigma as follows, yields a valid strong

plan.

• t(s) = µ(s
asta
i)

• δ(s) = µ(s
aeta
j − µ(s

asta
i), if s is controllable.

For the sake of contradiction, assume that σ defined as above is not a valid

strong plan. Then there exists a temporal plan π ∈ Iσ that is not a valid

plan for the domain in which we removed temporal uncertainty as per def-

inition 64. If π is invalid, it is either causally unsound (inapplicable in the

initial state, not simulable, not leading to the goal state) or it violates some

temporal constraint of the domain. But π cannot be causally unsound, be-

cause it fulfills all the constraints of definition 67; and it cannot violate

a temporal constraints, because the only temporal constraints in the plan

are the duration of actions that are encoded in K and fulfilled by µ.

The proof of theorem 12.1 descends from lemma B.1.

Theorem 12.1 (DR Completeness). Given a STPUD admitting a valid

strong plan σ, if DR is used, algorithm 19 terminates with a valid strong

plan.

358

APPENDIX B. PLANNING PROOFS

Proof. We assume that the classical planner employed in algorithm 19 is

sound and complete. Therefore, sooner or later it will produce an abstract

plan χ of a valid strong plan σ as it is a plan achieving the goal. Then, by

lemma B.1, we know that the DR approach yields a strongly controllable

DTNU, and therefore the algorithm terminates with a valid strong plan.

B.2 STPUD Formal Compilation Proof

In this section we prove theorem 12.2.

B.2.1 Plan Mapping

Consider a plan σ =̇ 〈〈t1, a1, d1〉, · · · , 〈tn, an, dn〉〉 for an STPUD R. We call

πσ the regression plan for P when it has actions aπi corresponding to the

actions ai in σ such that:

• aπi also starts at time ti.

• aπi has duration di if ai is controllable,

• otherwise the duration of aπi is unspecified.

Analogously, we call σπ the projection plan for R of a strong plan π for

P obtained by fixing the duration of each uncontrollable action in π to its

maximum.

B.2.2 Plan Execution

Given a temporal plan, an execution εX of a temporal planning instance X,

is a set of changes applied to the variables: ε =̇ {(t1, f1, v1), · · · (tn, fn, vn)}.
An element 〈ti, fi, vi〉 ∈ εX means that at time ti the variable fi takes

value vi. Following definition 62, we take the view that at time ti the

359

B.2. STPUD FORMAL COMPILATION PROOF

change is not yet visible: the value vi is taken immediately after ti. Such an

element of εX can be caused by either: (1) an initial condition (i.e. ti = 0);

(2) by a Timed Initial Literal or (3) by an action effect. Therefore, for the

rest of this proof we refer to execution elements as either initial conditions,

timed initial literals or action effects. Moreover, exXft represents the value

v of f at time t during the execution εX .

Given a strong plan π for P , we have a set of possible executions, one

for each possible duration of each uncontrollable action in π. For a given

execution εP , then exPft indicates the value of variable f at time t during

this particular execution εP .

We now need to compare the executions of plans for P and R. The

next theorem states that if σ is a valid plan for R and its corresponding

regression plan for R is πσ, then the variables in each pair of executions

are aligned at each time in which fσ is equal to f during the execution of

R.

Lemma B.2. Given a valid plan σ for R and its corresponding regression

plan πσ, for each execution εP of πσ: if exRfσt = exRft, then exRft =

exPft, for each variable f ∈ L and each t ∈ R.

Proof. For the sake of contradiction, let us focus on an execution εP in

which there is t ∈ R such that exRfσt = exRft but exRft 6= exPft.

Let ER
fσ

=̇ 〈tRσ , fσ, vRσ 〉, ER
f =̇ 〈tR, f, vR〉 and EP

f =̇ 〈tP , f, vP 〉 be the latest

execution elements involving fσ and f in εR and εP . By our hypothesis,

vR 6= vP . Moreover, due to the translation constraints, we know that

vRσ = vR and tRσ ≤ tR. In fact, each time we change f in R we also change

fσ either at the same time or at the beginning of an uncertain interval d

and we prevent any other change on fσ until d is over.

We prove that this hypothesis is impossible by considering all possible

cases.

360

APPENDIX B. PLANNING PROOFS

1. ER
f and E4Pf are both initial conditions: since all the initial conditions

are copied from P to R, we must have vP = vR.

2. ER
f and EP

f are both timed initial literals (TIL): since all TILs are

copied from P to R, either vP = vR or there are two TILs at the same

time on the variable f , which is not allowed.

3. ER
f is either a TIL or an initial condition and EP

f is the effect of action

a:

• If a is uncontrollable, there is a TIL 〈tR, f, vR〉 also in P corre-

sponding to ER
f . Given that EP

f is an action effect, it must be

the case that tRσ happens before tP , but after tR. Hence, either

vRσ 6= vR or ER
f is not the last effect changing f .

• If a is controllable, then there should be an effect corresponding to

EP
f for R at time tP . Therefore, either ER

f or EP
f is not the latest

effect modifying f in the executions of R and P , respectively.

4. EP
f is either a TIL or an initial condition and ER

f is an action effect:

since TIL are copied from P to R, there is a TIL analogous to EP
f

in R. Hence tR ≥ tRσ > tP . However, since tR and tRσ are the two

extremes of an uncertainty interval, there must be another effect on

f in P during this interval. Hence, EP
f is not the last effect changing

f in P .

5. EP
f and ER

f are both effects of two actions instances a and a′: four

following possible sub-cases.

• Both EP
f and ER

f are effects of controllable actions (or effects of

uncontrollable actions that happen at times independent of the

duration): they must be the same effect since the controllable

361

B.2. STPUD FORMAL COMPILATION PROOF

actions in P are kept in R without changing the duration nor the

effect times.

• Both ER
f and EP

f are effects of uncontrollable actions: ER
f and EP

f

must be the same effect of the same uncontrollable action, because

of the condition imposed on fσ. If this were not the case, then

the condition preserving the value of fσ for the whole uncertainty

interval would have been violated in εR.

• ER
f is an effect of a controllable action (or effect of an uncon-

trollable action happens at a time independent of the uncertain

duration) while EP
f comes from an uncontrollable action. Since

EP
f is an uncontrollable effect, there is a corresponding pair of

effects on f and fσ for the execution in R. If tR > tP then there

would be an effect on f equivalent to ER
f that happens after tP

but before t. If EP
f happens after ER

f , then either exRfσt 6= exRft

or EP
f is not the latest effect on f .

• EP
f is an effect of a controllable action (or effect of an uncon-

trollable action happens at a time independent of the uncertain

duration) while ER
f comes from an uncontrollable action. This is

analogous to the previous case.

Lemma B.3. Given a strong plan π for P and its corresponding projection

plan σπ for R, let εR be the execution of σπ. For each variable f ∈ L, each

t ∈ R and each execution of P : if exRfσt = exRft then exRft = exPft,

Proof. We apply the same reasoning as in the proof of the previous lemma.

Cases 1 and 2 are identical to the previous proof, the other cases are

changed as follows.

3. ER
f is either a TIL or an initial condition and EP

f is the effect of an

action a.

362

APPENDIX B. PLANNING PROOFS

• If a is uncontrollable, there should be a TIL 〈tR, f, vR〉 in P cor-

responding to ER
f . Given that EP

f an action effect, there is an

execution of P where tP happens before tR and another in which

it happens after (no two effects of the same action on the same

variable can happen at the same time). Hence, π is not a valid

strong plan.

• If a is controllable, then there is an effect corresponding to EP
f

also for R at time tP , therefore either ER
f or EP

f is not the latest

effect modifying f in the executions of R and P .

4. EP
f is either a TIL or an initial condition and ER

f is an action effect.

Since TILs are copied from P to R, there must be a TIL analogous to

EP
f in R. Hence tR ≥ tRσ > tP . But there are two executions of P in

which tR = tP and tRσ = tP (tR and tRσ the extremes of an uncertainty

interval). Hence, EP
f is not the last effect changing f in P .

5. EP
f and ER

f are both effects of two actions instances a and a′.

Four sub-cases are possible:

• Both EP
f and ER

f are effects of controllable actions (or effects of

uncontrollable actions that happen at times independent of the

uncertain action duration): they must be the same effect, as the

controllable actions in P are all kept in R without changing the

duration or the effect times.

• Both ER
f and EP

f are effects of uncontrollable actions: ER
f and EP

f

must be the same effect of the same uncontrollable action, because

actions are started at the same time in the two executions and no

pair of effects on the same variable are allowed if the plan is strong.

• ER
f is an effect of a controllable action (or happens at a time inde-

pendent of the duration) while EP
f comes from an uncontrollable

363

B.2. STPUD FORMAL COMPILATION PROOF

action. Since ER
f is an uncontrollable effect, there is an original

effect in P that is concurrent with EP
f . If tR > tP then there

would be an effect on f equivalent to ER
f after tP and before t.

If EP
f happens after ER

f , then either exRfσt 6= exRft or EP
f is not

the latest effect on f .

• EP
f is an effect of a controllable action (or happens at a time inde-

pendent of the duration) while ER
f comes from an uncontrollable

action. This is analogous to the previous case.

Theorem 12.2 (Soundness and Completeness). Let P =̇ 〈V, I, T,G,A〉 be

a planning instance and R =̇ 〈V ′, I ′, T ′, G′, A′〉 be its translation. P has a

strong plan π if and only if R has a temporal plan σ.

Proof. Let π be a strong plan for P . σπ is a valid temporal plan for R

because:

• It achieves the goal G′ of R, because all the original goals in G

are achieved by π and by σ in the same way, and the goals on the

shadow variables must be achieved because π is a strong plan. In

fact, π achieves the goals regardless of the concrete durations of the

actions, therefore it achieves them outside of the uncertainty intervals,

where the variables and the shadow variables are aligned because of

lemma B.3.

• Each action a′ is executable in R, because each a ∈ π is executable in

P regardless of the action durations. Thus the possible uncertainty

introduced by the durations is irrelevant for the executability of a (all

the conditions are satisfied and variables and the shadow variables are

aligned because of lemma B.3). In the translated instance R, all the

conditions are also satisfied because the conditions are imposed via

364

APPENDIX B. PLANNING PROOFS

the γ function that only checks that both the variable and its shadow

fulfill the original condition.

• No conflicting effects are possible because of the conditions added in

CE
a′ that prevents any modification of the interested shadow variables

during the uncertainty intervals.

Similarly, let σ be a plan for R. Then πσ is a valid strong temporal plan

for P because:

• It achieves the goal G, because σ achieves the goal G′ that is a super-

set of G, and the variables are aligned because of lemma B.2.

• Each action a is executable in P regardless of the action duration,

because the variables are aligned because of lemma B.2, a′ ∈ σ is

executable in R and the conditions in the translated actions are a

super-set of the ones in the original action, because of the γ function.

• No conflicting effects are possible regardless of the uncertain duration,

because each effect at time t can be uncertain only between λ(t) and

ν(t) and we guarantee no other effect is possible in that interval by

means of CE
a′ .

365

	Introduction
	Contributions and Publications
	Experimental Evaluations
	Structure of the Thesis

	Background
	Technical Preliminaries
	Satisfiability Modulo Theories
	SMT Notation
	Quantifiers in LRA
	Fourier-Motzkin Elimination
	Loos-Weispfenning Elimination

	Timed Game Automata
	Clocks and Time Regions

	I State-of-the-Art Survey
	Execution Model
	Plant Interface
	Plan Executor
	Formal Model
	Plant Classification
	Plan Executor Classification
	Discussion
	Partial Observability
	Weak Executors and Predictions

	Scheduling Classification
	Qualitative Scheduling
	Point Algebra
	Allen Algebra

	Temporal Networks
	Temporal Networks and Consistency
	Simple Temporal Network
	Disjunctive Temporal Network
	Temporal Constraint Satisfaction Networks
	Minimal Networks

	Temporal Uncertainty
	Simple Temporal Networks with Uncertainty
	TCSNU and DTNU

	Discrete Non-Determinism
	Conditional Temporal Networks
	Conditional STNU

	Planning Classification
	Temporal Planning without Uncertainty
	Temporal Plans
	Planning Language Classification
	State Space Temporal Planning
	Plan Space Temporal Planning
	Planning as Satisfiability
	Planning Graph Derivations

	Beyond Temporal Planning

	Extensions
	Flexibility
	Resources and Continuous Change
	Optimality
	Temporally Extended Goals

	II Disjunctive Scheduling under Temporal Uncertainty
	Temporal Networks Formalization
	Consistency
	Consistency Encodings
	Naïve Encoding
	Switch Encoding
	Switch Encoding with Mutual Exclusion
	Hole Encoding

	Experimental Evaluation
	Results

	Strong Controllability
	Encoding Strong Controllability in SMT
	Encodings into Quantified LRA
	Encodings into Quantifier-Free LRA

	Related Work
	The PVYS Algorithm
	Polyhedra-Based Approach

	Experimental Evaluation
	Implementation
	Experimental Set-Up
	Results for Strong Controllability
	Comparison with PVYS

	Weak Controllability
	Weak Controllability Definition
	Deciding Weak Controllability
	Strategies for Weak Controllability
	Implicit Strategies
	Explicit Strategies

	Synthesis of strategies for Weak Controllability
	Linear Strategies for STNU
	Vertex Encoding
	Incremental Weakening

	Piecewise-Linear Strategies for STNU
	Simplexes Decomposition
	Lazy Expansion

	Linear Strategies for DTNU
	Piecewise-Linear Strategies for DTNU
	Skin Crawler
	Convex Region Enumerator

	Experimental Evaluation
	Decision Problem
	STNU Strategy Synthesis
	DTNU Strategy Synthesis
	Strategy Execution

	Dynamic Controllability
	Formalization of Dynamic Controllability
	Timestrict and Immediate-Reaction Semantics

	Strategy Representation and Validation
	Strategy Language
	Validation
	Additional Constraints for Timestrict Semantics

	Reducing Dynamic Controllability to TGA Reachability
	STNU to TGA
	DTNU to TGA
	Disjunctive Normal Form
	Negation Normal Form

	TGA Strategies
	Addressing the Timestrict Semantics

	Synthesizing Dynamic Strategies
	Ordered and Unordered states
	Pruning Unfeasible States

	Experimental Evaluation

	III Strong Temporal Planning with Uncontrollable Durations
	Action-Based STPUD
	The STPUD Problem
	Syntax
	Semantics
	Example
	Discussion

	Overview of the Proposed Approaches
	STPUD via Forward State-Space Search
	FSSTP
	Handling Uncontrollable Durations
	Total Order Encoding
	Last Achiever Deordering Encoding
	Disjunctive Reordering Encoding

	Compiling STPUD in Temporal Planning
	Formal Compilation
	Uncertain Variables
	Disjunctive Conditions
	Uncertain Temporal Intervals
	Uncontrollable Actions
	Controllable Actions
	Initial State I
	Timed Initial Literals
	Goal Conditions

	Example
	Discussion

	Simplification
	Maximal-Duration Simplification
	Minimal-Duration Simplification
	Discussion

	Experimental Evaluation
	Experimental Set-Up
	Intermediate Effects
	Overall Results
	Impact of Simplifications

	Timelines with temporal uncertainty
	Problem Definition
	Bounded Encoding in FOL
	Discussion

	Thesis Conclusion
	Future Work

	Bibliography
	Scheduling Proofs
	Consistency Proofs
	Strong Controllability Proofs
	Weak Controllability Proofs
	STNU Execution Semantics
	STNU to TGA Formal Correctness
	Dynamic Controllability Proofs

	Planning Proofs
	Proof of DR Approach Completeness
	STPUD Formal Compilation Proof
	Plan Mapping
	Plan Execution

