
Noname manuscript No.
(will be inserted by the editor)

Solving Strong Controllability of Temporal Problems with
Uncertainty using SMT?

Alessandro Cimatti · Andrea Micheli ·
Marco Roveri

the date of receipt and acceptance should be inserted later

Abstract Temporal Problems (TPs) represent constraints over the timing of ac-
tivities, as arising in many applications such as scheduling and temporal planning.
A TP with uncertainty (TPU) is characterized by activities with uncontrollable
duration. Different classes of TPU are possible, depending on the Boolean struc-
ture of the constraints: we have simple (STPU), constraint satisfaction (TCSPU),
and disjunctive (DTPU) temporal problems with uncertainty.

In this paper we tackle the problem of strong controllability, i.e. finding an
assignment to all the controllable time points, such that the constraints are fulfilled
under any possible assignment of uncontrollable time points.

Our approach casts the problem in the framework of Satisfiability Modulo The-
ory (SMT), where the uncertainty of durations can be modeled by means of univer-
sal quantifiers. The use of quantifier elimination techniques leads to quantifier-free
encodings, which are in turn solved with efficient SMT solvers.

We obtain the first practical and comprehensive solution for strong controllabil-
ity. We provide a family of efficient encodings, that are able to exploit the specific
structure of the problem. The approach has been implemented, and experimen-
tally evaluated over a large set of benchmarks. The results clearly demonstrate
that the proposed approach is feasible, and outperforms the best state-of-the-art
competitors, when available.

? This is an extended version of the paper [10] presented at the 18th International Conference
on Principles and Practice of Constraint Programming (CP 2012) in Quebec City, Canada.
The extensions with respect to the previous version are explained in detail in the cover letter
of this submission.

Alessandro Cimatti
E-mail: cimatti@fbk.eu
Fondazione Bruno Kessler — IRST, Via Sommarive 18, 38123 Povo (TN) Italy

Andrea Micheli
E-mail: amicheli@fbk.eu
Fondazione Bruno Kessler — IRST, Via Sommarive 18, 38123 Povo (TN) Italy

Marco Roveri
E-mail: roveri@fbk.eu
Fondazione Bruno Kessler — IRST, Via Sommarive 18, 38123 Povo (TN) Italy

This is a pre-print version of the homonymous paper appearing in Constraints 2015.
Copyright (c) 2015 belongs to Springer. DOI: https://doi.org/10.1007/s10601-014-9167-5

2 Alessandro Cimatti et al.

1 Introduction

Many applications require the scheduling of a set of activities over time, subject to
constraints of various nature. This is often expressed as a Temporal Problem (TP),
where each activity is associated with two time points, representing the start time
and the end time, subject to constraints. Several kinds of temporal problems have
been identified, depending on the nature and structure of the constraints [14].
If the problem is expressible as a pure conjunction of constraints over distances
of time points, then we have the so-called Simple Temporal Problem (STP). A
more complex class is Temporal Constraint Satisfaction Problem (TCSP), where the
temporal distance between two time points can be constrained to lie in the union
of disjoint intervals. When arbitrary Boolean combinations are allowed, we have a
Disjunctive Temporal Problem (DTP). A temporal problem is said to be consistent

if there exists an assignment for the time points, such that all the constraints
are satisfied [14]. Such an assignment is called a schedule, and it corresponds to
sequential time-triggered programs, that are often used in control of satellites and
rovers.

In many practical cases, however, the durations of some activities are uncon-
trollable. TPs are thus extended with uncertainty in the duration of activities, thus
obtaining the classes of STPU, TCSPU and DTPU [36]. Given a temporal problem
with uncertainty (TPU), three different problems can be addressed, namely weak,
dynamic and strong controllability [36]. Weak controllability concerns the existence
of a strategy that schedules each activity, as a function of all the uncontrollable
durations. The executor is assumed to know the duration of the uncontrollable
activities before the execution starts (this property is sometimes known as “clair-
voyance”). In dynamic controllability, a solution is a strategy, similarly to weak
controllability, but each decision is constrained to depend on past events only. In
strong controllability, we disallow any runtime observation, and we require a fixed
schedule for the activities that is independent of the uncertainty. As in the case
of consistency, we look for a schedule. However, the schedule only determines the
start of all the activities, and the end of the activities that are controllable, and
must satisfy the constraints for all the durations of the uncontrollable activities.
If such a schedule exists, the problem is said to be strongly controllable [36].

Strong controllability is an important problem, because it results in a sched-
ule that is satisfactory under all possible uncertainties. Clearly, a strong schedule
can yield a longer timespan compared to a dynamic strategy. However, dynamic
information may not be available, e.g. due to the lack of sensors. Furthermore,
most algorithms for dynamic execution require run-time reasoning [19]. This may
be incompatible with some operational settings: for example, in mission-critical
systems, validating the run-time reasoner to the required level of assurance may
be prohibitively hard. Furthermore, the computational resources available during
execution may be too limited for a dynamic approach. Examples of such applica-
tion domains can be found in production planning and in mission critical robotics,
for which strong controllability is a very relevant problem. We also remark that, in
the same domains, the expressivity of disjunctive constraints (compared to simple
temporal problems) is often necessary [27].

In this paper, we propose a comprehensive and effective approach for solving
the strong controllability problem for TPUs in the most general form including
arbitrary disjunctions. The approach relies on the Satisfiability Modulo Theory

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 3

(SMT) framework [6]. This framework provides representational and reasoning
capabilities within decidable fragments of first order logic, where interpretations
are constrained to satisfy a specific theory of interest (e.g. linear real arithmetic).
Modern SMT solvers are a tight integration of a Boolean SAT solver, that is highly
optimized for the case split required by the Boolean combination of constraints,
with dedicated constraint solvers for the theories of interest. Some SMT solvers
provide embedded primitives to handle quantifiers, and dedicated techniques for
quantifier-elimination are available for some theories of interest. Several effective
SMT solvers are available (e.g. MathSAT [7,9], Z3 [26], Yices [15], OpenSMT [8]).
SMT solving has had increasing applications in many areas including Answer Set
Programming (ASP) [28], Formal Verification [17], and Test Case Generation [18].

We tackle the strong controllability problem of TPUs by reduction to SMT
problems, that are then fed into efficient SMT solvers. First, we show how to en-
code a TPU into the theory of quantified linear real arithmetic (LRA) and, by
leveraging the specific nature of the problem, we optimize the encoding by re-
ducing the scope of quantifiers. The resulting formula can be solved by any SMT
solver for (quantified) LRA. Second, we present a general reduction procedure
from strong controllability to consistency, based on the eager application of quan-
tifier elimination techniques. The resulting formulae can be directly fed into any
SMT solver for the quantifier-free LRA. This gives the first general comprehensive
solver for strong controllability of TPUs. Third, we generalize the results by Vidal
and Fargier [36], originally stated for STPU, to the subclass of (simple-natured)
TCSPU. In this way, we avoid the use of expensive general purpose quantifier
elimination techniques, with significant performance improvements.

The proposed approach has been implemented in a solver based on state-of-the-
art SMT techniques. To the best of our knowledge, this is the first implemented
solver for strong controllability of TPUs. We carried out a thorough experimental
evaluation, over a large set of benchmarks. We analyze the merits of the vari-
ous encodings, and demonstrate the overall feasibility of the approach. We also
compare the proposed approaches with state-of-the-art algorithms on consistency
problems. SMT solvers turned out to be competitive with, and often outperform,
the best known dedicated solving techniques. Finally, we compared our approach
with the only other algorithm to check strong controllability for DTPU [29]. The
results show that the symbolic techniques proposed in this paper can dramatically
outperform the enumerative approach in [29].
Structure of the paper. In sections 2 and 3 we present some technical preliminar-
ies and background about SMT. In section 4 we formally define temporal problems,
while in section 5 we present several SMT encodings for consistency. Encodings
for strong controllability are described in section 6 and an overview of the related
work is given in section 7. We report the results of the performed experimental
evaluation in section 8, and in section 9 we draw some conclusions and outline
directions for future work.

2 Technical Preliminaries

Our setting is standard first order logic [21]. The first-order signature is com-
posed of constants, variables, function symbols, Boolean variables, and predicate
symbols. A term is either a constant, a variable, or the application of a function

4 Alessandro Cimatti et al.

symbol of arity n to n terms. A theory constraint (also called a theory atom) is the
application of a predicate symbol of arity n to n terms. An atom is either a theory
constraint or a Boolean variable. A literal is either an atom or its negation. A clause
is a finite disjunction of literals. A formula is either true (>), false (⊥), a Boolean
variable, a theory constraint, the application of a propositional connective (¬, ∧,
∨, →, ↔) of arity n to n formulae, or the application of a quantifier (∀, ∃) to an
individual variable and a formula. We use x, y, v, . . . for variables, and ~x, ~y,~v, . . . for
vectors of individual variables. Terms and formulae are referred to as expressions.
Formulae are denoted with φ, ψ, Let ~x be a vector of variables, we indicate the
i-th variable in the vector with xi. We write φ(x) to highlight the fact that x
occurs in φ, and φ(~x) to highlight the fact that the free variables of φ are variables
in ~x. We indicate with Q~x.φ(~x) the formula Qx1.Qx2. . . . Qxn.φ(x1, . . . , xn), where
Q ∈ {∀, ∃}.

Let φ(~x)=̇
∧
i φi(~xi) be a conjunction of formulae. We write φ(~x)|~y to represent

the conjunction of the φi(~xi) in which at least one variable of ~y occurs in ~xi.

Substitution is defined in the standard way [21]. We write φ[s/v] for the sub-
stitution of every occurrence of variable v in φ with term s. Let ~v be a vector of
variables and ~s be a vector of terms, we write φ[~s/~v] for the parallel substitution
of every occurrence of vi in φ with si.

We use the standard semantic notions of interpretation and satisfiability. We
call satisfying assignment or model of a formula φ(~x) a total function µ that assigns
to each xi an element of its domain such that the formula φ[µ(~x)/~x] evaluates to
>. A formula φ(~x) is satisfiable if and only if it has a satisfying assignment.

The satisfiability of a formula is the problem of finding a satisfying assignment
for the formula. This problem is approached in propositional logic with enhance-
ments of the DPLL algorithm [13]: the formula is converted into an equi-satisfiable
one in Conjunctive Normal Form (CNF); then, a satisfying assignment is incre-
mentally built, until either all the clauses are satisfied, or a conflict is found, in
which case back-jumping takes place (i.e. certain assignments are undone). Keys
to efficiency are heuristics for the variable selection, and learning of conflicts [25].

3 Satisfiability Modulo Theories

Given a first-order formula ψ in a decidable background theory T, Satisfiabil-

ity Modulo Theory (SMT) [6] is the problem of deciding whether there exists
a satisfying interpretation that satisfies ψ. For example, consider the formula
(x ≤ y) ∧ ((x + 3 = z) ∨ (z ≥ y)) in the theory of real arithmetic (x, y, z ∈ R,
and the symbols ≤, +, = and ≥ are interpreted in the usual way). The formula
is satisfiable and a satisfying assignment is {x := 5, y := 6, z := 8}. The theory
of real arithmetic interprets 3 as a real number and +,=, <,>,≤,≥ as the usual
mathematical functions and relations.

In this work we concentrate on the theory of linear arithmetic over the real
numbers (LRA). A formula in LRA is an arbitrary Boolean combination, a uni-
versal (∀) or an existential (∃) quantification, of atoms in the form

∑
i aixi ./ c

where ./∈ {>,<,≤,≥, 6=,=}, every xi is a real variable and every ai and c is a real
constant. Given two real constants l, u such that l ≤ u, we denote with t ∈ [l, u]
the formula l ≤ t ∧ t ≤ u. Difference logic (RDL) is the subset of LRA such that

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 5

atoms have the form xi − xj ./ c. We denote with QF LRA and QF RDL the
quantifier-free fragments of LRA and RDL, respectively.

An SMT solver [6] is a decision procedure which solves the satisfiability prob-
lem for a formula expressed in a decidable subset of First-Order Logic. The most
efficient implementations of SMT solvers use the so-called “lazy approach”, where
a SAT solver is tightly integrated with a T-solver, that is demanded to decide con-
junction of constraints in the theory T. The role of the SAT solver is to enumerate
the truth assignments to the Boolean abstraction of the first-order formula. The
Boolean abstraction has the same Boolean structure of the first-order formula,
but “replaces” the predicates which contain T information with fresh Boolean
variables. The Boolean abstraction of (x ≤ y)∧ ((x+ 3 = z)∨ (z ≥ y)) is a∧ (b∨ c),
where a, b, c are fresh Boolean variables. The T-solver is invoked when the SAT
solver finds a satisfying assignment for the Boolean abstraction: the satisfying as-
signment to Boolean abstraction maps directly to a conjunction of T atoms, which
the T-solver can handle. If the conjunction is satisfiable also the original formula is
satisfiable. Otherwise the T-solver returns a conflict set which identifies a reason
for the unsatisfiability. Then, the negation of the conflict set is learned by the
SAT solver in order to prune the search. Examples of solvers based on the “lazy
approach” are MathSAT [7,9], Z3 [26], Yices [15] and OpenSMT [8]).

In order to deal with quantifiers in LRA many techniques have been developed
and implemented in SMT solvers. Some solvers (e.g. Z3 [26]) natively support
quantifiers. However, many SMT solvers cannot deal with them. Several techniques
have been developed for removing quantifiers from an LRA formula (e.g. Fourier-
Motzkin [32], Loos-Weispfenning [22,23]): they transform an LRA formula into an
equivalent QF LRA formula. 1

Fourier-Motzkin elimination In order to decide the satisfiability of a conjunction
of constraints in linear real arithmetic, we can apply the so-called Fourier-Motzkin

elimination (FME) technique. The method was discovered in 1826 by Fourier and
re-discovered by Motzkin in 1936.

Consider the following formula where {x1, ..., xn} is a set of real variables (xi ∈
R) and ai,j , bi ∈ R are real coefficients.

∃xe.
∧m
i=1(

∑n
j=1 ai,jxj) ≤ bi

The elimination method allows the elimination of the variable xe and obtain a
new system without xe that is equi-satisfiable with respect to the original one.

The basic principle of the method consists in the projection of the polytope
in the xe dimension. A description of the method is beyond the scope of this
paper; the interested reader can consult Schrijver’s thorough description [32] and
Kessler’s efficient implementation [20].

If we are given a general formula ∃xe.φ(~X), we can näıvely apply this technique
by computing the Disjunctive Normal Form of φ(~X) and apply the Fourier-Motzkin
technique on each disjunct separately, because the existential quantification dis-
tributes over the ∨. More advanced approaches are also possible [23].

1 A theory T is said to admit quantifier elimination, if for every quantified formula φ in T,
there exist a quantifier-free formula φ′ that is logically equivalent to φ. It has been proved that
LRA admits quantifier elimination [32].

6 Alessandro Cimatti et al.

t

0 107

As

A (Controllable)

8

Ae

11 16

Bs

B (Uncontrollable)

19

Be

20

Fig. 1 Schema of a possible temporal situation in the running example. Activities are depicted
in time, filled regions are used to indicate the minimal guaranteed duration of an activity, the
region in which uncontrollable event Be can happen is striped, while the region in which Ae
can be scheduled is the union of the two white rectangles. The problem deadline is indicated
with the solid line at time 20.

Loos-Weispfenning elimination Another approach for quantifier elimination in LRA
is the Loos-Weispfenning technique [22], named after Rüdiger Loos and Volker
Weispfenning. The technique solves the same problem of FME but is based on a
completely different mechanism. The idea behind Loos and Weispfenning elimina-
tion (LWE) approach is that an existentially quantied formula

∃x.φ(x, ~y)

with free variables ~y = y1, ..., yn can be replaced by a formula ψ(~y)

ψ(~y) = φ(x̄1, ~y) ∨ ... ∨ φ(x̄m, ~y)

where x̄1, ..., x̄m are expressed as functions of ~y. In the case of Loos-Weispfenning
elimination the number of produced disjuncts is linear, but the overall complexity
bound is still doubly exponential in the number of disjuncts of ψ(~y).

4 Temporal Problems

Running Example. Suppose we have two activities A and B. Activity A has
duration of at least 7 units and at most 8 units or at least 10 units and at
most 11 units, depending on a controllable decision. Activity B is uncon-
trollable, meaning that the actual duration is not decidable by the solver,
but we can assume that it is at least 8 units and at most 11 units. We
require that activity B must start after activity A and both activities must
end within 20 units. The situation is depicted in Figure 1.

A Temporal Problem (TP) is a formalism that is used to represent temporal
constraints over time-valued variables representing time points. This formalism is
rich enough to express Allen’s interval algebra [1] and also quantitative constraints
over intervals and time points. Two families of TPs have been presented in liter-
ature over the years: TP without uncertainty, in which all the time points can be
freely assigned by the solver [14,34] and TP with uncertainty (TPU), in which
only some of the time points can be assigned by the solver, while the others are
intended to be assigned by an adversary [36,29]. As such, TPUs can be seen as a
form of game between the solver and an adversarial environment.

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 7

Definition 1 A TPU is a tuple (Xc, Xu, Cc, Cf), where Xc
.
= {b1, ..., bn} is the set

of controllable time points, Xu
.
= {e1, ..., em} (n ≥ m) is the set of uncontrollable time

points, Cc
.
= {cc1, ..., ccm} is the set of contingent constraints, and Cf

.
= {cf1, ..., cfh}

is the set of free constraints.

cci
.
=

∨Ei

j=1(ei − bi) ∈ [li,j , ui,j] cfi
.
=

∨Di

j=1(xi,j − yi,j) ∈ [li,j , ui,j]

such that: li,j , ui,j ∈ R ∪ {+∞,−∞}, li,j ≤ ui,j , Di is the number of disjuncts
for the i-th free constraint, Ei is the number of disjuncts for the i-th contingent
constraint, xi,j , yi,j ∈ Xc ∪Xu, xi,j 6= yi,j ,

Intuitively, time points belonging to Xc are time decisions that can be con-
trolled by the solver, while time points in Xu are under the control of the envi-
ronment. A similar subdivision is imposed on the constraints: free constraints Cf
are constraints that the solver is required to fulfill, while contingent constraints
(Cc) are the assumptions that the environment will fulfill. As in previous work
[36,29], we consider only contingent constraints that start with a controllable time
point. Thus, each uncontrollable time point ei is linked by exactly one contingent
constraint to a controllable time point bi

2.
Within the framework of TPU, we can express only uncertainty on the dura-

tion of activities (and not, for example, uncertainty on whether an activity could
occur or not, or on its discrete outcome). Contingent constraints represent the
difference in the durations of the uncontrollable activities, while uncontrollable
time points represent the uncontrollable ending time of activities. We adopt a
continuous model of time, and we explicitly avoid any discretization.

A temporal problem is defined over a set of time points, namely variables
representing time instants. A temporal situation such as the one in our running
example can be encoded in a temporal problem by using two time points to rep-
resent the starting and ending time of each activity. Therefore, in order to model
the running example with a temporal problem we need a total of four time points
As, Ae, Bs and Be representing the start and end of activity A and B respectively
(Figure 1). Be is the only uncontrollable time point, as we can control the starting
and end time of A but we cannot control the duration of B. The only contingent
constraint is the constraint on the duration of B. The rest of the problem is com-
posed of requirements that have to be fulfilled in any possible situation, and can
be translated in three free constraints. The resulting temporal problem is then
(Xc, Xu, Cc, Cf) where Xc = {As, Ae, Bs}, Xu = {Be}, Cc = {Be − Bs ∈ [8, 11]}
and Cf = {Be −As ∈ [0, 20], Bs −Ae ∈ [0,∞], Ae −As ∈ [7, 8]∨Ae −As ∈ [10, 11]}.
Figure 2 shows a graphical visualization of the resulting TPU.

A TP without uncertainty is a TPU (Xc, ∅, ∅, Cf), in which the set of uncontrol-
lable time points is empty (from which it also follows that the set of contingent
constraints is empty).

Depending on the generality of the constraints in Cc and Cf , three classes
of TPUs are possible [29]. Definition 1 in its general form identifies Disjunctive

Temporal Problem with Uncertainty (DTPU) [29]. If each constraint contains at most
two time points, the resulting problem is a Temporal Constraint Satisfaction Problem

2 This formulation assumes a complete independence between contingent constraints. This
means that this formalism cannot express assumptions of interdependence between uncontrol-
lable durations.

8 Alessandro Cimatti et al.

As Ae

[7, 8] ∪ [10, 11]

Bs

[0,∞)

Be

[8, 11]

[0, 20]

Fig. 2 Graphical representation of the TPU model derived from the running example de-
scription. Each node of the graph is a time point, doubly circled nodes are uncontrollable
the others are controllable, solid arrows are free constraints and dashed arrows are contingent
constraints.

with Uncertainty (TCSPU). If each constraint has exactly one disjunct (i.e. Di = 1
for all i), we obtain a Simple Temporal Problem with Uncertainty (STPU). Similarly,
we can define the corresponding TP without uncertainty (DTP [34], TCSP, and
STP [14]). Following the classification of Peintner et al. [29], we also say that a
problem is simple-natured if the contingent constraints have no disjunctions (Ei = 1
for each i).

We define an assignment to the time points as a total function from time points
to real values. Given a TP without uncertainty, checking consistency corresponds
to deciding the existence of an assignment that fulfills all the constraints of the
problem. We call such an assignment a consistent schedule, and we say that the
TP is consistent. Checking the consistency of a TPU (Xc, Xu, Cc, Cf) is defined as
checking the consistency of the TP without uncertainty (Xc ∪ Xu, ∅, ∅, Cc ∪ Cf).
The running example is consistent, and a consistent schedule is for example µ =
{As = 0, Ae = 11, Bs = 11, Be = 20}. Intuitively, when checking consistency of a
TPU, the behavior of the environment is assumed to be “cooperative” with the
solver. In this paper, we focus on Strong Controllability (SC) for a TPU, where
the environment is adversarial [36]. SC consists in deciding the existence of an
assignment to controllable time points that fulfills the free constraints under any
assignment of uncontrollable time points that satisfies the contingent constraints.
Such an assignment is called a strong schedule of the problem. A TPU for which
there exists a strong schedule is said to be strongly controllable. Consider again the
running example, the problem is strongly controllable and a strong schedule is
µ′ = {As = 0, Ae = 8, Bs = 8}.

If a TPU is strongly controllable, it is also consistent [36]. However, the converse
does not hold in general. Consider for example a variation to the running example
in which the deadline is moved from 20 time units to 17 time units. The problem
is consistent because a consistent schedule is {As = 0, Ae = 7.5, Bs = 8, Be =
16}. However, this version of the problem is not strongly controllable because the
activity B cannot be started before 7 (that is the minimal duration of activity A

that must precede B): since B is uncontrollable with duration in [8, 11], it may
be the case that the execution of the activity takes more than 10 time units, thus
exceeding the deadline.

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 9

5 Encoding of Consistency Problems in SMT

We first focus on the consistency problem, i.e. the case in which there is no uncon-
trollability. Checking the consistency of a temporal problem amounts to checking
whether the conjunction of the constraints admits a model. Therefore, the con-
sistency problem can be reduced to checking the satisfiability of a quantifier-free
formula modulo the LRA theory. The temporal problem is consistent if and only
if the corresponding SMT formula is satisfiable, and any satisfying assignment for
the formula corresponds to a consistent schedule for the problem.

In this work, consistency checking plays the role of backend for strong con-
trollability. We present several SMT encodings, that turn out to have different
performance in the solvers, depending on the nature of the constraints. We exploit
the characteristics of such encodings to improve the performances of the approach
we propose to solve the strong controllability problem.

In the following, we assume that a TP P = (Xc, ∅, ∅, Cf) is given. The first
encoding in SMT of the consistency problem can be directly obtained as follows:
for every time point in Xc we introduce a real variable, and we denote with ~Xc
the vector of such variables; each constraint in Cf is directly mapped on the cor-
responding SMT formula; the encoding is the SMT formula shown in Equation 1.∧|Cf |

i=1

∨Di

j=1(((xi,j − yi,j) ≥ li,j) ∧ ((xi,j − yi,j) ≤ ui,j)) (1)

Proposition 1 The temporal problem P is consistent if and only if Equation 1 is

satisfiable (and a model of the formula yields a strong schedule for P).

Proposition 1 is justified by the fact that Equation 1 is the conjunction of the
formalization of the problem constraints, and by definition, checking consistency
amounts to checking the existence of a model of the constraints. This formalization
is such that a consistent schedule can be extracted from a model of the encoding
formula by interpreting the value assigned to each SMT variable as a time value
of the corresponding time point.
Equation 1 is already a working SMT encoding. It is linear in the size of the
original TP, but does not exploit any knowledge on the structure of the problem,
and is thus referred to as näıve encoding. In particular, we notice that the resulting
SMT formula is not in CNF. 3

In the running example this encoding amounts to checking the satisfiability of
the conjunction of all the constraints as follows.

(Be −Bs ≥ 8) ∧ (Be −Bs ≤ 11) ∧
(Be −As ≥ 0) ∧ (Be −As ≤ 20) ∧
(Bs −Ae ≥ 0) ∧
((Ae −As ≥ 7) ∧ (Ae −As ≤ 8)) ∨ ((Ae −As ≥ 10) ∧ (Ae −As ≤ 11))

(2)

In the rest of this section we introduce three optimizations: the switch encoding
(applicable to any TP), the switch encoding with mutual exclusion and the hole
encoding (both for TCSPs only).

3 Since most efficient SMT solvers work by combining a SAT and a T-solver, a CNF formu-
lation of the problem is an advantage that prevents the solver for computing a (possibly less
efficient) CNF by itself.

10 Alessandro Cimatti et al.

5.1 Switch Encoding

The switch encoding performs a CNF conversion of the formula in Equation 1
by means of a polarity-based CNF labeling conversion [33]. To this extent, we

introduce
∑|Cf |
i=0 Di Boolean “switch” variables si,j , and the resulting encoding is

the one in Equation 3.∧|Cf |
i=1 ((

∧Di

j=1((¬si,j ∨ ((xi,j − yi,j) ≥ li,j)) ∧
(¬si,j ∨ ((xi,j − yi,j) ≤ ui,j)))) ∧ (

∨Di

j=1 si,j))
(3)

Theorem 1 The temporal problem P is consistent if and only if Equation 3 is satis-

fiable (and a consistent schedule can be derived from any model of Equation 3).

Proof. We prove that Equation 3 is equi-satisfiable to Equation 1 and that the
model of Equation 3 is always an extension of a model of Equation 1 from which
a consistent schedule can be extracted.

First we prove that a model µ of Equation 1 can be extended to a model µ′ of
Equation 3. For each i, there exists ̄ such that ((xi,̄− yi,̄) ≥ li,̄) ∧ ((xi,̄− yi,̄) ≤
ui,̄). Let µ′=̇µ∪{si,̄ = >|∀i}∪{si,j = ⊥|∀i,∀j : j 6= ̄}. µ′ is a model of Equation 3

because (1)
∨Di

j=1 si,j is satisfied by si,̄, and (2) each conjunct is satisfied because

in µ′, si,j is false for all j 6= ̄ and thus the i-j-conjunct is satisfied and the i-̄-
conjunct is such that xi,̄ and yi,̄ fulfill ((xi,̄ − yi,̄) ≥ li,̄) ∧ ((xi,̄ − yi,̄) ≤ ui,̄).

We now prove that a model µ′ of Equation 3 can be reduced to a model µ of
Equation 1. Let µ be the restriction of µ′ to the xi,j and yi,j variables only. µ′

fulfills
∨Di

j=1 si,j , therefore there is a ̄ such that si,̄ is true in µ′. xi,̄ and yi,̄ are
such that ((xi,̄ − yi,̄) ≥ li,̄) ∧ ((xi,̄ − yi,̄) ≤ ui,̄), therefore, also Equation 1 is
satisfied. ut

This encoding is also linear in the size of the original TP problem, and it directly
produces a CNF formula. We notice that the clauses involving theory atoms are
binary; furthermore, if a switch variable is assigned to false, the corresponding
clauses are satisfied without any theory reasoning. These factors have a positive
impact on the performance of the SMT solver.

In the running example this encoding is as follows.

(Be −Bs ≥ 8) ∧ (Be −Bs ≤ 11) ∧
(Be −As ≥ 0) ∧ (Be −As ≤ 20) ∧
(Bs −Ae ≥ 0) ∧
(¬s1 ∨ (Ae −As ≥ 7)) ∧
(¬s1 ∨ (Ae −As ≤ 8)) ∧
(¬s2 ∨ (Ae −As ≥ 10)) ∧
(¬s2 ∨ (Ae −As ≤ 11)) ∧
(s1 ∨ s2)

(4)

5.2 Switch Encoding With Mutual Exclusion

If we focus on the TCSP class, we can exploit the problem structure to further
improve our encodings. In particular, we assume that the disjuncts in each con-

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 11

straint are mutually exclusive, otherwise two or more disjuncts can be merged
together by simply taking the union of the intervals they represent. For example,
a constraint (a− b ∈ [10, 20])∨ (a− b ∈ [30, 35])∨ (a− b ∈ [15, 25]) can be simplified
to (a− b ∈ [10, 25]) ∨ (a− b ∈ [30, 35]) by merging the first and the last disjuncts.
Formally, this means that each TCSP constraint is composed of disjuncts of the
form x − y ∈ [lj , uj], where x and y are time points, and for all j, lj ≤ uj and
uj < lj+1.

If we use the previous encodings, it is left to the solver (in particular to the
theory solver) to discover this mutual exclusion property. We can strengthen the
switch encoding by statically adding mutual exclusion constraints of the form
(¬sh ∨ ¬sk), with h 6= k. Adding this information to the encoding is a form of
static learning, and it can guide the Boolean search by pruning branches that are
unsatisfiable in the theory. The switch encoding with mutual exclusion is presented
in Equation 5.∧|Cf |

i=1 (
∧Di

j=1((¬si,j ∨ ((xi,j − yi,j) ≥ li,j)) ∧
(¬si,j ∨ ((xi,j − yi,j) ≤ ui,j))) ∧
(
∨Di

j=1 si,j) ∧ (
∧Di

j=1

∧Di

k=j+1(¬si,j ∨ ¬si,k)))

(5)

Theorem 2 If P is a TCSP, P is consistent if and only if Equation 5 is satisfiable

(and a model of Equation 5 yields a consistent schedule).

Proof. We prove that for any TCSP, Equation 5 is logically equivalent to Equation
3.

We highlight that Equation 5 is analogous to Equation 3, but it adds a new
constraint in the form

∧Di

j=1

∧Di

k=j+1(¬si,j ∨ ¬si,k).
Let µ be a model of Equation 3. Since the problem is a TCSP we know that in

each constraint the intervals are disjoint. Therefore, for each constraint ci, there ex-
ists exactly one si,̄ that is true, while all the other si,j are assigned to false. Clearly,

µ is also a model for Equation 5 because the added term
∧Di

j=1

∧Di

k=j+1(¬si,j∨¬si,k)
is satisfied: only si,̄ is set to true, therefore in each conjunct at least one variable
is set to false.

Let µ′ be a model of Equation 5. Because of the added term, there exists
exactly one si,̄ that is true, while all the other si,j are assigned to false. For the
same reasoning followed above, µ′ is also a model of Equation 3. ut

This encoding is in CNF, but its size is quadratic in the size of the TP because of
the added term

∧Di

j=1

∧Di

k=j+1(¬si,j ∨ ¬sk).
In the running example this encoding is as follows.

(Be −Bs ≥ 8) ∧ (Be −Bs ≤ 11) ∧
(Be −As ≥ 0) ∧ (Be −As ≤ 20) ∧
(Bs −Ae ≥ 0) ∧
(¬s1 ∨ (Ae −As ≥ 7)) ∧
(¬s1 ∨ (Ae −As ≤ 8)) ∧
(¬s2 ∨ (Ae −As ≥ 10)) ∧
(¬s2 ∨ (Ae −As ≤ 11)) ∧
(s1 ∨ s2) ∧
(¬s1 ∨ ¬s2)

(6)

12 Alessandro Cimatti et al.

x− y ∈ [5, 20] [25, 50] [60, 75]

time0

Fig. 3 Example of TCSPU constraint

5.3 Hole Encoding

A different encoding for the TCSP problem class is obtained as follows. For each
constraint ci =

∨Di

j=1(xi−yi) ∈ [li,j , ui,j]
4, we constrain xi−yi ∈ [li,1, ui,Di

], and we
exclude the “holes” between intervals, a hole being an open interval (ui,j , li,j+1).
The result is the hole encoding reported in Equation 7.∧|Cf |

i=1 (((xi − yi) ≥ li,1) ∧ ((xi − yi) ≤ ui,Di
) ∧

(
∧Di−1
j=1 ((xi − yi) ≤ ui,j) ∨ ((xi − yi) ≥ li,(j+1))))

(7)

Theorem 3 If P is a TCSP, P is consistent if and only if Equation 7 is satisfiable

(and a model of Equation 7 yields a consistent schedule for P).

Proof. Assuming that P is a TCSP, we prove that Equation 7 is equivalent to
Equation 1.

We start from a the formula in Equation 1, and we consider a single constraint
in isolation:

∨Di

j=1(((xi − yi) ≥ li,j) ∧ ((xi − yi) ≤ ui,j)). This sub-formula is in
Disjunctive Normal Form, and can be transformed in an equivalent exponential-
size CNF by applying the distributive rule. We obtain a formula with 2Di clauses
of Di disjuncts each. Each clause is a permutation obtained by picking a conjunct
for each disjunct of the original formula.

One clause in this CNF formula is composed of all the upper bound constraints:∨Di

k=1((xi−yi) ≤ ui,k), this clause can be trivially simplified to ((xi−yi) ≤ ui,Di
) as

ui,Di
is bigger than any other upper bound. Similarly, the clause

∨Di

k=1((xi− yi) ≥
li,k) becomes ((xi − yi) ≥ li,1).

The remaining clauses contain both upper and lower constraints. Each clause
c can be reduced to a binary clause in the form ((xi − yi) ≥ Li,c) ∨ ((xi − yi) ≤
Ui,c), where Li,c is the minimum of the lower bounds and Ui,c is the maximum of
the upper bounds. The obtained 2-CNF formula is exponential in the size of the
original constraint. For each j, the clause ((xi − yi) ≤ ui,j) ∨ ((xi − yi) ≥ li,(j+1))
subsumes all the binary clauses with bigger upper bound and smaller lower bound.

We can apply this reasoning to all the conjuncts of Equation 1, and we obtain
the formulation in Equation 7. Since the two formulations are equivalent, they
have the same models, a consistent schedule can be extracted from each model of
Equation 7 ut

Consider for example Figure 3, depicting the constraint (x−y ∈ [5, 20])∨(x−y ∈
[25, 50]) ∨ (x − y ∈ [60, 75]). The hole encoding of this constraint is ((x − y) ≥
5) ∧ ((x− y) ≤ 20 ∨ (x− y) ≥ 25) ∧ ((x− y) ≤ 50 ∨ (x− y) ≥ 60) ∧ ((x− y) ≤ 75).
This encoding is linear in the size of the original TP, does not introduce any
additional variable, and, most importantly, results in a 2-CNF formula. These
properties are noteworthy and will be exploited in the following sections.

4 Note that in TCSP the constraints are binary, i.e. each constraint relates exactly two
variables.

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 13

In the running example this encoding is as follows.

(Be −Bs ≥ 8) ∧ (Be −Bs ≤ 11) ∧
(Be −As ≥ 0) ∧ (Be −As ≤ 20) ∧
(Bs −Ae ≥ 0) ∧
(Ae −As ≥ 7) ∧
((Ae −As ≤ 8) ∨ (Ae −As ≥ 10)) ∧
(Ae −As ≤ 11)

(8)

Finally, we notice that Equation 7 is logically equivalent to Equation 1 (in the
applicable case of TCSP), while Equations 3 and 5 are only are equi-satisfiable to
it, because of the added switch variables. The solution to the temporal problem is
still obtained directly from any satisfying assignment, gathering the values for the
variables in ~Xc.

6 Encoding of SC Problems in SMT

We now consider the SC problem, in which some time points are not schedulable
by the solver, and are considered uncontrollable when looking for a schedule for
the controllable time points. We describe the reduction of the SC problem to SMT.
We developed a number of encodings that are satisfiable if and only if the temporal
problem is strongly controllable, and such that a model of each encoding yields a
solution for the original problem.

In the following, we assume that a TPU P = (Xc, Xu, Cc, Cf) is given.

6.1 Encodings into Quantified LRA

As in the previous section, each time point is associated with an SMT variable.
The encoding in Equation 9 is a direct logical mapping of the notion of strong
controllability; we call this encoding direct encoding.

∀ ~Xu.(Cc(~Xc, ~Xu)→ Cf (~Xc, ~Xu)) (9)

Proposition 2 The TPU P is strongly controllable if and only if Equation 9 is satis-

fiable (and a model of Equation 9 yields a strong schedule for P).

Proposition 2 is directly obtained by formalizing the definition of strong con-
trollability. Intuitively, Equation 9 is satisfiable if and only if there exists an as-
signment to the controllable variables Xc such that, for all assignments to the
uncontrollable variables Xu satisfying the contingent constraints Cc, the free con-
straints Cf are also satisfied5. In the above formula, the controllable variables
are implicitly existentially quantified. In case of satisfiability, the SMT solver re-
turns a satisfying assignment to the controllable variables that is exactly a strong
schedule.

5 Here we assume that the contingent constraints are not contradictory, otherwise the impli-
cation will be automatically true. However, the non-contradiction of contingent constraints is
true by construction in our definition of temporal problem, as no relationship between different
contingent constraints is possible.

14 Alessandro Cimatti et al.

In the running example, this encoding is as follows.

∀Be.(((Be −Bs ≥ 8) ∧ (Be −Bs ≤ 11))→
((Be −As ≥ 0) ∧ (Be −As ≤ 20) ∧ (Bs −Ae ≥ 0) ∧

(((Ae −As ≥ 7) ∧ (Ae −As ≤ 8)) ∨ ((Ae −As ≥ 10) ∧ (Ae −As ≤ 11)))))

(10)

In order to enable further simplifications, we notice that contingent constraints
depend both on controllable and uncontrollable time points, and we re-code the
problem as follows. We rewrite each uncontrollable time point ei in terms of the
time difference with its starting time point bi by means of an uncontrollable offset
variable yi. For every contingent constraint cci =

∨Ei

j=1(ei − bi) ∈ [li,j , ui,j], let
yi ∈ R be the uncontrollable offset variable associated to ei such that: 0 ≤ yi ≤
(ui,Ei

− li,1) and
∧2
j=Ei

((yi ≤ ui,Ei
− li,j) ∨ (yi ≥ ui,Ei

− ui,j−1)). Note that

this rewriting is actually an hole-encoding of the i-th contingent constraint6. The
rewriting is such that ei = bi + ui,Ei

− yi.
For example, the contingent constraint Be−Bs ∈ [8, 11] of our running example

can be rewritten as (y1 ≥ 0)∧(y1 ≤ 3) and the occurrences of Be in free constraints
are replaced by (Bs + 11− y1).

Intuitively, yi represents the offset with respect to the maximum duration, and
can be used to rewrite all the constraints involving ei in terms of bi and yi only.
We formalize this rewriting as a function ρ such that ρ(ei)

.
= bi + ui,Ei

− yi. With

a small abuse of notation, we denote with ρ(~Xu) the vector of formulae obtained
by the application of ρ to all the elements of Xu. To simplify the notation, we
also introduce the vector ~Yu that is the vector of uncontrollable offset variables
(y1, ..., ym). Thanks to the redefinition of each ei in terms of yi, the rewriting of
the contingent constraints depends on ~Yu only.

Let Γ (~Yu) be the formula representing the conjunction of all the contingent
constraints after the recoding, and Ψ(~Xc, ~Yu) be the conjunction of all the free
constraints rewritten in terms of ~Xc and ~Yu.

Γ (~Yu)
.
=
∧m
i=1((yk ∈ [0, ui,Ei

− li,1]) ∧

(
∧2
j=Ei

((yi ≤ ui,Ei
− li,j) ∨ (yi ≥ ui,Ei

− ui,j−1))))

Ψ(~Xc, ~Yu)
.
=
∧
c∈Cf

c[ρ(~Xu)](~Xc, ~Yu)/ ~Xu]

In this setting, the strong controllability problem consists in finding a value for
~Xc that satisfies the free constraints Ψ(~Xc, ~Yu) under any possible value of ~Yu that
satisfies Γ (~Yu).

The SC encoding in Equation 9 can be recoded as an LRA formula in the free
variables ~Xc as follows.

∀~Yu.(Γ (~Yu)→ Ψ(~Xc, ~Yu)) (11)

Theorem 4 The TPU P is strongly controllable if and only if Equation 11 is satisfiable

(and a strong schedule can be extracted from any of its models).

6 This is possible because the contingent constraints are restricted to be binary.

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 15

Proof. Equation 11 is obtained by rewriting Equation 9 with the offsets, we prove
that it is equivalent to Equation 9. We show this property by refutation.

Suppose µ is a model of Equation 9 but it is not a model of Equation 11.
Then, there exist a ~Yu such that Γ (~Yu) holds but Ψ(µ, ~Yu) does not hold. Let
~Xu=̇ρ−1(~Yu). By definition of ρ, Cf (~Xc, ~Xu) does not hold and Cc(~Xc, ~Xu) holds.
But this is absurd because this makes Equation 9 unsatisfiable.

Similarly we can show that any model of Equation 11 is also a model of Equa-
tion 9. ut

We call this encoding Offset Encoding. This formulation corresponds to a quan-
tified SMT problem in LRA, and still requires a solver that supports quantified
formulae, but the part of the encoding representing the contingent constraint is
now dependent on ~Yu only.

In the running example, this encoding is as follows.

∀y1.(((y1 ≥ 0) ∧ (y1 ≤ 3))→
((Bs + 11− y1 −As ≥ 0) ∧ (Bs + 11− y1 −As ≤ 20) ∧ (Bs −Ae ≥ 0) ∧

(((Ae −As ≥ 7) ∧ (Ae −As ≤ 8)) ∨ ((Ae −As ≥ 10) ∧ (Ae −As ≤ 11)))))

(12)

The main problem in the previous encodings is the scope of the universal
quantifier. Since the computational cost of quantification is very high, we can
rewrite the offset encoding in Equation 11 in order to obtain a possibly more
efficient encoding. Let us assume that Ψ(~Xc, ~Yu) is written as a conjunction of H
clauses ψh(~Xch , ~Yuh), where Xch ⊆ Xc and Yuh ⊆ Yu are the variables used in the
clause ψh. This assumption can be easily satisfied by converting Ψ(~Xc, ~Yu) in CNF
using any consistency encoding we presented in the previous section 7.

Ψ(~Xc, ~Yu) =
∧H
h=1 ψh(~Xch , ~Yuh)

We have that
∧
h ∀~Yu.(¬Γ (~Yu) ∨ ψh(~Xch , ~Yuh)) can be equivalently rewritten

to
∧
h ∀~Yuh .(¬Γ (~Yu)|Yuh

∨ ψh(~Xch , ~Yuh)), and we obtain the following distributed

encoding. ∧
h ∀~Yuh .(¬Γ (~Yu)|Yuh

∨ ψh(~Xch , ~Yuh)) (13)

Theorem 5 If the TPU P is consistent, it is strongly controllable if and only if Equa-

tion 13 is satisfiable (and each model yields a strong schedule).

Proof. We show that Equation 13 is equivalent to Equation 11.
We start from Equation 11. and we rewrite it as follows.
∀~Yu.(Γ (~Yu)→ Ψ(~Xc, ~Yu))
⇔ ∀~Yu.(¬Γ (~Yu) ∨ Ψ(~Xc, ~Yu))

We can now replace Ψ(~Xc, ~Yu) with its CNF formulation and distribute the dis-
junction over the big conjunction.
⇔ ∀~Yu.(¬Γ (~Yu) ∨

∧H
h=1 ψh(~Xch , ~Yuh))

⇔ ∀~Yu.
∧H
h=1(¬Γ (~Yu) ∨ ψh(~Xch , ~Yuh))

7 If the used encoding introduces additional variables, those are existentially quantified
and extend the model of Equation 9 by preserving the satisfiability and the strong schedules
encoded in the models.

16 Alessandro Cimatti et al.

By distribution of ∀ over ∧ we obtain the following formulation.
⇔

∧H
h=1 ∀~Yu.(¬Γ (~Yu) ∨ ψh(~Xch , ~Yuh))

Let ~Yuk

.
= ~Yu \ ~Yuh be the variables of ~Yu not appearing in the h-th clause. The

clauses of Γ (~Yu) can be split in two parts depending on the offset variables they
constrain, because every clause contains exactly one offset variable by construction.
⇔

∧H
h=1 ∀~Yu.(¬Γ (~Yu)|Yuh

∨ ¬Γ (~Yu)|Yuk
∨ ψh(~Xch , ~Yuh))

The universal quantification ∀~Yu can be split in ∀~Yuk .∀~Yuh .
⇔

∧H
h=1 ∀~Yuk .(¬Γ (~Yu)|Yuk

∨ ∀~Yuh .(¬Γ (~Yu)|Yuh
∨ ψh(~Xch , ~Yuh)))

Since Γ (~Y) is assumed to be non-contradictory, Γ (~Yu)|Yuk
cannot be false for every

~Yuk . Therefore, ¬Γ (~Yu)|Yuk
reduces to ⊥. We can then remove this disjunct and

the relative quantification become useless.
⇔

∧H
h=1 ∀~Yuk .(∀~Yuh .(¬Γ (~Yu)|Yuh

∨ ψh(~Xch , ~Yuh)))

⇔
∧H
h=1 ∀~Yuh .(¬Γ (~Yu)|Yuh

∨ ψh(~Xch , ~Yuh))
This is exactly the formulation of Equation 13. ut

The size of the produced (quantified) formula is linear with respect to the original
TPU. This encoding still requires a solver that supports quantified formulae, and
contains as many quantifiers as clauses. However, each quantification is now re-
stricted to the offset variables Yuh ⊆ Yu occurring in each clause ψh. This encoding
also limits the scope of the universal quantifiers, which turns out to be beneficial in
practice. Intuitively, this is related to the fact that a number of quantifier elimina-
tions in LRA on smaller formulae may be much cheaper than a single, monolithic
quantifier elimination over a large formula.

If we use the hole encoding to obtain the CNF formula for the free constraints,
the running example formulation of this encoding is as follows.

(∀y1.((y1 < 0) ∨ (y1 > 3) ∨ (Bs + 11− y1 −As ≥ 0))) ∧
(∀y1.((y1 < 0) ∨ (y1 > 3) ∨ (Bs + 11− y1 −As ≤ 20))) ∧
(Bs −Ae ≥ 0) ∧ (Ae −As ≥ 7) ∧
((Ae −As ≤ 8) ∨ (Ae −As ≥ 10)) ∧ (Ae −As ≤ 11)

(14)

6.2 Encodings into Quantifier-free LRA

In order to exploit solvers that do not support quantifiers, we propose an encoding
of strong controllability into a quantifier-free SMT (LRA) formula. This is obtained
by resorting to an external procedure for quantifier elimination.

We rewrite Equation 13 as
∧
h ¬(∃~Yuh .(Γ (~Yu)|Yuh

∧ ¬ψh(~Xch , ~Yuh))), in order

to apply a procedure for the elimination of existential quantifiers (e.g. Fourier-
Motzkin [32]). In the following we refer to each conjunct after quantifier elimination
as ψΓh (~Xch) (ψΓh (~Xch) is then a quantifier-free formula).

ψΓh (~Xch)↔ ¬(∃~Yuh .(Γ (~Yu)|Yuh
∧ ¬ψh(~Xch , ~Yuh)))

The resulting encoding, reported in Equation 15, is called eager for-all elimination

encoding. ∧
h ψ

Γ
h (~Xch) (15)

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 17

Theorem 6 The TPU P is strongly controllable if and only if Equation 13 is satisfiable

(and a strong schedule can be extracted from a model of Equation 13).

Proof. Equation 15 derives from Equation 13 by resolving the universal quantifier
using a quantifier elimination procedure. Since the elimination procedure builds
equivalent formulae, Equation 15 and Equation 13 are logically equivalent. ut

In the running example, this encoding is as follows.

(¬∃y1.((y1 ≥ 0) ∧ (y1 ≤ 3) ∧ (Bs + 11− y1 −As < 0))) ∧
(¬∃y1.((y1 ≥ 0) ∧ (y1 ≤ 3) ∧ (Bs + 11− y1 −As > 20))) ∧
(Bs −Ae ≥ 0) ∧ (Ae −As ≥ 7) ∧
((Ae −As ≤ 8) ∨ (Ae −As ≥ 10)) ∧ (Ae −As ≤ 11)

(16)

For the simple-natured TCSPU class, it is not necessary to apply a general pur-
pose quantifier elimination procedure. Given the specific nature of the constraints
and the limitation to convex contingent constraints, only few cases are possible,
and for each of them we use a pattern-based encoding, that in essence precomputes
the result of quantifier elimination. This result can be thought of as generalizing
to simple-natured TCSPUs the result proposed by Fargier and Vidal [36] for the
case of STPU. We start from the distributed encoding of Equation 13, where the
each (sub)clause ψh is generated by the hole encoding. We treat each clause as
a separate existential quantification problem, and provide static results for each
case. The final result is logically equivalent to the corresponding ψΓh (~Xch) in Equa-
tion 15.

Each clause under analysis results from the encoding of a free constraint in the
TCSPU over variables v and w, with D intervals. Let t be v − w. The encoding
results in two unit clauses (t ≥ l1 and t ≤ uD), and in D − 1 binary clauses in the
form (t ≤ ui) ∨ (t ≥ li+1).

The static elimination procedure must deal with eight possible cases, depending
on v and w being controllable or uncontrollable8. The eight possible clause patterns
are shown in Table 1. For unit clauses, we proceed as in the work by Fargier and
Vidal [36]: the first four rows of Table 1 report these results.

The rest of the table present the results for the disjunctive binary clauses. The
static quantification is possible by knowing that the contingent constraints are in
the shape ei − bi ∈ [Li, Ui] and thus each possible free constraint clause can be
parametrized and resolved upfront.

During the encoding of a given problem, we can now generate the set of clauses
using the hole encoding, search in the table which is the applicable pattern and
instantiate the resulting ψΓh (~Xch) (The quantifier free formula that is equivalent
to ¬(∃~Yuh .(Γ (~Yu)|Yuh

∧¬ψh(~Xch , ~Yuh)))) that form a set of clauses to be conjoined
to obtain a sound and complete SMT encoding for strong controllability.

In the running example, Equation 16 can be equivalently transformed using
this technique as follows.

(Bs −As ≤ 9) ∧ (As −Bs ≤ 8) ∧ (Bs −Ae ≥ 0) ∧ (Ae −As ≥ 7) ∧
((Ae −As ≤ 8) ∨ (Ae −As ≥ 10)) ∧ (Ae −As ≤ 11)

(17)

8 The possible cases are actually sixteen but v − w ≥ k can be rewritten as w − v ≤ −k,
thus halving the possibilities.

18 Alessandro Cimatti et al.

Clause pattern Quantification Result (ψΓh (~Xch))

(bi − bj) ≥ k (bi − bj) ≥ k
(ei − bj) ≥ k (bi − bj) ≥ k − Li
(bi − ej) ≥ k (bi − bj) ≥ k + Uj

(ei − ej) ≥ k (bi − bj) ≥ k − Li + Uj

(bi − bj) ≤ k1 ∨
(bi − bj) ≥ k2

(bi − bj) ≤ k1 ∨ (bi − bj) ≥ k2

(ei − bj) ≤ k1 ∨
(ei − bj) ≥ k2

((bi + Li − bj > k1)∨(bi + Ui − bj ≤ k1)) ∧
((bi + Li − bj < k1)∨(bi + Li − bj ≥ k2))

(bi − ej) ≤ k1 ∨
(bi − ej) ≥ k2

((bi − bj − Lj < k2)∨(bi − bj − Uj ≥ k2)) ∧
((bi − bj − Lj > k2)∨(bi − bj − Lj ≤ k1))

(ei − ej) ≤ k1 ∨
(ei − ej) ≥ k2

((bi + Ui − bj − Uj > k1)∨(bi + Ui − bj − Lj ≤ k1)) ∧
((bi + Ui − bj − Uj < k1)∨(bi + Li − bj − Uj ≥ k1)) ∧
((bi + Li − bj − Lj < k2)∨(bi + Li − bj − Uj ≥ k2)) ∧
((bi + Li − bj − Lj > k2)∨(bi + Li − bj − Lj ≤ k2))

Table 1 Static quantification for simple-natured TCSPUs. For each clause pattern coming

from an hole-encoding of free constraints, the corresponding ψΓh (~Xch) is presented, assuming
that if ei is an uncontrollable time point, bi is its corresponding controllable time point that
relates to it with the i-th contingent constraint ei − bi ∈ [Li, Ui].

The constraint (Bs −As ≤ 9) comes from the Be −As ≤ 20 clause using the third
rule, while (As −Bs ≤ 8) is derived from Be −As ≥ 0 using the second rule.

In order to explain the intuition of the rules, let us show, as an example, why
the constraint (Bs − As ≤ 9) comes from the Be − As ≤ 20. By rewriting the
constraint Be − As ≤ 20, we get Bs + 11 − y1 − As ≤ 20. This inequality must
hold for any y1 ∈ [0, 3], because y1 is uncontrollable. A fortiori, it must hold for
y1 = 0, that is the worst case for an upper bound constraint9. Therefore, we obtain
Bs + 11−As ≤ 20, that is Bs −As ≤ 9.

The construction described above can be used in Equation 15. This specialized
quantification technique results in a 2-CNF formula that has linear size in the
original TCSPU. This is because the size of the hole encoding is linear, and for each
clause, we statically resolve the quantification by creating at most four new binary
clauses. This encoding spares the computational cost of quantifier elimination and
produces a highly optimized QF LRA formula.

7 Related Work

The notion of strong controllability was introduced by Fargier and Vidal in their
seminal paper [36]. The problem is defined for the limited case of STPU. The
authors identify a very efficient, static quantification technique to represent the
solution space of an STPU in form of an STP. This technique is at the core of
their STPU procedure (hereafter referred to as FargierVidal). Compared to [36],
we propose a comprehensive solution and an implementation for the general cases
of TCSPU and DTPU. Furthermore, we generalize the static quantification tech-
niques proposed in [36] to the case of simple-natured TCSPUs.

9 Recall that setting y1 = 0 means assuming the duration of activity B to be its maximum,
namely 11.

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 19

The only previous work tackling cases of strong controllability beyond STPU
is [29]. This work, in the following referred to as PVYS10, is discussed in detail in
the following section. A comparison with possible approaches based on polyhedra
is presented in section 7.2. Other related papers are discussed in section 7.3.

7.1 The PVYS algorithm

The first (and only) technique to solve the strong controllability problem for the
DTPU problem class is proposed in [29]. The PVYS algorithm can be described
in terms of two nested enumerations. At the highest level, it explicitly enumerates
every possible way (hereafter refereed to as contingent choice) to satisfy the contin-
gent constraints. Intuitively, a contingent choice corresponds to picking, for each
contingent constraint, one disjunct. For each contingent choice, PVYS obtains a
simple-natured DTPU. In turn, the solution space (i.e. the set of strong schedules)
of each simple-natured DTPU is represented as a DTP. The DTPs thus obtained
are intersected, and result into a DTP that represents the solution space for the
original DTPU. The innermost enumeration is used to convert each simple-natured
DTPU, associated with the contingent choice µc, to the corresponding DTP. More
specifically, PVYS explicitly enumerates every possible free choice, i.e. every pos-
sible way to satisfy each free constraint. Each free choice µf , in combination with
µc, yields an STPU, which can be efficiently reduced to an STP by FargierVidal.
All the STPs are then combined, by disjunction, into the DTP representing the
solution space for the contingent choice µc.

Consider the following example, with Cc=̇{cc1, cc2, cc3} and Cf =̇{cf1, cf2, cf3}.

cc1 =̇ (e1 − b1 ∈ [10, 20]) ∨ (e1 − b1 ∈ [30, 40]) ∨ (e1 − b1 ∈ [70,80])

cc2 =̇ (e2 − b2 ∈ [5,8])

cc3 =̇ (e3 − b3 ∈ [1, 5]) ∨ (e3 − b3 ∈ [10,15])

cf1 =̇ (x1 − x2 ∈ [10,30]) ∨ (x1 − x3 ∈ [3, 4])

cf2 =̇ (x3 − x5 ∈ [10,∞))

cf3 =̇ (x2 − x4 ∈ [20, 20]) ∨ (x1 − x4 ∈ [10,10])

A possible contingent choice of Cc is shown in blue, and a free choice is high-
lighted in red. A logical characterization of the algorithm is given below. Given a
DTPU (Xc, Xu, Cc, Cu), the algorithm computes the final DTP as follows.∧

µc∈Choice(Cc)

∨
µf∈Choice(Cf)

FargierVidal(Xc, Xu, µc, µf)

where the two calls to Choice are used to produce the free and contingent choices,
and embody the two enumerations. Intuitively, the external conjunction iterates
over the “blue” choices, while the internal disjunction iterates over the “red” ones.

The pseudo-code of PVYS, reported in Algorithm 1, has several optimiza-
tions with respect to the high-level view proposed above. The top-level function

10 We use PVYS after the surnames of the authors.

20 Alessandro Cimatti et al.

Algorithm 1 PVYS algorithm (taken from Peintner et al. [29])

1: procedure DTPU-SC(A, AC , CS , CC , CE)
2: S ← ∅
3: if CS = ∅ then
4: G← MinimalNetwork(A)
5: S ← ALL-PATHS-SC(A, AC , CC , CE , G)
6: else
7: Ci ← SelectVariable(CS)
8: C′

S ← CS − {Ci}
9: for cij ∈ Disjuncts(Ci) do

10: A′
C ← AC ∪ cij

11: A′ ← A ∧ SCTransform(A′
C , cij)

12: if IsConsistent(A′) then
13: S ← DTPU-SC(A′, A′

C , C′
S , CC , CE)

14: if S 6= ∅ then
15: return S
16: return S

1: procedure ALL-PATHS-SC(A, AC , CC , CE , G)
2: if CC = ∅ then
3: G← G ∧ SATISFY-Ce(A, AC , CE)
4: else
5: Ci ← SelectVariable(CC)
6: C′

C ← CC − {Ci}
7: for cij ∈ Disjuncts(Ci) do
8: A′

C ← AC ∪ cij
9: A′ ← A ∧ SCTransform(A′

C , cij)
10: if IsConsistent(A′) then
11: G← ALL-PATHS-SC(A′, A′

C , C′
C , CE , G)

12: if G = ∅ then
13: return ∅
14: else
15: return ∅
16: return G

1: procedure SATISFY-Ce(A, AC , CE)
2: H = ∅
3: if CE = ∅ then
4: H ← MinimalNetwork(A)
5: else
6: Ci ← SelectVariable(CE)
7: C′

E ← CE − {Ci}
8: for cij ∈ Disjuncts(Ci) do
9: A′ ← A ∧ SCTransform(A′

C , cij)
10: if IsConsistent(A′) then
11: H ← H ∨ SATISFY-Ce(A′, A′

C , C′
E)

12: return H

DTPU-SC considers the problem constraints divided into three sets: CS contains
the simple constraints (i.e. constraints not containing disjunctions), and the dis-
junctive constraints that are defined over controllable variables only; CC contains
the disjunctive contingent constraints; CE contains the other disjunctive free con-
straints. The procedure makes use of four additional data structures: the STP A,
the STPU Ac, and the DTPs G and H.

In procedure DTPU-SC, the algorithm selects a combination of one disjunct
for each constraint in CS and accumulates the result in A. The constraints are
rewritten one by one, using the approach by Fargier and Vidal: the function SC-

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 21

Transform takes a constraint and a STPU, and rewrites that constraint with
respect to the STPU eliminating uncontrollable time points.

For each combination of disjuncts, the function ALL-PATHS-SC checks if the
choice of free disjuncts satisfies all the contingent constraints by considering each
possible combination of contingent disjuncts separately. For each combination,
it accumulates the rewriting in the STP A and invokes the function SATISFY-

Ce that computes a DTP with all the possible solutions for the remaining free
constraints. All the DTPs are accumulated by conjunction in G until either G

becomes empty, meaning that there exist no solution that works for all the contin-
gent disjunct combinations, or it contains at least on solution that is compatible
with all the combinations and is returned. The algorithm terminates when a so-
lution is found, or when all the combinations of CS have been explored. The
intermediate checks for consistency (via the function IsConsistent) are used for
early-termination.

The key difference between our approach and PVYS is in the nature of enu-
merations. PVYS explicitly enumerates the choices over the free and contingent
constraints. This may be costly if many disjunctive constraints are present in the
problem: in fact, in the worst case, all the possible combinations of disjuncts must
be analyzed. In our approach, the enumerations are carried out symbolically, and
relying on the SMT infrastructure for efficiency. In this way, we inherit effective
splitting heuristics, learning, and backjumping. Moreover, the early pruning mech-
anism in the SMT solver is able to draw conclusions from “partial” choices, where
a disjunct is not (yet) chosen for each clause [6]. Finally, we use more powerful
quantifier elimination techniques, that are able to deal with DTPUs at once.

7.2 Polyhedra-based approach

The ideas presented in this paper are based on LRA formulae, and are made prac-
tical by leveraging SMT solvers. In principle, given the geometric interpretation of
LRA, the problem could be addressed by other means. In fact, each conjunction of
LRA atoms is a Non-Necessarily Closed Convex Polyhedron (NNC-Polyhedron),
and each formula over LRA can be seen as the (non-convex) union of finitely-
many NNC-Polyhedra. In this parallelism, conjunction corresponds to intersec-
tion, disjunction to union, negation to complement, and existential quantification
to projection.

Many libraries for manipulating NNC-Polyhedra are available (e.g. [3,37]), and
could be used as a backend for the problems described here instead of SMT solvers.
In an early stage of this research, we also explored this possibility, experimenting
with the Parma Polyhedra Library [3], one of the most efficient libraries available.
Unfortunately, the results we obtained were dramatically in favor of the SMT
approach. We could identify various reasons for this lack of scalability. On the
one side, the explicit manipulation of polyhedra disjunctions may be very costly.
On the other, using polyhedra-based solvers, we are computing the entire solution
space, while the SMT based approaches are only looking for one solution. Further
discussion of these techniques is out of the scope of this paper.

22 Alessandro Cimatti et al.

7.3 Other related work

We mention two other forms of controllability for TPUs: weak controllability (WC)
and dynamic controllability (DC). A TPU is said to be WC if, for every possible
evolution of the uncontrollable environment, there exists an allocation to the con-
trollable time points that fulfills the free constraints of the problem. This notion
is much weaker than SC, because the allocation strategy for the controllable time
points is allowed to depend on the allocation of the uncontrollable time points.
In this setting, the solver is assumed to be “clairvoyant” and is able to decide
its moves based on the past and also the future moves of the opponent. In their
seminal paper, Vidal and Fargier [36] also address the WC problem for the STPU
class. Algorithms for deciding WC for TCSPU and DTPU are provided by Ven-
able et al. [35]. The use of SMT techniques to deal with weak controllability has
been recently investigated [11], addressing both the decision and the strategy ex-
traction problems (i.e. the problem of checking if a TPU is WC, and the problem
of building a strategy for the solver). The work presented in this paper tackles a
radically different problem. An important difference between SC and WC is the
shape of the solution: while in SC a solution is a static assignment to controllable
time points, in WC the strategy requires conditional structures to be expressed.
Thus, the use of SMT techniques is also substantially different from what is done
here.

DC is similar to WC, but the choices of the scheduler can be based on past
environment decisions only. As pointed out by Fargier and Vidal [36], if a problem
is SC then it is also DC and if it is DC then it is also WC, but the implication
chain is not reversible. In Morris et al. [24], the authors focus on deciding DC for
the STPU problem class, while Venable et al. [35] extended the result for TCSPUs.
However, no effective solutions to DC exists for the DTPU problem class.

As far as the consistency problem is concerned, the state-of-the-art for STP is
the work by Planken et al. [30], which presents an efficient algorithm for computing
all-pairs shortest paths in a directed graph with possibly negative real weights.
The use of SMT techniques to solve the consistency problem has been explored
in [2], where the TSAT++ tool is presented. TSAT++ can be seen as a specialized
SMT solver for DTP problems. The work does not deal with strong controllability,
and is limited to consistency for temporal problems. The performance of TSAT++

relative to more modern SMT solvers is analyzed in the next section, on consistency
of temporal problems.

8 Experimental Evaluation

In this section, we experimentally evaluate our approach. We describe our im-
plementation (section 8.1), the experimental set-up (section 8.2), and the results
for consistency and for strong controllability (sections 8.3 and 8.4). Finally, in
section 8.5 we evaluate (our implementation of) the PVYS algorithm [29].

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 23

TP
Encoding

(näıve / Switch / Switch M.E. /
Hole)

SMT(QF LRA) SMT Solver for QF LRA
(Z3 / MathSAT4 / MathSAT5)

Encoding
(Direct / Offset / Distributed)

TPU

EFE Encoding
(Using Z3qe / M5fm / M5lw /

Static quantification)

SMT(LRA)

SMT(QF LRA)

SMT Solver for LRA
(Z3)

SMT Solver for QF LRA
(Z3 / MathSAT5)

Consistent or Inconsistent

Controllable or
Not-Controllable

Fig. 4 Graphical representation of the developed toolchain.

8.1 Implementation

We developed a tool that automatically encodes the various classes of temporal
problems as SMT problems. The tool, depicted in Figure 4, can deal with consis-
tency problems, by generating SMT (QF LRA) encodings (upper row), that can
then be solved by MathSAT4 [7], MathSAT5 [9] and Z3 [26].

For strong controllability problems, the tool has two flows. First, it imple-
ments the three encodings to quantified SMT (LRA), that are then solved by
Z3. Second, it generates quantifier-free SMT (QF LRA) encodings, by applying
eager quantifier elimination techniques. The quantifier elimination procedure in
the eager for-all elimination encoding is carried out by calling one of the following
procedures: the internal formula simplifier of Z3 [26] (denoted EFE Z3qe); Fourier-
Motzkin quantifier elimination (EFE M5fm), built on top of MathSAT5 [9]; and
the Loos-Weispfenning (EFE M5lw) procedure, also built on MathSAT5. The re-
sulting encodings are solved using Z3 and MathSAT5. Given that the encodings
are written in SMT-LIB2 [5] language, it would be straightforward to use any
modern SMT solver as a backend11. However, our purpose is to assess the encod-
ings we propose, and not to compare the various SMT solvers. Z3 can be seen
as a representative for solvers that support quantified theories, and MathSAT as
representative for quantifier-free solvers. We expect other solvers (e.g. Yices [15],
OpenSMT [8]) to exhibit a similar behavior. (See [4] for a recent summary on the
performances of current state-of-the-art solvers.)

8.2 Experimental set-up

We used a set of randomly-generated benchmarks. Consistency problems are gen-
erated using the random instance generator presented in [2]. Strong controllability
problems are generated by means of an extension of the same generator, where
uncertainty is randomly introduced: each constraint generated by the consistency
problem generator is turned in a contingent constraint with a given probability, and
its destination node is considered as uncontrollable. The benchmark set contains
2108 simple-natured instances for each problem class in TP without uncertainty
(STP, TCSP and DTP), and 1054 instances for each TPU class (STPU, TCSPU
and DTPU). We used random instance generators because they are typically used
in literature (e.g. [2]), and because they can be easily scaled to stress the solvers.

11 In fact, the tool can also generate the benchmarks also in SMT-LIB1 [31] format.

24 Alessandro Cimatti et al.

STP TCSP

0 500 1000 1500 2000

1
10

0
10

00
0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Floyd−Warshall
Bellmann−Ford
Johnson
Snowball3
P3C
TSAT++
Z3 naive
MathSAT4 naive
MathSAT5 naive

0 500 1000 1500 2000

1
10

0
10

00
0

of instances
C

um
ul

at
iv

e
tim

e
(s

ec
)

TSAT++ switch
TSAT++ hole
Z3 naive
Z3 switch
Z3 switch me
Z3 hole
MathSAT4 naive
MathSAT4 switch
MathSAT4 switch me
MathSAT4 hole
MathSAT5 naive
MathSAT5 switch
MathSAT5 switch me
MathSAT5 hole

DTP

0 500 1000 1500 2000

1
10

0
10

00
0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

TSAT++ switch
Z3 naive
Z3 switch
MathSAT4 naive
MathSAT4 switch
MathSAT5 naive
MathSAT5 switch

Fig. 5 Results for consistency experimental evaluation of STP (left-top), TCSP (right-top),
and DTP (bottom).

We performed all our experiments on a machine running Scientific Linux 6.0,
equipped with two quad-core Xeon processors @ 2.70GHz. We considered a mem-
ory limit of 2GB and a time-out of 300 seconds. The benchmarks and the results
are available from https://es.fbk.eu/people/roveri/tests/constraints2013.

8.3 Results for Consistency

For consistency problems, we analyzed the performance of the various SMT solvers
on the various encodings. We also compared our tool chain with the other available
solvers for TP without uncertainty, namely the Snowball3 [30] tool, that imple-
ments many algorithms for the case of STP (i.e Floyd-Warshall, Bellman-Ford,
Johnson and Snowball3), and TSAT++ [2], that is able to solve STP, TCSP and
DTP problems.

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 25

STPU TCSPU

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5fm
Z3 EFE M5lw
Z3 EFE Static
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw
MathSAT5 EFE Static

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0
of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5fm
Z3 EFE M5lw
Z3 EFE Static
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw
MathSAT5 EFE Static

DTPU

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5lw
Z3 EFE M5fm
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw

Fig. 6 Results for strong controllability experimental evaluation of STPU (left-top), TCSPU
(right-top) and DTPU (bottom).

The results for consistency problems are reported in Figure 5. The cactus plot
reports the number of solved instances in the horizontal axis and the cumulative
time for each approach in logarithmic scale on the vertical axis. For example,
MathSAT4 takes about 100 seconds to solve the easiest 500 STP instances. For
STP problems, we compared the näıve encoding with various algorithms avail-
able in the SnowBall3 [30] tool, and with TSAT++ [2]. (In the case of STP, the
other encodings coincide with the näıve encoding.) In TCSP and DTP, we tested
all the applicable encodings with all the SMT solvers under analysis and with
TSAT++. The plots show that the SMT approach is competitive with dedicated
techniques. MathSAT4 implements a dedicated algorithm for the theory of differ-
ence logic [12], and is thus faster than MathSAT5, that uses a general purpose
algorithm for LRA [16]. All solvers perform better on problems with Hole encod-
ing. This encoding produces a formula that has just one real variable for every
time point and has at most two literals per clause: this simplifies the SMT search
procedure by augmenting the number of unit propagations, and by reducing the

26 Alessandro Cimatti et al.

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

Z3 Distributed

Z
3

O
ffs

et

Controllable
Not Controllable

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

Z3 EFE Static

Z
3

D
is

tr
ib

ut
ed

Controllable
Not Controllable

Fig. 7 Scatter plots of TCSPU solving time benchmarks obtained using the Z3 solver. The
left plot shows the comparison of Offset and Distributed encodings, while the right plot
contrasts the Distributed and the Static Eager For-all Elimination encodings. Control-
lable instances are marked with blue × signs, while not controllable instances are marked with
red + signs.

STPU TCSPU DTPU

Z3 Direct

Z3 Offset

Z3 Distributed

Z3 EFE Z3qe

Z3 EFE M5fm

Z3 EFE M5lw

Z3 EFE Static

MathSAT5 EFE Z3qe

MathSAT5 EFE M5fm

MathSAT5 EFE M5lw

MathSAT5 EFE Static

Mean Time Percentage

0 20 40 60 80 10
0

Z3 Direct

Z3 Offset

Z3 Distributed

Z3 EFE Z3qe

Z3 EFE M5fm

Z3 EFE M5lw

Z3 EFE Static

MathSAT5 EFE Z3qe

MathSAT5 EFE M5fm

MathSAT5 EFE M5lw

MathSAT5 EFE Static

Mean Time Percentage

0 20 40 60 80 10
0

Z3 Direct

Z3 Offset

Z3 Distributed

Z3 EFE Z3qe

Z3 EFE M5lw

Z3 EFE M5fm

MathSAT5 EFE Z3qe

MathSAT5 EFE M5fm

MathSAT5 EFE M5lw

Mean Time Percentage

0 20 40 60 80 10
0

Fig. 8 Breakdown of computation time for the analyzed encodings for different classes of
TPU: encoding time percentage (in black); quantifier elimination time percentage (in gray);
solving time percentage (in white). In Eager For-all Elimination Static encodings the static
quantification and the encoding time are considered together.

size of the search space. TSAT++ is outperformed by the other (more modern)
SMT solvers.

8.4 Results for Strong Controllability

To the best of our knowledge, there are no available solvers for strong control-
lability problems. Thus, we evaluated the different approaches we presented, to
highlight the difference in performance and the respective merits. The results for
strong controllability are reported in Figure 6. We plotted in logarithmic scale the
cumulative time in seconds to solve the considered set of benchmarks. Differently
from the consistency case, the total time includes the encoding time, which may
be significant in the case of quantifier-free encodings.

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 27

The plots show that the Offset and Direct encodings quickly reach the re-
source limits, and are unable to solve all the instances. The behavior of the Dis-

tributed encoding is slightly better than the eager for-all elimination approaches.
The difference can be explained in purely technological terms: the quantifier elim-
ination modules are called via pipe in our implementation, while Z3, on the Dis-

tributed encoding, performs quantifier elimination “in-memory”.

We notice that the static quantification techniques (EFE Static), when appli-
cable (i.e. for STPU and simple-natured TCSPU), yield a substantial improvement
in performance: the expensive quantifier elimination step is avoided altogether.

In Figure 7, we report the scatter plots obtained comparing the performance
of the Offset and Distributed encodings, and the Distributed and the EFE

Static encodings using the Z3 solver. The plots show how the performances are
affected by the encoding, in fact the Offset encoding is unable to solve the most
complex instances. Moreover, we see that instances that are harder to solve are
the ones that are not strongly controllable for all the tested encodings. In order
to assess the real gap between the Offset and the Distributed encodings, we
isolated three TCSPU benchmarks in which the Offset encoding timed out, and
we tested them without time limits. Two benchmarks were solved in 1356.8 and
26353.2 seconds, while the third one was still running after 33249.8 seconds. This
shows that the logical rewriting performed in the Distributed encoding yields a
very significant performance improvement; in fact, the same benchmarks are solved
by the Distributed encoding in 1.6, 3.46, and 10.92 seconds respectively. In turn,
the static encoding yields a further speed-up (to 1.5, 3.02 and 9.12 seconds).

We also plotted the distribution of time consumption between encoding time,
quantifier elimination and solving time (Figure 8). The plots highlight the fact
that the quantification is the major issue in solving TPUs. The plot shows that the
encoding time is absolutely negligible when quantifier elimination is applied, in fact
the black part of the diagram is hardly visible. In EFE Static encodings we could
not distinguish the quantifier elimination time from the encoding time because
the elimination is performed together with the encoding. In approaches where the
quantification is demanded to the solver, the vast majority of time is in the SMT
solving, while in eager for-all elimination approaches the quantifier elimination
dominates the solving time. The relatively high encoding time of Distributed

encoding is mainly due to the time needed to printout the big output file in SMT-
LIB format.

8.5 Comparison with PVYS

In this section we compare our approach with the PVYS algorithm [29]. To the best
of our knowledge, no implementation is available. Therefore we implemented our
own version of PVYS. The tool is written in Python, and exploits the MathSAT

SMT solver to check the consistency of DTPs. The PVYS pseudo-code reported
in [29] includes steps to compute the minimal network, and to check the consistency
of DTPs constructed by the algorithm, but gives no details on how to push and
intersect constraints. Thus, we implemented the same operations using the SMT
technology.

28 Alessandro Cimatti et al.

The tool12 has been implemented in two variants. The first one directly follows
the original pseudo-code; the second one exploits the incrementality feature of the
MathSAT SMT solver, to gain more efficiency: instead of checking the consistency
of each problem separately, it reuses information derived from previous checks
whenever possible.

STPU TCSPU

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

PVYS
PVYS Incremental
Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5fm
Z3 EFE M5lw
Z3 EFE Static
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw
MathSAT5 EFE Static

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

PVYS
PVYS Incremental
Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5fm
Z3 EFE M5lw
Z3 EFE Static
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw
MathSAT5 EFE Static

DTPU

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

of instances

C
um

ul
at

iv
e

tim
e

(s
ec

)

PVYS
PVYS Incremental
Z3 Direct
Z3 Offset
Z3 Distributed
Z3 EFE Z3qe
Z3 EFE M5lw
Z3 EFE M5fm
MathSAT5 EFE Z3qe
MathSAT5 EFE M5fm
MathSAT5 EFE M5lw

Fig. 9 Results for strong controllability using the PVYS implementation for the different
classes of problems: STPU (left-top), TCSPU (right-top) and DTPU (bottom).

In Figure 9, we overlay the results achieved by PVYS in the same experimental
conditions of Figure 6. In the STPU problem class, the results of PVYS are com-
parable to the SMT-based approaches. This is expected, because the implementa-
tion of PVYS uses the same SMT-based calls to FargierVidal. In the disjunctive
cases, PVYS performs dramatically worse than the SMT-based approaches, due to
the enumerative treatment of disjunctions. Finally, we notice that incrementality
improves the performance to some extent.

12 The tool is available for download from https://es.fbk.eu/people/roveri/tests/
constraints2013.

Solving Strong Controllability of Temporal Problems with Uncertainty using SMT? 29

9 Conclusions

In this paper, we presented a comprehensive approach to strong controllability
for temporal problems with uncertainty. We considered the most complete class
of problems, namely the DTPU class. We formalized the problem in the SMT
framework by means of a number of encodings for the general case, and we also
developed specialized approaches for the TCSPU subclass of problems. In our work
we leveraged logic-based quantifier-elimination techniques to deal with temporal
uncertainty. Our experiments demonstrate the scalability of the approach, based
on the use of efficient SMT solvers.

In the future, we will investigate the problem of searching schedules that opti-
mize a given cost function, and the addition of constraints over resources associated
to activities. In addition, we will study the possibility of extending the DTPU for-
malism to model interdependence between contingent constraints. In fact, it is
currently impossible to model assumptions (contingent constraints) involving dif-
ferent uncontrollable time-points. We believe that this extension can be trivially
handled by our encodings as it amounts to additional constraints in Γ (~Yu). Fi-
nally, within the SMT-based framework, we will investigate the case of dynamic
controllability.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communication of the ACM
26(11), 832–843 (1983)

2. Armando, A., Castellini, C., Giunchiglia, E.: SAT-Based Procedures for Temporal Rea-
soning. In: S. Biundo, M. Fox (eds.) European Conference on Planning - ECP, LNCS, vol.
1809, pp. 97–108. Springer (1999)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software
systems. Science of Computer Programming 72(1–2), 3–21 (2008)

4. Barrett, C., Deters, M., Moura, L., Oliveras, A., Stump, A.: 6 Years of SMT-COMP.
Journal of Automated Reasoning 50, 243–277 (2013)

5. Barrett, C., Stump, A., Tinelli, C., Boehme, S., Cok, D., Deharbe, D., Dutertre, B.,
Fontaine, P., Ganesh, V., Griggio, A., Grundy, J., Jackson, P., Oliveras, A., Krsti, S.,
Moskal, M., Moura, L.D., Sebastiani, R., Cok, T.D., Hoenicke, J.: The smt-lib standard:
Version 2.0. Tech. rep. (2010)

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In:
Handbook of Satisfiability, pp. 825–885. IOS Press (2009)

7. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4
SMT solver. In: A. Gupta, S. Malik (eds.) Computer Aided Verification - CAV, LNCS,
vol. 5123, pp. 299–303. Springer (2008)

8. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In: J. Es-
parza, R. Majumdar (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - TACAS, LNCS, vol. 6015, pp. 150–153. Springer (2010)

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In:
Tools and Algorithms for the Construction and Analysis of Systems - TACAS (2013)

10. Cimatti, A., Micheli, A., Roveri, M.: Solving temporal problems using smt: Strong con-
trollability. In: CP, pp. 248–264 (2012)

11. Cimatti, A., Micheli, A., Roveri, M.: Solving Temporal Problems using SMT: Weak Con-
trollability. In: J. Hoffmann, B. Selman (eds.) American Association for Artificial Intelli-
gence - AAAI. AAAI Press (2012)

12. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for dpll(t). In:
A. Biere, C.P. Gomes (eds.) Theory and Applications of Satisfiability Testing - SAT,
LNCS, vol. 4121, pp. 170–183. Springer (2006)

30 Alessandro Cimatti et al.

13. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-
munications of ACM 5(7), 394–397 (1962)

14. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1-3), 61–95
(1991)

15. Dutertre, B., de Moura, L.: The Yices SMT solver. Tool paper at http://yices.csl.sri.
com/tool-paper.pdf (2006)

16. Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In: T. Ball,
R.B. Jones (eds.) Computer Aided Verification - CAV, LNCS, vol. 4144, pp. 81–94.
Springer (2006)

17. Franzén, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT in symbolic
execution of microcode. In: R. Bloem, N. Sharygina (eds.) Formal Methods in Computer-
Aided Design - FMCAD, pp. 121–128. IEEE (2010)

18. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: Network
and Distributed System Security Symposium - NDSS. The Internet Society (2008)

19. Hunsberger, L.: A fast incremental algorithm for managing the execution of dynamically
controllable temporal networks. In: TIME, pp. 121–128 (2010)

20. Keßler, C.W.: Parallel fourier-motzkin elimination. In: Euro-Par, Vol. II, pp. 66–71 (1996)
21. Kleene, S.: Mathematical Logic. J. Wiley & Sons (1967)
22. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Computer Journal

36(5), 450–462 (1993)
23. Monniaux, D.: A Quantifier Elimination Algorithm for Linear Real Arithmetic. In:

I. Cervesato, H. Veith, A. Voronkov (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning - LPAR, LNCS, vol. 5330, pp. 243–257. Springer (2008)

24. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncer-
tainty. In: B. Nebel (ed.) International Joint Conference on Artificial Intelligence - IJCAI,
pp. 494–502. Morgan Kaufmann (2001)

25. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: Design Automation Conference - DAC, pp. 530–535. ACM Press,
New York, NY, USA (2001)

26. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: C.R. Ramakrishnan,
J. Rehof (eds.) Tools and Algorithms for the Construction and Analysis of Systems -
TACAS, LNCS, vol. 4963, pp. 337–340. Springer (2008)

27. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.: Remote agent: To boldly go where
no ai system has gone before. Artificial Intelligence 103(1-2), 5–47 (1998)

28. Niemelä, I.: Integrating Answer Set Programming and Satisfiability Modulo Theories. In:
E. Erdem, F. Lin, T. Schaub (eds.) Logic Programming and Nonmonotonic Reasoning,
10th International Conference - LPNMR, LNCS, vol. 5753, p. 3. Springer (2009)

29. Peintner, B., Venable, K.B., Yorke-Smith, N.: Strong controllability of disjunctive temporal
problems with uncertainty. In: C. Bessiere (ed.) Principles and Practice of Constraint
Programming - CP, LNCS, vol. 4741, pp. 856–863. Springer (2007)

30. Planken, L., de Weerdt, M., van der Krogt, R.: Computing all-pairs shortest paths by
leveraging low treewidth. Journal of Artificial Intelligence Research (JAIR) 43, 353–388
(2012)

31. Ranise, S., Loria, Tinelli, C.: The smt-lib standard: Version 1.2. Tech. rep. (2006)
32. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons (1998)
33. de la Tour, T.: Minimizing the number of clauses by renaming. In: M. Stickel (ed.)

Conference on Automated Deduction - CADE, LNCS, vol. 449, pp. 558–572. Springer
(1990)

34. Tsamardinos, I., Pollack, M.E.: Efficient solution techniques for disjunctive temporal rea-
soning problems. Artificial Intelligence 151(12), 43 – 89 (2003)

35. Venable, K.B., Volpato, M., Peintner, B., Yorke-Smith, N.: Weak and dynamic controlla-
bility of temporal problems with disjunctions and uncertainty. In: Workshop on Constraint
Satisfaction Techniques for Planning & Scheduling, pp. 50–59 (2010)

36. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from con-
sistency to controllabilities. Journal of Experimental Theoretical Artificial Intelligence
11(1), 23–45 (1999)

37. Wilde, D.K.: A library for doing polyhedral operations. Tech. rep. (1993)

