
Solving Temporal Problems using SMT:
Strong Controllability

Alessandro Cimatti, Andrea Micheli, and Marco Roveri
{cimatti,amicheli,roveri}@fbk.eu

Fondazione Bruno Kessler — Irst

Abstract. Many applications, such as scheduling and temporal plan-
ning, require the solution of Temporal Problems (TP’s) representing con-
straints over the timing of activities. A TP with uncertainty (TPU) is
characterized by activities with uncontrollable duration. Depending on
the Boolean structure of the constraints, we have simple (STPU), con-
straint satisfaction (TCSPU), and disjunctive (DTPU) temporal prob-
lems with uncertainty.
In this work we tackle the problem of strong controllability, i.e. finding an
assignment to all the controllable time points, such that the constraints
are fulfilled under any possible assignment of uncontrollable time points.
We work in the framework of Satisfiability Modulo Theory (SMT), where
uncertainty is expressed by means of universal quantifiers. We obtain the
first practical and comprehensive solution for strong controllability: the
use of quantifier elimination techniques leads to quantifier-free encodings,
which are in turn solved with efficient SMT solvers.
We provide a detailed experimental evaluation of our approach over a
large set of benchmarks. The results clearly demonstrate that the pro-
posed approach is feasible, and outperforms the best state-of-the-art
competitors, when available.

1 Introduction

Many applications require the scheduling of a set of activities over time, subject
to constraints of various nature. Scheduling is often expressed as a Temporal
Problem (TP), where each activity is associated with two time points, repre-
senting the start time and the end time, and with a duration, all subject to
constraints. Several kinds of temporal problems have been identified, depending
on the nature and structure of the constraints. If the constraints are expressible
as a simple conjunction of constraints over distances of time points, then we have
the so-called Simple Temporal Problem (STP). A more complex class is Temporal
Constraint Satisfaction Problem (TCSP), where a distance between time points
can be constrained to a list of disjoint intervals. Constraints in TCSP’s can
be seen as a restricted form of Boolean combinations. When arbitrary Boolean
combinations are allowed, we have a Disjunctive Temporal Problem (DTP). A
temporal problem is said to be consistent if there exists an assignment for the
time points, such that all the constraints are satisfied [1]. Such an assignment is

This is a pre-print version of the homonymous paper appearing in CP 2012.
Copyright (c) 2012 belongs to Springer.

called a schedule, and it corresponds to sequential time-triggered programs, that
are often used in control of satellites and rovers.

In many practical cases, however, the duration of activities is uncontrollable.
TP are thus extended with uncertainty in the duration of activities, thus ob-
taining the classes of STPU, TCSPU and DTPU. As in the case of consistency,
we look for a schedule. However, the schedule only determines the start of the
activities, and must satisfy the constraints for all the uncontrollable durations
of the activities. If such a schedule exists, the problem is said to be strongly
controllable [2].

In this paper, we propose a comprehensive and effective approach to strong
controllability of TPU. The approach relies on the Satisfiability Modulo The-
ory (SMT) framework [3]. This framework provides representation capabilities,
based on fragments of first order formulae. Reasoning is carried out within a
decidable fragments of first order logic, where interpretations are constrained to
satisfy a specific theory of interest (i.e. linear arithmetic). Modern SMT solvers
are a tight integration of a Boolean SAT solver, that is highly optimized for
the case split required by the Boolean combination of constraints, with dedi-
cated constraint solvers for the theories of interest. Moreover, some SMT solvers
provide embedded efficient primitives to handle quantifiers, and dedicated tech-
niques for quantifier-elimination are available. Several effective SMT solvers are
available (e.g. MathSAT [4, 5], Z3 [6], Yices [7], OpenSMT [8]). SMT solving has
had increasing applications in many areas including Answer Set Programming
(ASP) [9], formal verification [10], and test case generation [11].

We tackle the strong controllability problem of TPUs by reduction to SMT
problems, that are then fed into efficient SMT solvers. First, we show how to
encode a TPU into the theory of quantified linear Real arithmetic (LRA) and,
by leveraging the specific nature of the problem, we optimize the encoding by
reducing the scope of quantifiers. The resulting formula can be fed to any SMT
solver for (quantified) LRA. Second, we present a general reduction procedure
from strong controllability to consistency, based on the application of quantifier
elimination techniques upfront. The resulting formulae can be directly fed into
any SMT solver for the quantifier-free LRA. This gives the first general compre-
hensive solver for strong controllability of TPUs. Third, we generalize the results
by Vidal and Fargier [2], originally stated for STPU, to the class of TCSPU. In
this way, we avoid the use of expensive general purpose quantifier elimination
techniques, with significant performance improvements.

The proposed approach has been implemented in a solver based on state-of-
the-art SMT techniques. To the best of our knowledge, this is the first solver
for strong controllability of TPUs. We carried out a thorough experimental eval-
uation, over a large set of benchmarks. We analyze the merits of the various
encodings, and demonstrate the overall feasibility of the approach. We also com-
pare the proposed approaches with state-of-the-art algorithms on consistency
problems. SMT solvers are competitive with, and often outperform, the best
known dedicated solving techniques.

Structure of the paper. In sections 2 and 3 we present some technical pre-
liminaries and background about SMT. In section 4 we formally define temporal
problems, while in section 5 we present several SMT encodings for consistency.
Encodings for strong controllability are described in section 6 and an overview
of the related work is given is section 7. We report the results of the performed
experimental evaluation in section 8, and in section 9 we draw some conclusions
and outline directions for future work.

2 Technical Preliminaries

Our setting is standard first order logic. The first-order signature is composed of
constants, variables, function symbols, Boolean variables, and predicate symbols.
A term is either a constant, a variable, or the application of a function symbol
of arity n to n terms. A theory constraint (also called a theory atom) is the
application of a predicate symbol of arity n to n terms. An atom is either a theory
constraint or a Boolean variable. A literal is either an atom or its negation.
A clause is a finite disjunction of literals. A formula is either true (>), false
(⊥), a Boolean variable, a theory constraint, the application of a propositional
connective of arity n to n formulae, or the application of a quantifier to an
individual variable and a formula. We use x, y, v, . . . for variables, and ~x, ~y,~v, . . .
for vectors of individual or Boolean variables. Terms and formulae are referred
to as expressions, denoted with φ, ψ, . . . We write φ(x) to highlight the fact that
x occurs in φ, and φ(~x) to highlight the fact that each xi occurs in φ.

Substitution is defined in the standard way (see for instance [12]). We write
φ[t/s] for the substitution of every occurrence of term t in φ with term s. Let ~t
and ~s be vectors of terms, we write φ[~t/~s] for the parallel substitution of every
occurrence of ti (the i-th element of ~t) in φ with si.

We use the standard semantic notion of interpretation and satisfiability. We
call satisfying assignment or model of a formula φ(~x) a total function µ that
assigns to each xi an element of its domain such that the formula φ[~x/µ(~x)]
evaluates to >. A formula φ(~x) is satisfiable if and only if it has a satisfying
assignment.

Checking the satisfiability (SAT) of a formula consists in finding a satisfying
assignment for the formula. This problem is approached in propositional logic
with enhancements of the DPLL algorithm: the formula is converted into an
equi-satisfiable one in Conjunctive Normal Form (CNF); then, a satisfying as-
signment is incrementally built, until either all the clauses are satisfied, or a
conflict is found, in which case back-jumping takes place (i.e. certain assign-
ments are undone). Keys to efficiency are heuristics for the variable selection,
and learning of conflicts (see e.g. [13]).

3 Satisfiability Modulo Theories

Given a first-order formula ψ in a decidable background theory T, Satisfiability
Modulo Theory (SMT) [3] is the problem of deciding whether there exists a

satisfying assignment to the free variables in ψ. For example, consider the formula
(x ≤ y)∧ (x+ 3 = z)∨ (z ≥ y) in the theory of real arithmetic (x, y, z ∈ R). The
formula is satisfiable and a satisfying assignment is {x := 5, y := 6, z := 8}. The
theory of real arithmetic interprets 3 as a real number and +,=, <,>,≤,≥ as
the corresponding operations and relations over R.

In this work we concentrate on the theory of Linear Arithmetic over the Real
numbers (LRA). A formula in LRA is an arbitrary Boolean combination, or
universal (∀) and existential (∃) quantification, of atoms in the form

∑
i aixi ./ c

where ./∈ {>,<,≤,≥, 6=,=}, every xi is a real variable and every ai and c is
a real constant. Given two real constants l, u such that l ≤ u, we denote with
t ∈ [l, u] the formula l ≤ t ∧ t ≤ u. Difference logic (RDL) is the subset of
LRA such that atoms have the form xi − xj ./ c. We denote with QF LRA and
QF RDL the quantifier-free fragments of LRA and RDL, respectively.

An SMT solver [3] is a decision procedure which solves the satisfiability
problem for a formula expressed in a decidable subset of First-Order Logic.
The most efficient implementations of SMT solvers use the so-called “lazy ap-
proach”, where a SAT solver is tightly integrated with a T-solver. The role of
the SAT solver is to enumerate the truth assignments to the Boolean abstrac-
tion of the first-order formula. The Boolean abstraction has the same Boolean
structure of the first-order formula, but “replaces” the predicates which con-
tain T information with fresh Boolean variables. The Boolean abstraction of
(x ≤ y)∧ (x+ 3 = z)∨ (z ≥ y) is a∧ (b∨ c), where a, b, c are fresh Boolean vari-
ables. The T-solver is invoked when the SAT solver finds a satisfying assignment
for the Boolean abstraction: the satisfying assignment to Boolean abstraction
maps directly to a conjunction of T atoms, which the T-solver can handle. If
the conjunction is satisfiable also the original formula is satisfiable. Otherwise
the T-solver returns a conflict set which identifies a reason for the unsatisfia-
bility. Then, the negation of the conflict set is learned by the SAT solver in
order to prune the search. Examples of solvers based on the “lazy approach” are
MathSAT [4] and Z3 [6].

In order to deal with quantifiers in LRA many techniques have been de-
veloped and implemented in SMT solvers. Some solvers, like e.g. Z3 [6] natively
support quantifiers. However, many SMT solvers cannot deal with them. Several
techniques have been developed for removing quantifiers from an LRA formula
(e.g. Fourier-Motzkin [14], Loos-Weispfenning [15, 16]): they transform an LRA
formula into an equivalent QF LRA formula. These techniques enable for the
use of solvers with no native support for quantifiers at a cost that is doubly
exponential in time and space in the original formula size [14, 16, 15].

4 Temporal Problems

A Temporal Problem (TP) is a formalism that is used to represent temporal
constraints over time-valued variables representing time points. This formalism
is expressive enough to express Allen’s interval algebra [17] and also quantitative
constraints over intervals and time points. Two families of TP’s have been pre-

sented in literature over the years: TP without uncertainty, in which all the time
points can be freely assigned by the solver [1, 18]; TP with uncertainty (TPU),
in which only some of the time points can be assigned by the solver, while the
others are intended to be assigned by an adversary. As such, TPU’s can be seen
as a form of game between the solver and an adversarial environment [2, 19].

Definition 1. A TPU is a tuple (Xc, Xu, Cc, Cf), where Xc
.
= {b1, ..., bn} is the

set of controllable time points, Xu
.
= {e1, ..., em} is the set of uncontrollable

time points, Cc
.
= {cc1, ..., ccm} is the set of contingent constraints, and Cf

.
=

{cf1, ..., cfh} is the set of free constraints.

cci
.
= (ei − bji) ∈ [li, ui] cfi

.
=

∨Di

j=1(xi,j − yi,j) ∈ [li,j , ui,j]

such that: ji ∈ [1 . . . n], li, ui ∈ R, li ≤ ui, li,j , ui,j ∈ R∪ {+∞,−∞}, li,j ≤ ui,j,
Di is the number of disjuncts for the i-th constraint, xi,j , yi,j ∈ Xc ∪Xu

Intuitively, time points belonging to Xc are time decisions that can be con-
trolled by the solver, while time points in Xu are under the control of the envi-
ronment. A similar subdivision is imposed on the constraints: free constraints Cf
are constraints that the solver is required to fulfill, while contingent constraints
(Cc) are the assumptions that the environment will fulfill. As in [2] we con-
sider only contingent constraints that start with a controllable time point. Thus,
each uncontrollable time point is linked by exactly one contingent constraint to
a controllable time point. We remark that this assumption does not affect the
generality of the formalism, as for each contingent constraint (ei− ej) ∈ [l, u] we
can add an artificial new controllable time point b, and add (b − ej) ∈ [0, 0] to
the free constraints and (ei − b) to the contingent constraints.

A TP without uncertainty is a TPU (Xc, ∅, ∅, Cf), i.e. the set of uncontrol-
lable time points is empty (from which it also follows that the set of contingent
constraints is empty).

Depending on the generality of the constraints in Cc and Cf , three classes of
TPU’s are identified [19]. Definition 1 in its general form identifies Disjunctive
Temporal Problem with Uncertainty (DTPU). If each constraint contains at most
two time points, the resulting problem is a Temporal Constraint Satisfaction
Problem with Uncertainty (TCSPU). If each constraint has exactly one disjunct
(i.e. Di = 1 for all i), we obtain a Simple Temporal Problem with Uncertainty
(STPU). Similarly, we can define the corresponding TP without uncertainty
(DTP [18], TCSP, and STP [1]).

We define an assignment to the time points as a total function from time
points to real values. Given a TP without uncertainty, checking consistency
corresponds to deciding the existence of an assignment that fulfills all the
constraints of the problem. We call such an assignment a consistent schedule,
and we say that the TP is consistent. Checking the consistency of a TPU
(Xc, Xu, Cc, Cf) is defined as checking the consistency of the TP without uncer-
tainty (Xc ∪Xu, ∅, ∅, Cc ∪ Cf).

Intuitively, when checking consistency of a TPU, the behavior of the environ-
ment is assumed to be “cooperative” with the solver. In this paper, we focus on

Strong Controllability (SC) [2] for a TPU, where the environment is adversarial.
SC consists in deciding the existence of a strong schedule, i.e. an assignment to
controllable time points that fulfills the free constraints under any assignment of
uncontrollable time points that satisfies the contingent constraints. A TPU for
which there exists a strong schedule is said to be strongly controllable.

If a TPU is strongly controllable, it is also consistent. However, the converse
does not hold in general. Consider for example the STPU such that Xc = {A, B},
Xu = {C}, Cc = {(B − A) ∈ [1, 10]}, and Cf = {(C − A) ∈ [0, 12], (C − B) ∈
[1, 5]}. The problem is consistent, and a consistent schedule is {A = 0, B =
3, C = 5}. However, the problem is not strongly controllable because if the
duration of the interval B − A = 1, the window of opportunity for scheduling
C is [2, 6], that is disjoint from the window of opportunity when the duration is
equal to 10, that is [11, 12]. Since B−A is decided by the adversarial environment,
there is no strong schedule that allows the solver to win.

5 Encoding of Consistency Problems in SMT

We first focus on the consistency problem, i.e. the case in which there is no
uncontrollability. The consistency problem can be reduced to checking the sat-
isfiability of a quantifier-free formula modulo the LRA theory. The temporal
problem is consistent if and only if the corresponding SMT formula is satisfi-
able, and any satisfying assignment for the formula corresponds to a consistent
schedule for the problem.

The use of SMT to check the consistency of TP without uncertainty has
been investigated in the past (e.g. [20]). Here, consistency checking plays the role
of backend for strong controllability. In the following, we present several SMT
encodings, that turn out to have different performance in the solvers, depending
on the nature of the constraints.

In the following, we assume that a TP (Xc, ∅, ∅, Cf) is given. The first en-
coding in SMT of the consistency problem can be directly obtained as follows:
for every time point in Xc we introduce a real variable, and we denote with
~Xc the vector of such variables; each constraint in Cf is directly mapped on
the corresponding SMT formula; the encoding is the SMT formula shown in
Equation 1. ∧|Cf |

i=1

∨Di

j=1(((xi,j − yi,j) ≥ li,j) ∧ ((xi,j − yi,j) ≤ ui,j)) (1)

This encoding is linear in the size of the original TP, but does not exploit any
knowledge on the structure of the problem, and is thus referred to as näıve
encoding. In particular, we notice that the resulting SMT formula is not in CNF.

In the rest of this section we introduce three optimizations: the switch en-
coding (applicable to any TP), the switch encoding with mutual exclusion and
the hole encoding (both for TCSPs only). The switch encoding performs a CNF
conversion of the formula in Equation 1 by means of a polarity-based CNF la-

beling conversion [21]. To this extent, we introduce
∑|Cf |
i=0 Di Boolean “switch”

variables si,j , and the resulting encoding is the one in Equation 2.∧|Cf |
i=1 ((

∧Di

j=1((¬si,j ∨ ((xi,j − yi,j) ≥ li,j)) ∧
(¬si,j ∨ ((xi,j − yi,j) ≤ ui,j)))) ∧ (

∨Di

j=1 si,j))
(2)

This encoding is also linear in the size of the original TP, and it directly produces
a CNF formula. We notice that the clauses involving theory atoms are binary;
furthermore, if a switch variable is assigned to false, the corresponding clauses
are satisfied without any theory reasoning. These factors have a positive impact
on the performance of the SMT solver.

If we focus on the TCSP class, we can exploit the problem structure to further
improve our encodings. In TCSP each constraint is composed of disjuncts of the
form t ∈ [lj , uj], where t is the difference of two variables, and for all j, lj ≤ uj
and uj < lj+1. Clearly, the disjuncts are mutually exclusive. However, with the
previous encoding it is left to the solver to discover this property. We strengthen
the switch encoding by statically adding mutual exclusion constraints of the
form (¬sh ∨ ¬sk), with h 6= k. Adding this information to the encoding is a
form of static learning, and it can guide the Boolean search by pruning branches
that are unsatisfiable in the theory. The switch encoding with mutual exclusion
is presented in Equation 3.∧|Cf |

i=1 (
∧Di

j=1((¬si,j ∨ ((xi,j − yi,j) ≥ li,j)) ∧
(¬si,j ∨ ((xi,j − yi,j) ≤ ui,j))) ∧
(
∨Di

j=1 si,j) ∧ (
∧Di

j=1

∧Di

k=j+1(¬si,j ∨ ¬sk)))

(3)

This encoding is in CNF, but its size is quadratic in the size of the TP— or,
more specifically, in (maxiDi), i.e. the size of the longest clause.

A different encoding for the TCSP problem class is obtained as follows. For
each constraint, we constrain t ∈ [l1, uD], and we exclude the “holes” between
intervals, a hole being an open interval (uj , lj+1). The result is the hole encoding
reported in Equation 4.∧|Cf |

i=1 (((xi − yi) ≥ li,1) ∧ ((xi − yi) ≤ ui,Di) ∧
(
∧Di−1
j=1 ((xi − yi) ≤ ui,j) ∨ ((xi − yi) ≥ li,(j+1))))

(4)

This encoding is linear in the size of the original TP, does not introduce any
additional variable, and, most importantly, results in a 2-CNF formula. These
properties are noteworthy and will be exploited in the following sections.

Finally, we notice that Equation 4 is logically equivalent to Equation 1 (in the
applicable case of TCSP), while Equations 2 and 3 are only are equi-satisfiable to
it, because of the added switch variables. The solution to the temporal problem
is still obtained directly from any satisfying assignment, gathering the values for
the variables in ~Xc.

6 Encoding of SC Problems in SMT

We now consider the SC problem, in which some time points are not schedulable
by the solver, and are considered uncontrollable when looking for a schedule for

the controllable time points. We describe the reduction of the SC problem to
SMT. We developed a number of encodings that are satisfiable if and only if
the temporal problem is strongly controllable, and such that a model of each
encoding yields a solution for the original problem.

In the following, we assume that a TPU (Xc, Xu, Cc, Cf) is given.

6.1 Encodings into Quantified LRA

As in the previous section, each time point is associated with an SMT variable.
The encoding in Equation 5 is a direct logical mapping of the notion of strong
controllability; we call this encoding direct encoding.

∀ ~Xu.(Cc(~Xc, ~Xu)→ Cf (~Xc, ~Xu)) (5)

Equation 5 is satisfiable if and only if there exists an assignment to the control-
lable variables Xc such that, for all assignments to the uncontrollable variables
Xu satisfying the contingent constraints Cc, the free constraints Cf are also
satisfied. In the above formula, the controllable variables are implicitly existen-
tially quantified. In case of satisfiability, the SMT solver returns a satisfying
assignment to the controllable variables that is exactly a strong schedule.

In order to enable further simplifications, we notice that contingent con-
straints depend both on controllable and uncontrollable time points, and we
re-code the problem as follows. We rewrite each uncontrollable time point ei in
terms of the time difference with its starting time point bji by means of an uncon-
trollable offset variable yi. For every contingent constraint cci = ei−bji ∈ [li, ui],
let yi ∈ R be the uncontrollable offset variable associated to ei such that:
0 ≤ yi ≤ ui − li and ei = bji + ui − yi. Intuitively, yi represents the offset
w.r.t. maximum duration, and can be used to rewrite all the constraints involv-
ing ei in terms of bji and yi only. We formalize this rewriting as a function ρ such

that ρ(ei)
.
= bji +ui− yi. With a small abuse of notation, we denote with ρ(~Xu)

the vector of formulae obtained by the application of ρ to all the elements of Xu.
To simplify the notation, we also introduce the vector ~Yu that is the vector of
uncontrollable offset variables (y1, ..., ym). Thanks to the redefinition of each ei
in terms of yi, the rewriting of the contingent constraints depends on ~Yu only.

Let Γ (~Yu) be the formula representing the conjunction of all the contingent

constraints after the recoding, and Ψ(~Xc, ~Yu) be the conjunction of all the free

constraints rewritten in terms of ~Xc and ~Yu.

Γ (~Yu)
.
=

∧m
k=1(yk ∈ [0, (uk−lk)]) Ψ(~Xc, ~Yu)

.
=

∧
c∈Cf

c[~Xu/ρ(~Xu)](~Xc, ~Yu)

In this setting, the SC consists in finding a value for ~Xc that satisfies the free
constraints Ψ(~Xc, ~Yu) under any possible value of ~Yu that satisfies Γ (~Yu).

The SC encoding in Equation 5 can be recoded as an LRA formula in the
free variables ~Xc as follows.

∀~Yu.(Γ (~Yu)→ Ψ(~Xc, ~Yu)) (6)

We call this encoding offset encoding. This formulation corresponds to a quan-
tified SMT problem in LRA, and still requires a solver that supports quantified
formulae, but the part of the encoding representing the contingent constraint is
now dependent on ~Yu only.

The main problem in the previous encodings is the scope of the universal
quantifier. Since the computational cost of quantification is very high, we can
rewrite the offset encoding in Equation 6 in order to obtain a possibly more
efficient encoding. Let us assume that Ψ(~Xc, ~Yu) is written as a conjunction of

h clauses ψh(~Xch ,
~Yuh

), where Xch ⊆ Xc and Yuh
⊆ Yu are the variables used in

the clause ψh. This assumption can be easily satisfied by converting Ψ(~Xc, ~Yu)

in CNF. We can rewrite ¬Γ (~Yu) as Γ̄ (~Yu)
.
=

∨m
k=1((yk < 0) ∨ (yk > (uk − lk))).

Let Γ̄ (~Yu)|Yuk

.
=

∨
yk∈Yuk

((yk < 0) ∨ (yk > (uk − lk))).

Assuming the temporal problem is consistent, we have that
∧
h ∀~Yu.(Γ̄ (~Yu)∨

ψh(~Xch ,
~Yuh

)) if and only if
∧
h ∀~Yuh

.(Γ̄ (~Yu)|Yuh
∨ψh(~Xch ,

~Yuh
)), and we obtain

the distributed encoding of Equation 7.∧
h ∀~Yuh

.(Γ̄ (~Yu)|Yuh
∨ ψh(~Xch ,

~Yuh
)) (7)

The size of the produced (quantified) formula is linear with respect to the original
TPU. This encoding still requires a solver that supports quantified formulae,
and contains as many quantifiers as clauses. However, each quantification is now
restricted to the offset variables Yuh

⊆ Yu occurring in each clause ψh. This
encoding also limits the scope of the universal quantifiers, which turns out to
be beneficial in practice. Intuitively, this is related to the fact that a number of
quantifier eliminations in LRA on smaller formulae may be much cheaper than
a single, monolithic quantifier elimination over a large formula.

6.2 Encodings into Quantifier-free LRA

In order to exploit solvers that do not support quantifiers, we propose an en-
coding of strong controllability into a quantifier-free SMT(LRA) formula. This
is obtained by resorting to an external procedure for quantifier elimination.

We rewrite Equation 7 as
∧
h ¬(∃~Yuh

.(¬Γ̄ (~Yu)|Yuh
∧ ¬ψh(~Xch ,

~Yuh
))), in or-

der to apply a procedure for the elimination of existential quantifiers from a
conjunction of literals (e.g. Fourier-Motzkin [14]). Notice that both Γ̄ (~Yu)|Yuh

and ψh(~Xch ,
~Yuh

) are clauses, and thus their negations are both conjunctions of
literals. The result of each quantifier elimination is again a conjunction of liter-
als, which, once negated, yields a clause, in the following referred to as ψΓh (~Xch).
The resulting encoding, reported in Equation 8, is called eager for-all elimination
encoding. ∧

h ψ
Γ
h (~Xch) (8)

For the TCSPU class, it is not necessary to apply a general purpose quantifier
elimination procedure. Given the specific nature of the constraints, only few
cases are possible, and for each of them we use a pattern-based encoding, that
in essence precomputes the result of quantifier elimination. This result can be

thought of as generalizing to TCSPU the result proposed in [2] for the case
of STPU. We start from the distributed encoding of Equation 7, where each
(sub)clause ψh is generated by the hole encoding. We treat each clause as a
separate existential quantification problem, and provide static results for each
case. The final result is logically equivalent to the corresponding ψΓh (~Xch) in
Equation 8.

Each clause under analysis results from the encoding of a free constraint
in the TCSPU over variables v and w, with D intervals. Let t be v − w. The
encoding results in two unit clauses (t ≥ l1 and t ≤ uD), and in D − 1 binary
clauses in the form (t ≤ ui) ∨ (t ≥ li+1).

The static elimination procedure must deal with four possible cases, depend-
ing on v and w being controllable or uncontrollable1. For the two unit clauses,
we proceed as in [2]. Here we show the more complex cases of binary clauses.
Let the binary clause have the form (v−w ≤ u)∨ (v−w ≥ l) (notice that u < l
because u is the upper bound of the “lower” interval). When v is uncontrollable,
we write xv for its starting point, yv for its offset, and Lv and Uv for the lower
and upper bound of the contingent constraint relative to v2; similarly for w.

1. v ∈ Xc and w ∈ Xc. The clause does not contain quantified variables, and
therefore the quantifier can be simply removed.

2. v ∈ Xc and w ∈ Xu. The formula ¬Γ̄ (~Yu)|{yw} ∧ ¬ψ(v, xw, yw) can be rep-
resented by:

(0 ≤ yw) ∧ (yw ≤ Uw − Lw) ∧
(yw < l − v + xw + Uw) ∧ (xw − v + Uw + u < yw).

Using quantifier elimination over ∃yw.(¬Γ̄ (~Yu)|{yw} ∧ ¬ψ(v, xw, yw)), we ob-
tain the following formula (given that (l − u > 0) and (Uw − Lw > 0)):

((l − v + xw + Uw > 0) ∧ (l − v + xw + Lw ≤ 0)) ∨
((l − v + xw + Lw ≥ 0) ∧ (v − xw − u− Lw > 0)) .

Since in eager for-all elimination encoding we need the negation of the exis-
tential quantification we can rewrite the formula as follows:

((l − v + xw + Uw ≤ 0)∨(l − v + xw + Lw > 0)) ∧
((l − v + xw + Lw < 0)∨(v − xw − u− Lw ≤ 0)).

3. The case when v ∈ Xu and w ∈ Xc is dual:

((xv + Uv − w − u ≤ 0)∨(xv − w − u+ Lv > 0)) ∧
((xv − l − w + Lv ≥ 0) ∨(xv − w − u+ Lv < 0)).

4. v ∈ Xu and w ∈ Xu. The formula ¬Γ̄ (~Yu)|{yv,yw} ∧ ¬ψ(xv, xw, yv, yw) is thus

¬Γ̄ (~Yu)|{yv,yw} ∧ (v−w < l)∧ (v−w > u) which in turn can be rewritten as

(xv + Uv − xw − Uw + yw − l < yv) ∧
(yv < xv + Uv − xw − Uw + yw − u) ∧
(0 ≤ yv) ∧ (yv ≤ Uv − Lv) ∧ (−yw ≤ 0) ∧ (yw ≤ Uw − Lw).

1 The possible cases are actually eight but v−w ≥ k can be rewritten as w− v ≤ −k
2 We assume Lv < Uv; in the other cases the problem is not interesting.

Using the assumptions detailed above and negating the quantification result,
we obtain the following formula:

((xv + Uv − xw − Uw − u > 0)∨(xv + Uv − xw − u− Lw ≤ 0)) ∧
((xv + Uv − xw − Uw − u < 0)∨(xv − xw − Uw − u+ Lv ≥ 0)) ∧
((xv − xw − Uw − l + Lv ≥ 0) ∨(xv − xw − l + Lv − Lw < 0)) ∧
((xv − xw − l + Lv − Lw > 0) ∨(xv − xw − u+ Lv − Lj ≤ 0)).

The construction described above can be used in Equation 8. This specialized
quantification technique results in a 2-CNF formula that has size linear in the
original TCSPU. This is because the size of the hole encoding is linear, and for
each clause, we statically resolve the quantification by creating at most four new
binary clauses. As far as encoding time is concerned, for a TCSPU with m free
constraints, the encoding can be generated in O(m ∗ max(Di)log(max(Di)))
time, because of the sorting time needed in the hole encoding. This encoding
spares the computational cost of quantifier elimination and produces a highly
optimized QF LRA formula.

7 Related Work

The seminal work on strong controllability is [2]. The problem is tackled for
the limited case of STPU problem class. Vidal and Fargier identify a clever,
constant time quantification technique for SC reasoning, which is at the core of
their procedure. Compared to [2], we propose a comprehensive solution and an
implementation for the cases of TCSPU and DTPU. Furthermore, we generalize
to the case of TCSPU the specialized quantifier elimination techniques proposed
in [2] for STPU.

Strong controllability for the cases beyond STPU have been tackled in [19],
where specialized algorithms based on meta-CSP are proposed. The work in [19]
tackles the same problem addressed here; however, it is purely theoretical, and to
the best of our knowledge no implementation exists. Furthermore, the approach
is based on the use of explicit CSP search to deal with case splits, while we rely
on the symbolic expressive power of the SMT framework.

The use of SMT techniques to solve temporal problems is not new. The
most advanced work is presented in [20], where the TSAT++ tool is presented.
TSAT++ can be seen as a specialized SMT solver for DTP problems. The work
does not deal with strong controllability, and is limited to consistency for tem-
poral problems. The performance of TSAT++ relative to more modern SMT
solvers is analyzed in the next section, on temporal consistency problems.

As far as the consistency problem of STP is concerned, the work in [22]
represents the state-of-the-art. Planken, de Weerdt and van der Krogt presented
an efficient algorithm for computing all-pairs shortest paths in a directed graph
with possibly negative Real weights. As pointed out by the authors, the proposed
algorithm can be used to solve STP (but not TCSP or DTP). We used their tool
in our experimental comparison for STP consistency. We remark that the focus
of our work is on the strong controllability (and not consistency) problem.

We also mention two other forms of controllability for TPUs: weak control-
lability (WC) and dynamic controllability (DC). A TPU is said to be WC if,
for every possible evolution of the uncontrollable environment, there exists an
allocation to the controllable time points that fulfills the free constraints of the
problem. This notion is much weaker than SC, because the allocation strategy
for the controllable time points is allowed to depend on the allocation of the
uncontrollable time points. In this setting, the solver is assumed to be “clair-
voyant” and is able to decide its moves based on the past and also the future
moves of the opponent. In their seminal paper, Vidal and Fargier [2] address
the WC problem for the STPU class. Algorithms for deciding WC for TCSPU
and DTPU are provided in [23]. The use of SMT techniques to deal with weak
controllability has been recently investigated in [24], addressing both the de-
cision and the strategy extraction problems (i.e. the problem of checking if a
TPU is WC, and the problem of building a strategy for the solver). The work
presented in this paper, compared to [24], tackles a radically different problem.
An important difference between SC and WC is the shape of the solution: while
in SC a solution is a static assignment to controllable time points, in WC the
strategy requires conditional structures to be expressed. Thus, the use of SMT
techniques in [24] is also substantially different from what is done here.

DC is similar to WC, but the choices of the scheduler can be based on past
environment decisions only. As pointed out in [2], if a problem is SC then it is
also DC and if it is DC then it is also WC, but the implication chain is not
reversible. In [25] the authors focus on deciding DC for the STPU problem class,
while in [23] the result is extended for TCSPUs. However, no effective solutions
to DC exists for the DTPU problem class.

8 Experimental Evaluation

8.1 Implementation

We developed a tool that automatically encodes the various classes of temporal
problems in SMT problems. The tool can deal with consistency problems by
generating SMT (QF LRA) encodings. As for strong controllability problems,
the tool implements the two reductions to SMT (LRA) (with quantifiers), and
can obtain SMT (QF LRA) by applying quantifier elimination techniques. The
quantifier elimination step in the eager for-all elimination encoding is carried out
by calling the formula simplifier provide by Z3 [6], and a quantifier elimination
functionality built on top of MathSAT5 [5].

The tool is currently connected to three different SMT solvers: namely Math-
SAT4 [4], MathSAT5 [5] and Z3 [6]. Given that the encodings are written in
SMT-LIB2 (and also in SMT-LIB1 format), it would be straightforward to con-
nected it to any SMT solver that is able to parse the SMT-LIB language. We
remark however that our purpose is to compare the performance of the encod-
ings we propose, and not to compare the various SMT solvers. Z3 can be seen as
a representative for solvers that support quantified theories, and MathSAT as

representative for quantifier-free solvers. We expect other solvers (e.g. Yices [7],
OpenSMT [8]) to exhibit a similar behavior (see [26]).

8.2 Experimental set-up

In order to experimentally assess the performance of the techniques presented in
this paper, we used a set of randomly-generated benchmarks. Consistency prob-
lems were generated using the random instance generator presented in [20]; the
same generator was extended to introduce random uncertainty, and to generate
strong controllability problems. The benchmark set contains 2108 instances for
each problem class in TP without uncertainty (STP, TCSP and DTP), and 1054
instances for each TPU class (STPU, TCSPU and DTPU). We used random in-
stance generators because they are typically used in literature (e.g. [20]), and
because they can be easily scaled to stress the solvers.

We executed all our experiments on a machine running Scientific Linux 6.0,
equipped with two quad-core Xeon processors @ 2.70GHz. We considered a mem-
ory limit of 2GB and a time-out of 300 seconds. The benchmarks and the results
are available from https://es.fbk.eu/people/roveri/tests/cp2012.

For consistency problems, we analyzed the performance of the various solvers
on the various encodings. We also compared our encodings with all the avail-
able solver for TP without uncertainty (i.e. Snowball for the case of STP, and
TSAT++).

For strong controllability problems, to the best of our knowledge there are no
solvers available. Thus, we only evaluated the different approaches, to highlight
the difference in performance and the respective merits.

8.3 Results for Consistency

The results for consistency problems are reported in Figure 1 (left). We plotted
in logarithmic scale the cumulative time in seconds to solve the considered set of
benchmarks. For STP problems, we compared the näıve encoding with various
algorithms available in the SnowBall3 [22] tool, and with TSAT++ [20]. (In the
case of STP, the other encodings coincide with the näıve encoding.) In TCSP
and DTP, we tested all the applicable encodings with all the SMT solvers under
analysis and with TSAT++. The plots show that the SMT approach is competi-
tive with dedicated techniques. MathSAT4 implements a dedicated algorithm for
the theory of difference logic [27], and is thus faster than MathSAT5, that uses
a general purpose algorithm for LRA [28]. Both solvers greatly benefit from the
hole encoding, compared to the switch encoding with mutual exclusion (switch
me) and the plain switch encoding. This encoding produces a formula that has
just one real variable for every time point and has at most two literals per clause:
this greatly simplifies the SMT search procedure by augmenting the number of
unit propagations and by reducing the size of the search space.

Z3 is extremely efficient, and the attempts to improve the encodings may re-
sult in performance degradation. The TSAT++ solver is outperformed by state-

Consistency Strong Controllability

0 500 1000 1500 2000

1
10

0
10

00
0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Floyd−Warshall
Bellmann−Ford
Johnson
Snowball3
P3C
TSAT++
Z3 naive
MathSAT4 naive
MathSAT5 naive

0 200 400 600 800

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5fm
Z3 EFE M5lw
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw

0 500 1000 1500 2000

1
10

0
10

00
0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

TSAT++ switch
TSAT++ hole
Z3 naive
Z3 switch
Z3 switch me
Z3 hole
MathSAT4 naive
MathSAT4 switch
MathSAT4 switch me
MathSAT4 hole
MathSAT5 naive
MathSAT5 switch
MathSAT5 switch me
MathSAT5 hole

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5fm
Z3 EFE M5lw
Z3 EFE Static
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw
MathSAT5 EFE Static

0 500 1000 1500 2000

1
10

0
10

00
0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

TSAT++ switch
Z3 naive
Z3 switch
MathSAT4 naive
MathSAT4 switch
MathSAT5 naive
MathSAT5 switch

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5lw
Z3 EFE M5fm
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw

Fig. 1. Results for experimental evaluation: consistency of STP (left-top), TCSP (left-
center), and DTP (left-bottom); strong controllability of STPU (right-top), TCSPU
(right-center) and DTPU (right-bottom).

of-the-art SMT solvers, but again notice that the hole encoding yields substantial
improvements in performance.

8.4 Results for Strong Controllability

The results for strong controllability are reported in Figure 1 (right). We plotted
in logarithmic scale the cumulative time in seconds to solve the considered set of
benchmarks. Differently from the consistency case, the time here considers also
the encoding time which dominates solving time for the case of quantifier-free
encodings. The quantified encodings (Direct, Offset and Distributed) are solved
with Z3. The quantifier-free encodings resulting from eager for-all elimination
are obtained by the application of three quantifier elimination procedures: the
internal simplifier of Z3 (EFE Z3qe), and two implementations in MathSAT5 of
the Fourier-Motzkin (EFE M5fm) and the Loos-Weispfenning (EFE M5lw) elim-
ination procedures. The resulting encodings are solved using Z3 and MathSAT5
on the quantifier-free theory of Reals.

The plots clearly show that both the offset and direct encodings quickly
reach the resource limits, and are unable to solve all the instances. The behavior
of the distributed encoding is slightly better than the eager for-all elimination
approach. The difference can be explained in purely technological terms: the
quantifier elimination modules are called via pipe in our implementation; on the
other hand, when Z3 solves the distributed encoding, it can perform quantifier
elimination “in-memory”.

We notice the impact of the static quantification techniques (EFE Static),
when applicable (i.e. for TCSPU). The substantial difference in performance
resides only in the quantification technique, that all produce the same quantifier-
free formula.

9 Conclusions

In this paper, we presented a comprehensive approach to strong controllability
for temporal problems with uncertainty. The formalization is based on the SMT
framework, and encompasses constraints with arbitrary disjunctions. We deal
with uncertainty by means of logic-based quantifier elimination techniques. The
experiments demonstrate the scalability of the approach, based on the use of
efficient SMT solvers.

In the future, we will investigate the problem of searching schedules that
optimize a given cost function, and the addition of constraints over resources
associated to activities. Finally, within the SMT-based framework, we will in-
vestigate the case of dynamic controllability.

References

1. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49
(1991) 61–95

2. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks:
from consistency to controllabilities. Journal of Experimental Theoretical Artificial
Intelligence 11 (1999) 23–45

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Handbook of Satisfiability. IOS Press (2009) 825–885

4. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-
SAT 4SMT Solver. In Gupta, A., Malik, S., eds.: Computer Aided Verification -
CAV. Volume 5123 of LNCS., Springer (2008) 299–303

5. Cimatti, A., Griggio, A., Sebastiani, R., Schaafsma, B.: The MathSAT5 SMT
solver. http://mathsat.fbk.eu (2011)

6. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In Ramakrishnan,
C.R., Rehof, J., eds.: Tools and Algorithms for the Construction and Analysis of
Systems - TACAS. Volume 4963 of LNCS., Springer (2008) 337–340

7. Dutertre, B., de Moura, L.: The Yices SMT solver. Tool paper at http://yices.

csl.sri.com/tool-paper.pdf (2006)
8. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In

Esparza, J., Majumdar, R., eds.: Tools and Algorithms for the Construction and
Analysis of Systems - TACAS. Volume 6015 of LNCS., Springer (2010) 150–153

9. Niemelä, I.: Integrating Answer Set Programming and Satisfiability Modulo The-
ories. In Erdem, E., Lin, F., Schaub, T., eds.: Logic Programming and Nonmono-
tonic Reasoning, 10th International Conference - LPNMR. Volume 5753 of LNCS.,
Springer (2009) 3

10. Franzén, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT
in symbolic execution of microcode. In Bloem, R., Sharygina, N., eds.: Formal
Methods in Computer-Aided Design - FMCAD, IEEE (2010) 121–128

11. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Network and Distributed System Security Symposium - NDSS, The Internet Soci-
ety (2008)

12. Kleene, S.: Mathematical Logic. J. Wiley & Sons (1967)
13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-

neering an Efficient SAT Solver. In: Design Automation Conference - DAC, New
York, NY, USA, ACM Press (2001) 530–535

14. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons (1998)
15. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Computer

Journal 36 (1993) 450–462
16. Monniaux, D.: A Quantifier Elimination Algorithm for Linear Real Arithmetic.

In Cervesato, I., Veith, H., Voronkov, A., eds.: Logic for Programming, Artificial
Intelligence, and Reasoning - LPAR. Volume 5330 of LNCS., Springer (2008) 243–
257

17. Allen, J.F.: Maintaining knowledge about temporal intervals. Communication of
the ACM 26 (1983) 832–843

18. Tsamardinos, I., Pollack, M.E.: Efficient solution techniques for disjunctive tem-
poral reasoning problems. Artificial Intelligence 151 (2003) 43 – 89

19. Peintner, B., Venable, K.B., Yorke-Smith, N.: Strong controllability of disjunctive
temporal problems with uncertainty. In Bessiere, C., ed.: Principles and Practice
of Constraint Programming - CP. Volume 4741 of LNCS., Springer (2007) 856–863

20. Armando, A., Castellini, C., Giunchiglia, E.: SAT-Based Procedures for Temporal
Reasoning. In Biundo, S., Fox, M., eds.: European Conference on Planning - ECP.
Volume 1809 of LNCS., Springer (1999) 97–108

21. de la Tour, T.: Minimizing the number of clauses by renaming. In Stickel, M.,
ed.: Conference on Automated Deduction - CADE. Volume 449 of LNCS. Springer
(1990) 558–572

22. Planken, L., de Weerdt, M., van der Krogt, R.: Computing all-pairs shortest paths
by leveraging low treewidth. Journal of Artificial Intelligence Research (JAIR) 43
(2012) 353–388

23. Venable, K.B., Volpato, M., Peintner, B., Yorke-Smith, N.: Weak and dynamic con-
trollability of temporal problems with disjunctions and uncertainty. In: Workshop
on Constraint Satisfaction Techniques for Planning & Scheduling. (2010) 50–59

24. Cimatti, A., Micheli, A., Roveri, M.: Solving Temporal Problems using SMT:
Weak Controllability. In Hoffmann, J., Selman, B., eds.: American Association for
Artificial Intelligence - AAAI, AAAI Press (2012)

25. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal
uncertainty. In Nebel, B., ed.: International Joint Conference on Artificial Intelli-
gence - IJCAI, Morgan Kaufmann (2001) 494–502

26. Barrett, C., Deters, M., de Moura, L., Oliveras, A., Stump, A.: 6 Years of SMT-
COMP. Journal of Automated Reasoning (2012) To appear.

27. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for dpll(t).
In Biere, A., Gomes, C.P., eds.: Theory and Applications of Satisfiability Testing
- SAT. Volume 4121 of LNCS., Springer (2006) 170–183

28. Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In
Ball, T., Jones, R.B., eds.: Computer Aided Verification - CAV. Volume 4144 of
LNCS., Springer (2006) 81–94

