
Deciding Unsolvability in Temporal Planning under Action Non-Self-Overlapping

Stefan Panjkovic, Andrea Micheli, Alessandro Cimatti
Fondazione Bruno Kessler, Trento, Italy
{spanjkovic, amicheli, cimatti}@fbk.eu

Abstract
The field of Temporal Planning (TP) is receiving increasing
interest for its many real-world applications. Most of the lit-
erature focuses on the TP problem of finding a plan, with al-
gorithms that are not guaranteed to terminate when the prob-
lem admits no solution. In this paper, we present sound and
complete decision procedures that address the dual problem
of proving that no plan exists, which has important appli-
cations in oversubscription, model validation and optimiza-
tion. We focus on the expressive and practically relevant se-
mantics of action non-self-overlapping, recently proved to be
PSPACE-complete. For this subclass, we propose two ap-
proaches: a reduction of the planning problem to model-
checking of Timed Transition Systems, and a heuristic-search
algorithm where temporal constraints are represented by Dif-
ference Bound Matrices. We implemented the approaches,
and carried out an experimental evaluation against other state-
of-the-art TP tools. On benchmarks that admit no plans, both
approaches dramatically outperform the other planners, while
the heuristic-search algorithm remains competitive on solv-
able benchmarks.

Introduction
AI Planning is the problem of synthesizing a course of ac-
tions that leads to a certain goal. It is a well-studied field
of Artificial Intelligence, with a wide variety of real-world
applications in logistics, autonomy, robotics, and industrial
automation. Temporal Planning (TP) is concerned with tem-
poral aspects, such as deadlines, synchronization between
actions and the precise timing of events. Several temporal
planners are able to find plans efficiently in a variety of do-
mains. However, none of them is guaranteed to detect that
the input problem is unsolvable, i.e. does not admit a solu-
tion plan. In fact, some temporal planning techniques (e.g.
decision-epoch) are incomplete also in the case when a plan
exists (Cushing et al. 2007), other temporal planning tech-
niques based on heuristic search (e.g. (Coles et al. 2010;
Simmons and Younes 2011)) explore a search space that is
in general not finite and thus, in cases where the heuristic is
unable to eventually prune all branches, the search algorithm
diverges. Techniques based on reduction to satisfiability (e.g
(Shin and Davis 2005; Rintanen 2007)) are oriented to find
plans and are unable to detect that no plan exists.

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yet, being able to determine unsolvability has important
applications. For example, when doing plan optimization, a
method is to progressively tighten the problem constraints,
trying to solve them in order to obtain more optimized plans.
Clearly, when the constraints are tightened too much, the
problem becomes unsolvable, and existing planners might
diverge on this input. Another application is “oversubscrip-
tion” planning (Smith 2004), where it might be impossi-
ble to satisfy all the goals. Detecting unsolvability is also
important for domain validation (Khatib, Muscettola, and
Havelund 2001).

The problem of detecting unsolvability of planning in-
stances has been studied in the context of classical planning
(i.e., where actions are instantaneous and no temporal con-
straints are present), and several techniques have been pre-
sented (e.g., (Suda 2014; Hoffmann, Kissmann, and Torralba
2014; Muise and Lipovetzky 2016)), but it only recently re-
ceived theoretical attention in the realm of temporal plan-
ning. In this paper, we address unsolvability in TP from a
practical point of view. In general, the complexity of TP de-
pends on the domain of time. If time is interpreted as a dis-
crete quantity, TP is EXPSPACE-complete (Rintanen 2007).
Instead, if time is interpreted as a dense quantity, TP is un-
decidable (Gigante et al. 2020). In this paper, we concen-
trate on a very expressive and practically relevant subclass
of TP, characterized by the assumption of action non-self-
overlapping (ANSO), that is PSPACE-complete in both the
dense and discrete cases (Gigante et al. 2020). We study
sound and complete decision procedures for ANSO TP: if
the problem is solvable then a plan is eventually found, and
if the problem is unsolvable the algorithm terminates stat-
ing that no solution exists. We stress that current planning
techniques are semi-decision procedures for TP, and thus
they are incapable of guaranteeing termination even under
the ANSO assumption.

We propose two novel terminating approaches: the first
approach is a reduction to model-checking, which encodes
the problem in a symbolic timed transition system (Cimatti
et al. 2019) and uses the NUXMV (Cavada et al. 2014)
model-checker; the second approach is a dedicated Forward-
Chaining Temporal Planner called TAMER-CTP, which
combines a heuristic-search schema inspired by (Valentini,
Micheli, and Cimatti 2020) with a symbolic representation
of time using Difference Bound Matrices (DBM).

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9886

This is a pre-print version of the homonymous paper appearing in AAAI 2022.
Copyright (c) 2022 belongs to AAAI Press.

We performed a thorough experimental evaluation on
both solvable and unsolvable benchmarks, comparing our
approaches with the state-of-the-art tools. In addition, we
implemented an optimized UPPAAL encoding (Bengtsson
et al. 1995) of the timed automaton designed by (Gigante
et al. 2020) to prove PSPACE-completeness of ANSO TP.
This was used in the experiments as a baseline for the un-
solvable benchmarks. The results show that the encoding
into NUXMV and TAMER-CTP are the best tools for unsolv-
able instances and exhibit complementary strengths; more-
over, TAMER-CTP is also competitive with the state-of-the-
art on solvable instances.

Temporal Planning under ANSO
We start by formalizing the TP problem; we tackle TP prob-
lems admitting Intermediate Conditions and Effects (ICE)
(Valentini, Micheli, and Cimatti 2020) and we use the same
fragment of the ANML (Smith, Frank, and Cushing 2008)
modeling language used in (Valentini, Micheli, and Cimatti
2020) with two additional assumptions needed for the prob-
lem to be decidable. We forbid infinite-domain fluents and
we work under the ANSO assumption: we disallow any plan
that exhibits a time instant when two instances of the same
ground action are running.

We interpret time over the rational numbers, and we de-
fine a timing as an expression that refers to the start or the
end of an interval as follows.

Definition 1. A timing is an expression of the form START+
k with k ∈ Q≥0 or END.

Timings refer to the instant an action is started or ended; for
example, a timing START+4 for an action starting at absolute
time 3 and terminating at time 10, corresponds to time 7,
while a timing END corresponds to time 10. Timings are also
used to schedule Timed-Initial-Literals (TILs), where START
corresponds to time 0 and END indicates the end of the plan.

We now define the abstract syntax of a planning problem.

Definition 2. A planning problem P is a tuple 〈F, T,A,G〉:
• F is a finite set of Boolean and bounded-integer fluents;
• T is a finite set of TILs, each of the form 〈[t] f := c〉

where t is a timing, f ∈ F , and c is a constant;
• A is a set of actions of the form 〈C,E, d〉 where:

– C is a set of conditions of the form 〈[t1, t2], φ〉, where
t1 and t2 are timings and φ is a Boolean expression on
F ;

– E is a set of instantaneous effects of the form 〈[t] f :=
c〉 where f ∈ F , t is a timing and c is a constant;

– d is an interval of possible durations, d = [l, u] with
0 < l ≤ u ≤ ∞;

• G is a set of timed goals of the form 〈[t1, t2], φ〉, where t1
and t2 are timings and φ is a Boolean expression.

A plan consists of a finite sequence of actions to be exe-
cuted at specified times and each with a specified duration.

Definition 3. A time-triggered plan π for P is a sequence
〈〈t1, a1, d1〉, 〈t2, a2, d2〉, ..., 〈tn, an, dn〉〉, where ti ∈ Q≥0
is the starting time, ai ∈ A is the action to be started, di ∈
Q≥0 is the action duration, and ti ≤ ti+1.

The formal semantics of the described language is pre-
sented in (Cimatti, Micheli, and Roveri 2017); for the sake of
brevity we only report the main points. All the fluents of the
problem have an assigned value at every time instant t ≥ 0.
For every fluent in F there must exist a TIL in T that assigns
a value to the fluent at the instant t = 0, thus all fluents must
be initialized to some value. A fluent always maintains its
value until an action effect or a TIL modifies it. Two effects
that modify the same fluent are said to be mutually exclusive
(mutex). A plan that schedules two or more mutually exclu-
sive events at the same time is considered invalid. An effect
becomes visible immediately after the time it is scheduled to
happen, while conditions are evaluated immediately.

A time-triggered plan π is a solution for a planning prob-
lem P if by simulating π on P , i.e. applying all the effects at
the specified time relatively to the starting time of the action,
and considering the induced trace that assigns a value to each
fluent at each time, all the conditions are satisfied in their in-
tervals, the duration of every action respects the constraints,
and the plan execution yields a final state with no pending
running actions and where the goal condition holds.

Every effect, condition start and condition termination of
every action, as well as every TIL and every goal starting
and ending is called an “event” of the planning problem.
Intuitively, a plan execution can be seen as a sequence of
events separated by time elapses. This is the same idea of
“snap-actions” of PDDL 2.1 (Coles et al. 2008) generalized
to the ANML case where we have events that might not co-
incide to the starting or ending of actions (called Interme-
diate Conditions and Effects (ICE) (Valentini, Micheli, and
Cimatti 2020)).
Complexity and self-overlapping. The computational
complexity of TP has been studied in (Rintanen 2007)
and (Gigante et al. 2020). One of the most important as-
pects that influences the complexity is whether actions are
permitted to self-overlap with already running instances of
themselves.
Definition 4. Given a planning problem P = 〈F, T,A,G〉
and a plan π = {〈t1, a1, d1〉, ..., 〈tn, an, dn〉} for P , an ac-
tion a ∈ A is said to self-overlap in π if there exist any
1 ≤ i, j ≤ n such that a = ai = aj and ti ≤ tj ≤ ti + di.
In this paper, we consider dense time and we assume
that there is no self-overlap of actions. Gigante et al.
(2020) proved that the problem is decidable and PSPACE-
complete.

Model-Checking Decision Procedure for TP
The first approach that we present transforms a temporal
planning problem P into an equivalent NUXMV model with
clocks, which is a symbolic representation of a Timed Tran-
sition System (TTS) (Cimatti et al. 2019).

A TTS is defined by a set of discrete variables, a set of
clock variables and a set of constraints which determine
symbolically the transition relation of the model. Each con-
straint restricts the values that a variable can assume in the
next state, given the value of variables in the current state. In
a TTS, the transitions can be either discrete or time-elapses:
in a discrete transition, all variables non-deterministically

9887

modify their values in a way subject to the constraints of
the transition relation (including clock variables); in a time-
elapse, all clocks increase by the same amount, while dis-
crete variables remain unchanged.

We have variables corresponding to the fluents of the
problem (of type boolean or bounded integer according to
the domain of the fluent), additional boolean variables to
represent the fact that an action is running and that an inter-
mediate event has been applied, and a clock for every action
representing the time since the action was last started.

The transition relation of our encoding is specified by a
constraint for the start and end of every action, stating that
preconditions and duration constraints must hold, and for
the application of every intermediate event, that can be ap-
plied only if the clock of the corresponding action is equal to
their timing. Moreover, we encode a frame axiom (Shanahan
1997) to restrict variables from changing arbitrarily unless
an effect is applied on them.

By verifying the invariant property corresponding to the
negation of the goal condition, if a solution plan exists any
counter-example trace shows how to reach a state where the
goal condition holds. From it, by considering the time delays
and the moments in which actions were started and ended, a
plan can be reconstructed.

More formally, given a temporal planning problem
P =̇ 〈F, T,A,G〉, the variables of the NUXMV encoding are
the following:
• the fluent variables {f1, f2, . . . , fk}, one for each fluent

in F with appropriate type to represent the domain of the
fluent;

• the boolean running variables ra, for every action a ∈ A;
• the clock variables ca, for every a ∈ A;
• a global clock variable cg;
• the boolean count variables {count1, . . . , countp}, one

for every event in P .
The running variable ra indicates whether the action a ∈ A
is currently running, and if a is running then ca represents
the time since the action was last started. The global clock
variable cg represents the time since the start of the plan,
and is used to schedule the execution of TILs and to check
goals at the appropriate time. Finally, the count variable for
an event is used to ensure the event is not skipped: the vari-
able is set to true when the event is applied, and at the end
of the action it is checked that the count variables of all the
events of the action are true.

Fluent variables are initialized according to the initial val-
ues of the respective fluents, the running and count variables
are initialized to false, and all the clocks are set to 0.

For every action a ∈ A, with interval of possible dura-
tions da = [la, ua], we impose that when the action is started
(i.e. ¬ra ∧ next(ra)) its clock is reset to 0, and when it is
ended its clock must satisfy the duration constraint and all
the events of the action have been applied:
• (¬ra∧next(ra))→next(ca) = 0∧

∧
e∈a ¬next(counte)

• (ra ∧ ¬next(ra))→ ca ∈ [la, ua] ∧
∧

e∈a next(counte)
For every event e that is an effect of the form [START +
k]fi := v or a condition of the form [START + k]φi of an
action a with k > 0, we specify that if a is running and
its clock has the value of the timing of the event, then the

event must be applied (we also set the corresponding count
variable to true):
• (ra ∧ (ca = k))→ next(fi) = v ∧ next(counte)
• (ra ∧ (ca = k))→ φi ∧ next(counte)
Similarly, events attached to the END of an action a and
events scheduled at START + 0, are encoded using ra ∧
¬next(ra) and ¬ra ∧ next(ra) as left-hand side of the im-
plication. Events e that are either TILs [START+k]fi := v or
timed goals of the form [START+k]φi are handled similarly,
using cg instead of ca:
• (cg = k)→ next(fi) = v ∧ next(counte)
• (cg = k)→ φi ∧ next(counte)

Finally, we need to specify the “frame axiom” (Shana-
han 1997), because variables may change their value arbi-
trarily if we don’t constrain them to change only when an
effect is applied to them. For every clock variable ca, corre-
sponding to action a, we impose that the clock can change its
value in a discrete transition only when the action is started:
(ca 6= next(ca)) → (¬ra ∧ next(ra)). As the global clock
cg is never reset, we add the following constraint to avoid
any changes during discrete transitions: cg = next(cg). For
every fluent variable fi we consider the set of effects/TILs
modifying the fluent {[t1]fi := v1, . . . , [tm]fi := vm}, and
we impose an axiom: (fi 6= next(fi)) → e1 ∨ . . . ∨ em,
where ei is an expression checking that the i-th effect/TIL is
being applied in this transition.

A goal state is a state in which the goal condition holds,
no action is running and all the TILs and goals have been
applied. To determine whether a goal state can be reached,
we check the following invariant property:
INVARSPEC ¬(

∧
g φg ∧

∧
a∈A ¬ra ∧

∧
i gcounti),

where g are the end goals [END]φg and
{gcount1, . . . , gcounts} is the set of count variables
relative to TILs and goals with timing START + k. The
above property is essentially the negation of a goal state. If
the property is violated, i.e. there exists a path that reaches
a goal state, then the returned counterexample trace can be
converted to a valid solution plan for the original temporal
planning problem P .

Theorem 1. The encoding of a temporal planning problem
P admits a counter-example if and only if P is solvable.

Proof. (Sketch) The TTS encoding captures the semantics
of ANSO temporal planning as derived from (Gigante et al.
2020). Any trace of the TTS corresponds to a valid trace
in P . We exploit ANSO semantics by creating exactly one
clock and one running variable for each action (without
ANSO, we would need an unbounded number of those
clocks and variables). The invariant property in the TTS di-
rectly states that the problem is unsolvable, hence there ex-
ists a counterexample if and only if the planning problem is
solvable.

Note that TTSs as per (Cimatti et al. 2019) are in gen-
eral undecidable, but we target a fragment that does not use
infinite-state variables except for clocks and thus the frag-
ment targeted by our encoding is analogous to a timed au-
tomaton and the reachability model-checking problem is de-
cidable.

9888

A (DUR = 2)

B (5 ≤ DUR ≤ 7)

A (DUR = 2)
0

0 ≤ cA ≤ 0
0 ≤ cB ≤ 0
0 ≤ cabs ≤ 0

0 ≤ cabs−cA ≤ 0
0 ≤ cabs−cB ≤ 0
0 ≤ cA−cB ≤ 0

0 ≤ cA ≤ 0
0 < cB
0 < cabs

0 < cabs−cA
0 ≤ cabs−cB ≤ 0

cA−cB < 0

2 ≤ cA ≤ 2
2 < cB
2 < cabs

0 < cabs−cA
0 ≤ cabs−cB ≤ 0

cA−cB < 0

2 < cA
0 ≤ cB ≤ 0
2 < cabs

0 < cabs−cA
2 < cabs−cB
2 < cA−cB

0 ≤ cA ≤ 0
0 < cB
2 < cabs

2 < cabs−cA
2 < cabs−cB
cA−cB < 0

2 ≤ cA ≤ 2
2 < cB
4 < cabs

2 < cabs−cA
2 < cabs−cB
cA−cB < 0

2 < cA < 7
5 ≤ cB ≤ 7
7 < cabs

2 < cabs−cA
2 < cabs−cB

−5 < cA−cB < 0

D1 D2 D3 D4 D5 D6 D7

UPSTRICT(D1)
RESET(D1 ,cA)

UPSTRICT(D2)
CONSTRAIN(D2 ,cA , [2, 2])

UPSTRICT(D3)
RESET(D3 ,cB)

UPSTRICT(D4)
RESET(D4 ,cA)

UPSTRICT(D5)
CONSTRAIN(D5 ,cA ,[2, 2])

UPSTRICT(D6)
CONSTRAIN(D6 ,cB ,[5, 7])

Figure 1: Example of DBM usage in TAMER-CTP. The temporal constraints in the example plan depicted as a Gantt chart are
captured by the sequence of DBM constraints on the clocks cabs (the absolute clock, i.e. the time since the plan has started), ca
and cb.

Heuristic Search Decision Procedure for TP
We now present the TAMER-CTP planning algorithm, a
complete heuristic-search based temporal planner that works
by maintaining the temporal information symbolic with Dif-
ference Bound Matrices (DBMs) (Bengtsson and Yi 2004),
while using explicit propositional states. TAMER-CTP in-
herits the subdivision of actions in time-points, the search
procedure and the heuristic from TAMER-FTP (the plan-
ner presented by Valentini, Micheli, and Cimatti 2020),
but it differs completely in the way it handles temporal
constraints. While TAMER-FTP relies on Simple Temporal
Networks (STNs) (Dechter, Meiri, and Pearl 1991) to add
and check constraints between time-points, TAMER-CTP is
based on DBMs, the data structure used in the context of TA
to represent zones (Bengtsson et al. 1995). STNs can be used
to schedule plans by creating a time point for each event in
the plan and then adding appropriate temporal constraints
among these time points. Differently, DBMs represent a re-
gion of possible timings for a fixed number of clocks. In or-
der to construct a plan, we can introduce one clock for each
action, that measures the time elapsed since the action was
last started; then, we associate a DBM to each search state
that maintains the temporal constraints relevant for the con-
struction of successor states.

Consider the example plan in Figure 1. With an STN, we
can use time points to represent its temporal constraints (the
reference time-point z and two time points for each action
instance x: xs representing the action start and xe represent-
ing the termination): z < A1

s < A1
e < Bs < A2

s < A2
e <

Be∧A1
e−A1

s = 2∧A2
e−A2

s = 2∧5 ≤ Be−Bs ≤ 7. Using
DBMs we introduce one clock for each action (cA and cB)
and one for the absolute time that is never reset cabs. Dif-
ferently from the STN, we cannot represent all the temporal
constraints of the plan using a single DBM, but we repre-
sent the temporal information at each state with a dedicated
DBM: each DBM can be derived from the previous one in
the sequence. In Figure 1, we start with the DBM where
all clocks are 0 and then we let time elapse. When we start
action A, we reset the clock cA to 0 obtaining the second
DBM. When an action is terminated, we enforce the dura-
tion constraints in the DBM (e.g. we force cA = 2 in the
third DBM). If at any point, the DBM becomes empty (i.e.

unsatisfiable), then the plan is temporally unfeasible.
The key feature of DBMs is that they support subsump-

tion checking, i.e. checking whether the time region repre-
sented by a DBM is a subset of the one represented by an-
other DBM. This is a crucial operation in order to obtain a
terminating algorithm. This operation is pivotal to check if
all the plan suffixes from a certain state are also valid suf-
fixes from another state, allowing us to prune the first state
as it is dominated by the other. On the contrary, checking the
subsumption of states using STNs is problematic: as detailed
in (Coles and Coles 2016) if two states are reached with two
permutations of the same set of actions, one can solve a NP-
hard graph isomorphism problem to check if the first STN
subsumes the other. However, there is no work we are aware
of that tackles the problem of checking subsumption of STN
temporal states that are achieved by different sets of actions.
In fact, STNs do have one time-point for each step in the
plan prefix leading to the state, and so two STNs with differ-
ent prefixes are not directly comparable.

The way TAMER-CTP works is inspired by explicit-state
model-checkers for TA: we use DBMs to ensure that the se-
quence of events explored by the planner are schedulable,
meaning that it is possible to assign a timing to each event
that respects all the temporal constraints. We also use the
“normalization” procedure (Bengtsson and Yi 2004) to fini-
tize the set of possible DBMs for a problem. TAMER-CTP
saves every state encountered during the search to check if
all the possible plans starting from a new state u are already
covered by the ones starting from a visited state v. This is
done by checking that the assignment to the state variables
is the same in u and v, and by ensuring that the DBM of u
is subsumed by the DBM of v. This allows TAMER-CTP to
recognize that a state does not need to be further expanded as
any plan starting from it will be already taken into account,
hence ensuring termination.

Difference Bound Matrices. A DBM is a finite and canon-
ical representation of a conjunction of atomic clock con-
straints over a set of clocks. Each constraint is of the form
x−y � k, where x and y are clocks,� ∈ {<,≤} and k ∈ Q
(Bengtsson and Yi 2004). Given a DBM D, the following
transformations and checks are used by our algorithm.
• ISCONSISTENT(D) checks that the solution set of D is

9889

non-empty. During state-space exploration this is used to
remove inconsistent states that are not schedulable.

• UP(D) computes the strongest postcondition of a zone
with respect to delay, i.e. the zone representing all clock
assignments that can be reached from D by waiting.
A similar operation, UPSTRICT(D), also makes lower
bounds strict, meaning that all clocks are delayed by a
strictly positive amount of time.

• RESET(D, c) assigns the value 0 to the clock c.
• CONSTRAIN(D, c, [t1, t2]) adds the t1 ≤ c ≤ t2 con-

straint to the DBM D.
• SUBSUMED(D1, D2) checks whether D2 is subsumed in
D1, i.e. any assignment satisfying D2 also satisfies D1.

• NORMALIZE(D,~k) applies the k−normalization proce-
dure (Bengtsson and Yi 2004) to finitize the set of possible
DBMs for a given problem.

Planning Algorithm. Hereinafter, we assume a planning in-
stance P .

= 〈F, T,A,G〉 is given and we define the search
schema employed by TAMER-CTP. The search state struc-
ture is the same as the one used by TAMER-FTP, except for
σ that in TAMER-CTP is a DBM instead of an STN.

Definition 5. A search state is a tuple 〈µ, δ, λ, σ〉 where:
– µ is the assignment to all the fluents of the problem;
– δ is the set of active durative conditions that need to be

maintained valid in this state;
– λ is a list of lists of events, one for every action plus one

for TILs and goals;
– σ is a DBM that symbolically maintains the temporal con-

straints. It has one clock for every action, representing the
time since the action was last started plus the absolute
clock cabs, representing the time since the plan started.

Each list in λ contains the events that still need to be ex-
ecuted for a particular action: it constitutes an ”agenda” of
future commitments to be resolved. Each time a new action
is started, its list of events is added to a new list in λ and
each time an event is consumed, it is removed from λ. Since
we are working under the ANSO assumption, the size of λ
in each state is bounded: |λ| ≤ Na + 1, where Na is the
number of ground actions in the problem. Hence, we can-
not have multiple instances of the same action concurrently
running.

Definition 6. The initial state 〈µ0, ∅, λ0, σ0〉 is as follows:
– µ0 is the initial assignment for every fluent;
– λ0 has only one list that is filled with the ordered

”agenda” of TILs and timed goals to be resolved;
– σ0 is the zero DBM, where every clock is set to 0.

Next we define the set of successors of a given state that
are obtained by either applying an event or starting a new ac-
tion in the state. For each state generated in this way, we can
optionally perform a time elapse step to advance the time.
The successor function is outlined in Algorithm 1. Given
a state s, GETSUCCESSORS iterates through every applica-
ble action and event in the current state and creates a new
state n. The applicability functions check action precondi-
tions and conditions of events on s.µ, enforce mutual ex-
clusion constraints, and ensure that the timings are com-
patible with s.σ (e.g. if we executed an event of action a

Algorithm 1: The pseudo-code of TAMER-CTP
1 procedure SEARCH()
2 V ← NEWSET()
3 Q← NEWPRIORITYQUEUE()
4 PUSH(Q,GETINITSTATE(),HADD(GETINITSTATE()))
5 while s← POPMIN(Q) do
6 if CHECKNOSUBSUMPTION(V, s) then
7 if ISGOAL(s) then
8 return GETPLAN(s)
9 ADDTOSET(V, s)

10 for all ss ∈ GETSUCCESSORS(s) do
11 if CHECKNOSUBSUMPTION(V, ss) then
12 PUSH(Q, ss,G(ss) + HADD(ss))
13 return No Plan Exists

14 procedure GETSUCCESSORS(s)
15 succ← NEWSET()
16 for all a ∈ APPLICABLEACTIONS(s) do
17 n← COPYSTATE(s)
18 n.λ← n.λ+ GETORDEREDEVENTS(a)
19 RESET(n.σ, a)
20 ADDTOSET(succ, n)
21 for all ev ∈ APPLICABLEEVENTS(s) do
22 n← APPLYEVENT(s, ev,GETCLOCK(ev))
23 if ISCONSISTENT(n.σ) then
24 ADDTOSET(succ, n)
25 for all n ∈ succ do
26 n′ ← COPYSTATE(n)
27 UPSTRICT(n′.σ)
28 ADDTOSET(succ, n′)
29 return succ
30 procedure APPLYEVENT(s, ev, clk)
31 〈µ, δ, λ, σ〉 ← COPYSTATE(s)
32 if ev is [START + k, · · ·]φ then . Start of durative condition
33 CONSTRAIN(σ, clk, [k,∞])
34 ADDTOSET(δ, ev)
35 else if ev is [· · · , START + k]φ then . End of durative condition
36 CONSTRAIN(σ, clk, [−∞, k])
37 REMOVEFROMSET(δ, ev)
38 else if ev is [START + k]f := v then . Effect
39 CONSTRAIN(σ, clk, [k, k])
40 µ[f]← v
41 else if ev is [END, END]φ then . End condition
42 CONSTRAIN(σ,GETCLOCK(ev),DURCONSTRAINT(ev))
43 else if ev is [· · · , END]φ then . End of durative condition
44 CONSTRAIN(σ,GETCLOCK(ev),DURCONSTRAINT(ev))
45 REMOVEFROMSET(δ, ev)
46 else if ev is [END]f := v then . End Effect
47 CONSTRAIN(σ,GETCLOCK(ev),DURCONSTRAINT(ev))
48 µ[f]← v
49 λ← REMOVEEVENT(λ, ev)
50 NORMALIZE(σ,GETMAXCLOCKVALUES())
51 return 〈µ, δ, λ, σ〉

at START + 5, it is impossible to select an event at time
START + 7 of the same action without a time-elapse in be-
tween). Moreover, APPLICABLEEVENTS ensures that two
events belonging to the same list in λ and having the same
timings are not separated by a time-elapse: this can be done
by looking at the path leading to s. The algorithm imposes
the action duration constraints (i.e. la ≤ ca ≤ ua where
[la, ua] are the duration constraints of action a) at lines 34,
36 and 39, where events lined to the END are considered.
Crucially, we forbid two instances of the same action to run
in parallel by making a not applicable if an event of a is still
in s.λ, ensuring the ANSO semantics. For each generated
state n, we also construct the state n′ where a time elapse
is applied to n. This is done by calling the UPSTRICT()
operation on the DBM n′.σ. Note that it is sufficient to
consider just one time elapse, because for any DBM D,

9890

UPSTRICT(UPSTRICT(D)) = UPSTRICT(D) (i.e., letting
time pass twice is the same as letting time pass once, because
the amount of elapsed time is symbolic). APPLYEVENT cre-
ates a successor state by consuming an event in λ. If the
event is a condition or an effect the clock of the correspond-
ing action is constrained with the timing of the event. Effects
are applied to µ and durative conditions are added or re-
moved from δ. Normalization is also applied using the max-
imal upper bounds for each clock; those are computed by
taking the maximum upper bound of any event in the corre-
sponding action; the bound for cabs is the maximum timing
among all goals and TILs.

Given this search schema, we employ an exploration al-
gorithm based on A* (Hart, Nilsson, and Raphael 1968). Ev-
ery state s has two values: G(s) that is the length of the path
from the initial state to s, and HADD(s) that is the heuris-
tic value of s computed using the standard hadd heuristic
(Bonet and Geffner 2001) applied to the classical planning
relaxation of the problem presented in (Valentini, Micheli,
and Cimatti 2020). As usual in A*, we expand the state s in
the queue Q with the lowest value of (G(s) + HADD(s)).
When a state s is chosen, we first check whether there is a
memoized state that has the same propositional part (µ, λ
and δ) and whose DBM subsumes the DBM of the consid-
ered state: if that is the case then s is discarded as its suc-
cessors are a subset of the successors of s, otherwise we add
the considered state to the set of visited states V . If the state
is a goal, meaning that the agenda λ is empty, then the ex-
ploration concludes and a plan is returned, otherwise its suc-
cessors are computed, and all those that are not subsumed by
an already visited state are added to Q. If the queue of states
becomes empty, then all the states that are reachable from
the initial state have been explored, and the procedure can
declare that no solution exists. A plan can be reconstructed
from the sequence of states leading from the initial state to a
goal state by constructing an STN using the same approach
in (Valentini, Micheli, and Cimatti 2020).
Theorem 2. TAMER-CTP is a sound and complete decision
procedure for ANSO TP.

Proof. (Sketch) The states reachable by the TAMER-CTP
exploration are finite because of the DBM k-normalization
procedure and are in a bisimulation relation with the search
states of a reachability TA solver for the encoding defined
in (Gigante et al. 2020) (duly extended to support ICE).
If a plan exists, then TAMER-CTP eventually finds it, be-
cause the TA solver would eventually find it. Vice-versa, if
no plan exists, then TAMER-CTP cannot return a plan be-
cause there is no reachable state that is a goal for the TA
and, due to the bisimulation, no goal state for TAMER-CTP
exists. Full proofs are available in (Panjkovic, Micheli, and
Cimatti 2022).

Experimental Evaluation
We implemented the NUXMV translation and the TAMER-
CTP algorithm in C++ using a custom library to handle
DBMs and we experimentally evaluated their merits. In or-
der to have a baseline to evaluate the performance of our
approaches on unsolvable benchmarks, we implemented an

optimized UPPAAL encoding (Bengtsson et al. 1995) of
the timed automaton reduction that was used in the the-
oretical work of (Gigante et al. 2020) to prove PSPACE-
completeness of ANSO TP. The encoding was also extended
to support ICE, as is the case for NUXMV and TAMER-CTP.
(full encoding details, all implementations and benchmarks
are available in (Panjkovic, Micheli, and Cimatti 2022)).

We considered a comprehensive set of benchmarks and
various state-of-the-art planners, namely OPTIC (Benton,
Coles, and Coles 2012) (using the the “container-action con-
struction” (Smith 2003) to support ICE), TPACK (Micheli
and Scala 2019), ANMLSMT, a SATPlan-like SMT encod-
ing for ANML, and TAMER-FTP (Valentini, Micheli, and
Cimatti 2020): all these planners eventually find a plan when
one exists, but are not guaranteed to terminate if the problem
is unsolvable.

We consider both solvable and unsolvable problems. We
sourced the solvable benchmarks from (Valentini, Micheli,
and Cimatti 2020): the set includes standard temporal IPC
instances (Vallati et al. 2015) (without ICE), IPC instances
augmented with temporal uncertainty and reduced to tempo-
ral problems with ICE (Cimatti et al. 2018), and two “indus-
trial” domains (MAJSP and PAINTER), both modeled using
ICE. For the unsolvable case we crafted four domains. We
modified the MAJSP domain to have an infeasible battery
requirement and the PAINTER domain to require an impossi-
ble synchronization of operations. For MAJSP, we consid-
ered two different, but equivalent, formulations of the same
problem (indicated as MAJSP 1 and MAJSP 2). We also
created a new domain, called SYNC, that requires two ac-
tions to start and terminate into specific time windows that
are too narrow. All these domains are unsolvable because ei-
ther the resources are too constrained or the required timing
and synchronization are impossible. Moreover, we consid-
ered the MATCHCELLAR IPC domain (Vallati et al. 2015)
and made it unsolvable by reducing the number of available
“matches” in each instance.

All the experiments were performed on a Core i9-9900KS
with 1800s/20GB of time and memory limit. To better
interpret and explain the results we also consider virtual
solvers, that are fictitious planners obtained by combining
the performance of other planners. The “Virtual best Solver”
(VBS(S)) for a set of solvers S takes the minimum time
needed to solve each benchmark across the solvers, simu-
lating a parallel execution. All the benchmarks and the im-
plementation of the presented approaches are available in
(Panjkovic, Micheli, and Cimatti 2022).

Results. Figure 2 summarizes the experimental results. The
coverage table reports the results for each unsolvable do-
main and the aggregated solvable results. The table and the
cactus plot illustrate that the NUXMV approach performs re-
ally well in the unsolvable case, solving the highest num-
ber of instances followed by TAMER-CTP. The state-of-the-
art planners cannot solve unsolvable instances except for a
few: those are instances where the (incomplete) heuristic
pruning is able to eventually detect unsolvability. It is ev-
ident that those approaches are not designed to deal with
unsolvable benchmarks as they diverge even on very small

9891

Domain OPTIC TPACK ANMLSMT TAMER-FTP UPPAAL NUXMV TAMER-CTP TAMER-CTP VBS(TAMER-CTP,NUXMV) VBS(All)
(hadd) (blind)

Total Solvable 96 244 201 398 26 28 390 38 390 569
MAJSP 1 (uns.) 1 1 0 0 0 22 11 12 26 28
MAJSP 2 (uns.) 0 0 0 0 47 117 87 82 133 133
MATCHCELLAR (uns.) 3 0 0 2 3 2 2 2 2 3
PAINTER (uns.) 2 0 0 0 4 3 5 4 5 5
SYNC (uns.) 0 0 0 0 4 7 5 5 7 7

Total Unsolvable 6 1 0 2 58 151 110 105 173 176
Total Overall 102 245 201 400 84 179 500 143 563 745

0 25 50 75 100 125 150 175
Instances Solved

0

200

400

600

800

1000

1200

1400

1600

S
ol

vi
ng

tim
e(

s)

TPACK

TAMER-FTP
OPTIC

UPPAAL
TAMER-CTP (blind)
TAMER-CTP
NUXMV

VBS(TAMER-CTP,NUXMV)

VBS(All)

10−1 100 101 102 103

TAMER-CTP

10−1

100

101

102

103

N
U

X
M

V

TO
MO

10−1 100 101 102 103

TAMER-CTP

10−1

100

101

102

103

U
P

PA
A

L

TO
MO

Figure 2: (Above) Coverage table showing results for solvable and unsolvable benchmarks. (Below) Plots for the unsolavable
benchmarks: cactus plot (left) and scatter plots comparing TAMER-CTP with NUXMV (center) and UPPAAL (right).

instances. The cactus plot indicates that combining NUXMV
and TAMER-CTP essentially gives the VBS(All) perfor-
mance, showing that these two approaches are sufficient to
cover virtually all the benchmarks. This is supported by the
scatter plots highlighting the complementarity and by the
fact that UPPAAL is dominated by TAMER-CTP: TAMER-
CTP can solve all the problems that are solved by UPPAAL
(and more), while NUXMV and TAMER-CTP work well on
different sets of problems. This is interesting because it also
highlights a complementarity between the fully symbolic ap-
proach employed by NUXMV, and the explicit-state heuristic
search that is used by TAMER-CTP. We believe this com-
plementarity is analogous to the one it is observed in the
verification community between explicit-state and symbolic
model-checkers. We analyzed the instances where TAMER-
CTP and NUXMV excel respectively, but we could not find
a simple discriminating factor predicting which technique
would be the winner. A deeper analysis on this is left for
future work.

The first row of the table aggregates the coverage for
the solvable benchmarks. In this case, the native heuristic-
search approach employed by TAMER-CTP outperforms by
far the compilation-based approaches that rely on NUXMV
and UPPAAL. This is expected, as the guidance provided
by the heuristic on a solvable problem during the search can
speed up substantially the resolution of the problem, avoid-
ing the exploration of unpromising areas of the state space.
Moreover, the results show that TAMER-CTP remains com-
petitive with state-of-the-art planners on solvable instances,
even though its primary purpose was to guarantee termina-
tion on unsolvable instances.

Finally, we studied the impact of the hadd heuristic: the
TAMER-CTP (blind) column in Figure 2 indicates a modifi-

cation of TAMER-CTP where the heuristic always returns 0.
The heuristic is fundamental in the solvable case to guide the
search, but the pruning capabilities are beneficial also in the
unsolvable case: TAMER-CTP (blind) is faster in state ex-
pansion, but hadd reduces the search space size of TAMER-
CTP, resulting in an overall better performance even in the
unsolvable case.

Conclusion
We considered the class of temporal planning problems dis-
allowing action self-overlapping and we presented two novel
sound-and-complete decision procedures for it: a reduction
to symbolic model-checking of timed systems and the first
implementation of a heuristic-search temporal planner that
is guaranteed to terminate on unsolvable instances. To the
best of our knowledge, these are the first practical temporal
planners that guarantee termination on any instance, follow-
ing the theoretical work by (Gigante et al. 2020) that proved
PSPACE-completeness for this class of problems. Our ex-
periments show that these two approaches are far superior
to other planners in proving unsolvability, and that the pro-
posed heuristic-search algorithm scales well also on solvable
instances, compared to the state-of-the-art.

In the future, we will use our approaches to develop opti-
mizing TP procedures and we will investigate the synergies
with (Rintanen 2017) to increase the performance of our al-
gorithm by reducing the number of DBM clocks.

Acknowledgments
The authors are grateful for the partial support to this re-
search by AIPlan4EU, a project funded by the European
Commission - Horizon 2020 research and innovation pro-
gramme under grant agreement number 101016442.

9892

References
Bengtsson, J.; Larsen, K. G.; Larsson, F.; Pettersson, P.; and
Yi, W. 1995. UPPAAL - a Tool Suite for Automatic Verifi-
cation of Real-Time Systems. In Alur, R.; Henzinger, T. A.;
and Sontag, E. D., eds., Hybrid Systems III: Verification and
Control, volume 1066 of LNCS, 232–243. Springer.
Bengtsson, J.; and Yi, W. 2004. Timed Automata: Seman-
tics, Algorithms and Tools. In Lectures on Concurrency and
Petri Nets. LNCS, volume 3098.
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. ICAPS 2012 - Proceedings of the 22nd International
Conference on Automated Planning and Scheduling.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence.
Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mari-
otti, A.; Micheli, A.; Mover, S.; Roveri, M.; and Tonetta, S.
2014. The nuXmv Symbolic Model Checker. In Biere, A.;
and Bloem, R., eds., CAV, volume 8559 of LNCS, 334–342.
Springer.
Cimatti, A.; Do, M.; Micheli, A.; Roveri, M.; and Smith,
D. E. 2018. Strong temporal planning with uncontrollable
durations. Artif. Intell., 256: 1–34.
Cimatti, A.; Griggio, A.; Magnago, E.; Roveri, M.; and
Tonetta, S. 2019. Extending nuXmv with Timed Transition
Systems and Timed Temporal Properties. In CAV, 376–386.
Cimatti, A.; Micheli, A.; and Roveri, M. 2017. Validating
Domains and Plans for Temporal Planning via Encoding into
Infinite-State Linear Temporal Logic. In AAAI.
Coles, A.; and Coles, A. 2016. Have I Been Here Before?
State Memoization in Temporal Planning. In ICAPS.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In ICAPS, 42–49.
Coles, A.; Fox, M.; Long, D.; and Coles, A. 2008. Planning
with Problems Requiring Temporal Coordination. In AAAI.
Cushing, W.; Kambhampati, S.; Mausam, M.; and Weld, D.
2007. When is Temporal Planning Really Temporal? In
IJCAI, 1852–1859.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence, 49: 61–95.
Gigante, N.; Micheli, A.; Montanari, A.; and Scala, E.
2020. Decidability and Complexity of Action-Based Tem-
poral Planning over Dense Time. In AAAI.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A Formal Ba-
sis for the Heuristic Determination of Minimum Cost Paths.
IEEE Transactions on Systems Science and Cybernetics,
4(2): 100–107.
Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. ”Dis-
tance”? Who Cares? Tailoring Merge-and-Shrink Heuristics
to Detect Unsolvability. In Schaub, T.; Friedrich, G.; and
O’Sullivan, B., eds., ECAI 2014 - 21st European Conference
on Artificial Intelligence, 18-22 August 2014, Prague, Czech
Republic - Including Prestigious Applications of Intelligent
Systems (PAIS 2014), volume 263 of Frontiers in Artificial
Intelligence and Applications, 441–446. IOS Press.

Khatib, L.; Muscettola, N.; and Havelund, K. 2001. Map-
ping Temporal Planning Constraints into Timed Automata.
In TIME, 21–27. IEEE Computer Society.
Micheli, A.; and Scala, E. 2019. Temporal Planning with
Temporal Metric Trajectory Constraints. In AAAI.
Muise, C.; and Lipovetzky, N. 2016. 2016 Unsolvability In-
ternational Planning Competition. https://unsolve-ipc.eng.
unimelb.edu.au. Accessed: 2022-03-22.
Panjkovic, S.; Micheli, A.; and Cimatti, A. 2022. Deciding
Unsolvability in Temporal Planning under Action Non-Self-
Overlapping: Additional Material. https://es.fbk.eu/people/
amicheli/resources/aaai22. Accessed: 2022-03-22.
Rintanen, J. 2007. Complexity of Concurrent Temporal
Planning. In ICAPS, 280–287.
Rintanen, J. 2017. Temporal Planning with Clock-Based
SMT Encodings. In Sierra, C., ed., IJCAI, 743–749. ij-
cai.org.
Shanahan, M. 1997. Solving the frame problem - a math-
ematical investigation of the common sense law of inertia.
MIT Press. ISBN 978-0-262-19384-9.
Shin, J.-A.; and Davis, E. 2005. Processes and continuous
change in a SAT-based planner. Artificial Intelligence, 166:
194–253.
Simmons, R.; and Younes, H. 2011. VHPOP: Versatile
heuristic partial order planner. Journal of Artificial Intel-
ligence Research, 20.
Smith, D.; Frank, J.; and Cushing, W. 2008. The ANML
language. In KEPS.
Smith, D. E. 2003. The case for durative actions: A com-
mentary on PDDL2. 1. Journal of Artificial Intelligence Re-
search.
Smith, D. E. 2004. Choosing Objectives in Over-
Subscription Planning. In Zilberstein, S.; Koehler, J.; and
Koenig, S., eds., ICAPS, 393–401. AAAI.
Suda, M. 2014. Property Directed Reachability for Auto-
mated Planning. J. Artif. Intell. Res., 50: 265–319.
Valentini, A.; Micheli, A.; and Cimatti, A. 2020. Temporal
Planning with Intermediate Conditions and Effects. In AAAI.
Vallati, M.; Chrpa, L.; Grzes, M.; Mccluskey, T.; Roberts,
M.; and Sanner, S. 2015. The 2014 International Planning
Competition: Progress and Trends. Ai Magazine, 36: 90–98.

9893

