
IEEE ROBOTICS & AUTOMATION MAGAZINE MARCH 2024 1070-9932/24©2024IEEE72

Robots are increasingly used in subsea environments because
of their positive impact on human safety and operational capa-
bilities in the deep ocean. However, achieving full autonomy
remains challenging because of the extreme conditions they
encounter. In this context, we propose an autonomous under-
water architecture for long-term deep-ocean inspection that
robustly plans activities and efficiently deliberates with no
human help. It combines the innovative Saipem’s Hydrone-R
subsea vehicle with an advanced planning architecture, result-
ing in a robot that autonomously perceives its surroundings,
plans a mission, and adapts in real time to contingencies and
opportunities. After describing the robot hardware, we present
the technological advancements achieved in building its soft-
ware, along with several compelling use cases. We explore
scenarios where the robot conducts long-term underwater mis-
sions operating under resource constraints while remaining

responsive to opportunities, such as new inspection points.
Our solution gained significant reliability and acceptance
within the oil and gas community as evidenced by its current
deployment on a real field in Norway.

INTRODUCTION
Subsea pipelines play a crucial role in carrying oil and gas:
any damage or malfunction can result in significant environ-
mental and financial repercussions. Consequently, regular
inspections are essential to guarantee the assets’ integrity.
These inspections can include internal checks conducted by
intelligent pegs and crawling robots or external examinations
utilizing electromagnetic, radiographic, acoustic, and fiber-optic
sensors [1]. In this article, we focus on external inspection and
aim to address the needs of asset owners and operators to opti-
mize procedures and offer adaptable technologies.

Unmanned underwater vehicles are pivotal in this regard
as they can operate for an extended duration in deep waters,
surpassing the depths reachable by human divers. Their usage

An Autonomous Underwater Architecture

Opportunistic
(Re)planning
for Long-Term
Deep-Ocean
Inspection

By Elisa Tosello , Paolo Bonel, Alberto Buranello,
Marco Carraro , Alessandro Cimatti , Lorenzo Granelli,
Stefan Panjkovic , and Andrea Micheli

Digital Object Identifier 10.1109/MRA.2024.3352810
Date of current version: 6 February 2024

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

This is a pre-print version of the homonymous paper appearing in IEEE Robotics Automation Magazine 2024.
Copyright (c) 2024 belongs to IEEE.

https://orcid.org/0000-0003-4692-4279
https://orcid.org/0000-0003-3278-0091
https://orcid.org/0000-0002-1315-6990
https://orcid.org/0009-0000-5325-6745
https://orcid.org/0000-0002-6370-1061

73MARCH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

is independent of the field, and they can promptly react to
changes in the setup or assignment. We distinguish remotely
operated vehicles (ROVs), which rely on remote control by
pilots and require connections to supporting vessels for con-
tinuous power supply, and autonomous underwater vehicles
(AUVs), which instead operate autonomously. AUVs are
particularly compelling for our specific application as they
enhance efficiency and safety by minimizing human involve-
ment in demanding and high-risk tasks. Additionally, they
help energy companies in reducing their ecological footprint.

For optimal task performance, AUVs must exhibit delib-
erate behavior. Deliberation involves undertaking actions
driven by specific objectives backed by rational reasoning
aligned with these objectives [2]. For instance, this capabil-
ity allows a vehicle to dynamically monitor the available
resources, like the battery level, and optimize their consump-
tion. It enables the robot to be aware of its surroundings and
adjust its parameters according to environmental changes,
e.g., minimizing trajectory deviation while navigating. It

guarantees the system to make informative decisions when
handling unforeseen events.

We propose a hardware and software architecture that
enables deliberative deep-sea inspection for extended peri-
ods. The robot is Saipem’s Hydrone-R: a drone equipped with
innovative hardware designed to withstand the extreme condi-
tions of the deep ocean and make the system a subsea resident
(see Figure 1). Indeed, Hydrone-R has been operating autono-
mously for more than 200 days (since June 2023) on a real
offshore oil and gas field in Norway—the goal is to achieve
10 years of service (see https://www.saipem.com/en/
projects/hydrone-njord-field-development). It is equipped
with a range of specialized sensors, computing power,
advanced control systems, and artificial intelligence (AI)-
driven navigation and inspection modules that leverage fea-
ture recognition. Such components empower the robot with
the ability to autonomously perceive its surroundings, detect
pipelines, precisely localize itself, and accurately estimate its
internal state. We put on board a task planner that effectively

©
S

H
U

T
T

E
R

S
TO

C
K

.C
O

M
/C

R
Y

S
TA

L
E

Y
E

 S
T

U
D

IO

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

https://www.saipem.com/en/projects/hydrone-njord-field-development
https://www.saipem.com/en/projects/hydrone-njord-field-development
http://www.SHUTTERSTOCK.COM

IEEE ROBOTICS & AUTOMATION MAGAZINE MARCH 202474

utilizes this information to plan safe inspection missions
while adhering to resource constraints. An Orchestrator man-
ages the mission and triggers replanning in real time in case of
contingencies, e.g., an unexpected decrease in available bat-
tery charge, and emerging opportunities, e.g., the inspection
of not previously considered locations (see Figure 2). We per-
form planning via the Unified Planning (UP)
library (available at https://github.com/aipla-
n4eu/unified-planning): the Python3 open
source library developed by the AIPlan4EU
project (see https://www.aiplan4eu-project.
eu/). It allows users to model and manipulate
classical, numerical, and temporal assign-
ments [3] to the point of solving complex
problems, such as multiagent and task and
motion planning ones. In our case, we exploit
the UP library to enable Hydrone-R in plan-
ning and optimizing numerical and temporal
missions. This includes managing resource
constraints, prioritizing targets, and defining
ordering rules among the goals. These fea-
tures promote the vehicle’s long-term stay in
the deep ocean.

The rest of the article is organized as
follows. In the next section, we summarize
related work. In the section “The Underwa-
ter Vehicle,” we present the robot hardware,
and in the section “Problem Formulation,”
we define the planning problem arising from
autonomous deep-sea inspection. We describe the UP library,
the planning architecture, and the methods implemented to
handle contingencies and new opportunities in the sections
“The UP Library,” “Our Advanced Planning Architecture,”
and “Handling Contingencies and Opportunities,” respective-
ly. In the section “Experimental Experience,” we present our
ongoing experimental experience. Finally, we draw some con-
clusions and discuss future work in the section “Conclusions.”

THE STATE OF THE ART
The number of available AUVs is continually increasing.
Among others, KM’s HUGIN robot [4], although a general-

purpose AUV, has proven effective in subsea pipeline inspec-
tion, even if its torpedo shape necessitates constant forward
motion. On the other hand, Saab’s Seaeye Sabertooth [5] and
the Girona 500 [6] are purpose-built for asset inspection, with
the latter tailor-made and widely employed in academic proj-
ects. However, they lack true autonomy, missing the capabili-

ty to dynamically adjust missions in real time
to face unexpected or changed conditions.
Moreover, they cannot be subsea residents for
long periods (months or years). Our goal is to
equip our robot with both capabilities.
Indeed, full autonomy and subsea residency
minimize reliance on support vessels, boost-
ing safety, reducing offshore personnel needs,
and cutting the carbon footprint.

In this context, Saipem started developing
underwater robots back in 2015. Its Hydrone
family currently consists of three main vehi-
cles: Hydrone-W, FlatFish, and Hydrone-R.
They share the whole control system (pro-
prietary and internally developed) and most
of the algorithms but are tailored to answer
to specific offshore energy needs. Hydrone-
W is a fully electric ROV integrated with
autonomous capabilities designed only
to assist human pilots when operating in
extremely demanding conditions. FlatFish is
a survey vehicle able to perform long fully
autonomous missions. Finally, Hydrone-R

is both a ROV and an AUV. It can be teleoperated, or it
can autonomously track and follow pipelines, inspect ris-
ers, and accomplish complicated survey patterns and visual
inspections. Most of all, it is proving to be a subsea resi-
dent: it has been operating in Norwegian waters for more
than 200 days, intending to stay in the water for 10 years.

Along with cutting-edge hardware, we aim to give the robot
decision-making and managerial skills that allow it to act
deliberately and truly autonomously. In this sense, Albiez et al.
utilize behavior-based methods to manage the tasks and a plan
manager to control the deployment, activation, and deactivation
of the behaviors to maintain progress, enable AUVs to fulfill
the missions, and handle underinformed situations [7]. In [8],
the authors compose deliberative and reactive layers that oper-
ate concurrently and exchange feedback on the environmental
conditions, goals, plans, and situations. The former manages
the execution of scheduled tasks, while the latter manages real-
time reactions to critical events. In [9], Cashmore et al. consider
AUV assignments where opportunities to achieve additional
utility can arise during execution. The authors frame the mis-
sions as temporal planning problems, treating the opportuni-
ties as soft goals with high utility. These goals are dynamically
addressed as they arise, while ensuring the achievement of the
problem’s hard goals. Finally, [10] proposes a fully automated
task allocation algorithm for AUVs that optimizes mission
planning for threat detection. The task assignment problem is
modeled as a traveling salesman problem with distinct start and

FIGURE 1. The Saipem Hydrone-R AUV.

AUVS ARE
PARTICULARLY

COMPELLING FOR
OUR SPECIFIC

APPLICATION AS
THEY ENHANCE

EFFICIENCY
AND SAFETY

BY MINIMIZING
HUMAN

INVOLVEMENT IN
DEMANDING AND
HIGH-RISK TASKS.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

https://github.com/aiplan4eu/unified-planning
https://github.com/aiplan4eu/unified-planning
https://www.aiplan4eu-project.eu/
https://www.aiplan4eu-project.eu/

75MARCH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

end points. The authors optimize the total sailing distance and
AUV turning angle while traversing threat points in a specific
order, considering constraints like the minimum radius of turn
and speed. The problem is solved using an improved ant colony
optimization algorithm with fuzzy logic and dynamic phero-
mone volatilization.

In contrast to existing approaches, our planning archi-
tecture gives generality to the problem addressed, allowing
the robot to solve planning problems of different types—
numerical and temporal—thanks to the exploitation of the
UP library developed by AIPlan4EU. Our goal definition
allows us to assign resource constraints to each mission, like
restrictions on the residual battery, time allocation, and disk
space usage. Moreover, we can sort the inspection targets in
sequences, temporally concatenate them, or arrange them in a
partial order fashion, facilitating the incorporation of optional
goals and the definition of a custom priority hierarchy among
them. Finally, we can replan in case of new opportunities and
contingencies via a close interaction between the UP library

and the robot’s Orchestrator. Such a system can operate across
the entire Saipem Hydrone family, with its maximum utility
being demonstrated when deployed on Hydrone-R.

THE UNDERWATER VEHICLE
In this section, we introduce Hydrone-R and the tools that
enable it to support our planning module and act deliberately.

Hydrone-R serves as both a ROV and an AUV, capable
of either teleoperation or autonomous functioning. It can
track and inspect pipelines and risers and accomplish com-
plicated survey tasks. A detailed description of its compo-
nents follows.

• Optical communication. An optical modem enables
wireless control of the vehicle from its docking station or
locations where operators need to receive real-time feedback.

• Acoustic communication. A low-bandwidth, long-range
acoustic modem enables operators to receive diagnostic data

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIGURE 2. An overview of autonomous robotic pipeline inspection: Hydrone-R (a) plans the mission, (b) leaves its dock station, and
(c) starts inspecting. (d) While surveying a cluster, it detects an anomaly in another cluster and (e) adapts on the fly its plan (f) to
include the new location (g) The robot inspects the pipeline until its battery enforces (h) returning to the recharge station.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE MARCH 202476

and send task updates to the robot during
missions. It also works as an ultrashort
baseline positioning system.

• Advanced underwater vision system.
Hydrone-R mounts two frontal cameras and
one bottom camera used in conjunction with a
laser projector to generate 3D point clouds.
Lights maximize scene illumination and
improve robot visibi l ity. The system
enables pipeline tracking and following by
recognizing structures and markers and
providing position data. It can detect and
avoid obstacles and catch anomalies.

• Sonars. In subsea environments, light
propagation is limited, and water particles
make vision effective only within a few
meters of the robot. Long-range-view sonars become
mandatory. Hydrone-R is equipped with a frontal
multibeam imaging sonar (an acoustic camera) and a top-
mounted mechanical scanning imaging sonar that ensures a
360° field of view to enhance situational awareness around
the vehicle.

• Advanced navigation system. Hydrone-R has an inertial
measurement unit sensor that combines optical fiber
gyroscopes and solid-state accelerometers aided, through
data fusion algorithms, by a Doppler velocity logger, an
ultrashort baseline, and the aforementioned vision system.
The system limits the navigation error to less than 0.05% of
the traveled distance.

• Internal computational power and storage resources.
Computing systems host sufficient power and storage
resources for the robot to safely carry out assigned missions.

• Manipulators. Hydrone-R is equipped with a light
manipulator and a grabber. At the time of writing,
manipulation operations are performed in a teleoperated
fashion.

• Integrated Tether Management System. To work in
ROV mode, a tether and a tether management system provide
real-time data exchange and battery-charging power when
connected to the host base of the subsea system. The robot
can connect to multiple bases, according to mission needs.

• Skid integration and vehicle capabilities extension.
A skid is a set of sensors and electronics that one can
attach to the bottom of the vehicle to extend its capa-
bilities. Data and power flows occur through the use of
inductive connectors.

• Inductive connectors. To connect and disconnect
tethers and skids, we use an inductive connector offering

up to a 100-MB/s data exchange bit rate and
2 kW of electrical power for charging. This
contactless connector allows significantly
more mating cycles compared to wet-
mateable connectors.

PROBLEM FORMULATION
To autonomously accomplish pipeline inspec-
tion, Hydrone-R must compute the sequence
of actions required to achieve the goal while
effectively managing the available resources
and minimizing makespan. If new opportuni-
ties or contingencies occur during execution,
e.g., a new cluster needs to be examined or
the battery level drops unexpectedly, the robot
replans to maximize the final outcome while
preserving its safety; e.g., it may decide to
return to the dock station (see Figure 2).

We define this problem as an automated planning problem,
where automated planning is a branch of AI that, given a model
of a system (the robot and its capabilities) and a goal to reach
(inspection of a set of locations), finds a course of actions to
drive the system from its current state to the target. When state
variables include only rational numerical values, like the battery
level, the problem to be solved is a numeric planning problem.

DEFINITION 1
A numeric problem W is a tuple , , , ,V I A GG H where the fol-
lowing hold.

 ■ { , .., }V f fn1= is a finite set of variables (or fluents) ,f V!
each with a domain () .Dom f

 ■ I is the initial state, which assigns a value () ()I f Dom f!
to each variable .f V!

 ■ A is a set of actions ,a P E A!G H= such that
 • P is a set of preconditions, each being a combination of
atoms of the form ,f vA with { , , , , },1 2A # $= =

,f V! and () .v Dom f!

 • E is a set of instantaneous effects of the form = ,f v:
with f V! and () .v Dom f!

 ■ G is the set of goal conditions, each being a combination
of atoms of the form ,f v= with f V! and () .v Dom f!

A plan r that solves W is a sequence of actions { , , }aa m0 f
that brings the system from I to G by linking the effects of ai
with the preconditions of .ai 1+

When including timed goals, time constraints, or durative
actions, we enter the field of temporal planning.

DEFINITION 2
A temporal planning problem U is a tuple , , , , ,V T I A GG H
where

 ■ V, I, and G are defined as before.
 ■ T is a set of timed initial literals, each of the form

[]t f vG H=: where ,f V! (),v Dom f! and t R 0! 2 is
the time at which f will be assigned the value .v

 ■ A is the set of actions [,], , ,a l u C EG H= where [,]l u are
the duration bounds, C is the set of conditions, each one

WE CAN REPLAN
IN CASE OF NEW
OPPORTUNITIES

AND CONTINGEN-
CIES VIA A CLOSE

INTERACTION
BETWEEN THE UP
LIBRARY AND THE
ROBOT’S ORCHES-

TRATOR.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

77MARCH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

with start and end points, and E is the set
of effects, each one becoming true at cer-
tain time instants [3].
r that solves U is a sequence { , , },t a dG H

where a is paired with a start time instant
t R 0! $ and a duration .d R 0! 2

We aim to solve both W and U in the con-
text of subsea pipeline inspection. Moreover,
the robot must autonomously decide which
location to inspect based on its significance
and available resources. The goal becomes

,G G Gh s,= where Gh is the set of hard
goals that must be achieved in any goal state.

,Gs instead, is the set of soft goals , ()g c gs sG H
that the system may achieve: for each ,g Gs s!
there exists a cost ()c g Rs 0! 2 to be paid if
gs is not achieved by .r The problem becomes
a planning problem with oversubscription [11].
Finally, we allow the defining of an order-
ing rule ..o g gi j1 1= among the goals in
G so as to prioritize inspection points. Our
goal becomes to find r that complies with
o, achieves all of the hard goals, and pays the
minimum cost () () .minc c gsr = /

In this context, a new opportunity (e.g., inspection of a new
cluster) is a soft goal , ()g c gs sG H created at runtime by an event

:[]E t f vG H= = (i.e., an action effect or external occurrence),
which instantiates a fluent f V! via ()v Dom f! [12]. The
problem becomes an opportunistic planning problem with
oversubscription , ,A GG HW l l (or , ,),A GG HU l l where A A!l
is the subset of actions that are preemptable and Gl is the set
of new opportunities. If an opportunity is discovered, the ini-
tial state I is updated, and replanning is triggered. Being in a
nondeterministic world, contingencies result in the same pro-
cedure, and Al collects the set of actions that are preemptible
to handle both opportunities and contingencies.

In the following sections, we present the planning library
used to solve the problem and the planning architecture imple-
mented to find r and monitor its execution.

THE UP LIBRARY
To provide our robot with autonomous decision-making capabil-
ities, we adopted the UP library (https://github.com/aiplan4eu/
unified-planning). The UP library is open source, reusable,
and planner agnostic. It allows one to easily model, manipu-
late, and solve several planning problems, including classical,
numerical, and temporal assignments, multiagent tasks, and
task and motion planning. The UP library is part of AIPla-
n4EU (https://www.aiplan4eu-project.eu/), an H2020 project
that aims to enhance accessibility, reuse, and integration of
planning algorithms and data.

The library’s application programming interfaces (APIs)
provide users with the capability to model planning prob-
lems manually, parsing a formal language (e.g., PDDL [13]
or ANML [14]), exploiting the interoperability interfaces
with other frameworks (e.g., Tarski [15]), or mixing such

approaches. It allows users to guide the plan
search via custom heuristics, which provide
functions to evaluate the goodness of a given
state. It supports the specification of quality
metrics to impose optimization criteria. For
example, users can minimize the number of
steps in the resulting plans or the action cost. It
allows them to define optional goals, each with
an associated cost that is paid if the goal is not
achieved by the plan (oversubscription). Once
all specifications have been outlined, the UP
library passes them to the connected planning
engines via operation modes. Each planning
engine solves a specific planning problem
(e.g., numerical, temporal, etc.), and each
operation mode offers an abstract interface to
such engines and gives access to some of their
functionalities. The simplest operation mode
is OneshotPlanner, which allows an engine
to be used as a one-time plan generator. We
also provide ways to validate a plan, simulate
it (with associated resource consumption), or
trigger a replanning routine.

Such capabilities make the UP library
suitable to solve planning problems across diverse domains,
like autonomous ocean inspection. In the next section, we
detail its usage in this regard.

OUR ADVANCED PLANNING ARCHITECTURE
To grant our robot autonomous deliberation, we designed a
new goal-specification grammar. Then, we developed a plan-
ning architecture that takes goals as input, retrieves the avail-
able resources, plans the mission, and imprints the robot with
the commands needed to execute it.

The grammar allows one to represent a set of goals to
be reached (see Figure 3). Each <single_goal> asks to
reach an <expression> def ined as an internal state
of the system (e.g., “switch from ROV to AUV”) or a condition
of the environment in which it operates (e.g., “valve 1 must be
closed”). Each target can be equipped with a set of resources
(while <expression>) or time (within <interval>) con-
straints that must be observed while achieving it. For instance,
we can limit the battery usage and makespan. Goals can
be structured in sequences (each goal has a unique <id>),
ordered (<ord_constrs> }= <id> < <id>), and con-
catenated (<ord_constrs> and <ord_constrs>).
This flexibility empowers the incorporation of optional goals
(optionally) and the definition of a custom priority hierarchy
among them (optionally with priority <number>). For
instance, we can ask the robot to “reach valve1-closed within
[0, 30] while battery $ 50”, which means finding a plan to
reach valve1-closed within 30 min, always maintaining the
battery level above 50%. The optionally keyword marks desir-
able goals that are not mandatory: “optionally reach valve2-
photographed” specifies a desire to take a picture of valve2,
but if this is not possible, the mission will be satisfied anyway.

TO AUTONOMOUSLY
ACCOMPLISH PIPE-
LINE INSPECTION,
HYDRONE-R MUST
COMPUTE THE SE-
QUENCE OF AC-
TIONS REQUIRED
TO ACHIEVE THE
GOAL WHILE EF-
FECTIVELY MAN-

AGING THE AVAIL-
ABLE RESOURCES
AND MINIMIZING

MAKESPAN.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

https://github.com/aiplan4eu/unified-planning
https://github.com/aiplan4eu/unified-planning
https://www.aiplan4eu-project.eu/

IEEE ROBOTICS & AUTOMATION MAGAZINE MARCH 202478

Given a set of goals, we implemented an Online (Re)planner
and an Orchestrator that cooperate to successfully reach them
(see Figure 4). The former models the planning problem via
Problem Encoder, finds a plan through the UP library, and sends
it to the robot via Solution Decoder (see Algorithm 1). The lat-

ter manages the execution, monitors the robot state, and handles
unforeseen situations by triggering safety operations or asking
for replanning in real time. A description of each component of
the Online (Re)planner follows, while the next section describes
the ability of the Orchestrator to handle unforeseen events.

UP
Library

Solution
Decoder

Online (Re)planner

Problem Encoder

Domain
Encoder

Goal Semantic Scene Vehicle Model,
Specifications, ...

Technology-Specific Bridge

Request to (re)plan

Mission
Plan

Online Request-Replay (gRPC)

One-Time Communication

Orchestrator

Monitoring

State Estimator

Abnormal
Condition(s)

Vehicle
State

Lower Levels

Execute
This Mission
Line

Plan
Exec

FIGURE 4. Our software architecture. The Online (Re)planner takes as input the robot model, its current state, the scene, and the goal.
It combines these data and models the planning problem via Problem Encoder, finds a plan through the UP library, and sends it to
the Orchestrator via Solution Decoder. The Orchestrator sends the plan to the lower levels, manages its execution, monitors the robot
state via State Estimator, and eventually asks for replanning in real time.

<opt> ::= <none>
| optionally
| optionally with priority <number>

<single_goal> ::= reach <expression>
| reach <expression> within <interval>
| reach <expression> while <expression>
| reach <expression> within <interval> while <expression>

<opt_single_goal> ::= <opt> <single_goal>
<goals_sequence> ::= <opt_single_goal>

| <opt_single_goal> ; goals_sequence
<id_goals_sequences> ::= <id> : <opt_single_goal>

| <id> : <opt_single_goal> ; <id_goals_sequence>
<ord_constrs> ::= <id> < <id>

| <ord_constrs> and <ord_constrs>
<goal_deordering> ::= <id_goals_sequences> ; <ord_constrs>
<goal_spec> ::= <goal_deordering>

| <goals_sequence>

FIGURE 3. Our goal grammar. It allows the users to represent a set of objectives defined as internal states of the system or conditions
of the environment. Each goal can be equipped with resource and time constraints. We can apply ordering, optionality, and prior-
ity rules among goals. For example, “reach valve1-closed within [0, 30] while battery ≥ 50” asks to close valve1 within 30 min while
keeping the battery level above 50%. “optionally reach valve2-photographed” specifies a desire to take a picture of valve2, but if this
task is unfeasible, the mission will be satisfied anyway.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

79MARCH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

STATE ESTIMATOR
The State Estimator retrieves the current state of the robot,
that is, its current pose p, the available resources R (e.g., bat-
tery charge), and the goals G already visited (line 4). <p, R>
forms the initial state I of the system (line 5). Together with

,G they will be updated at each step of the mission.

PROBLEM ENCODER
The Encoder takes as input the initial state I, the current
goal G, and the robot specifications, i.e., the logical and
temporal expressions representing the set of actions A that
the AUV can perform, like moving from a start location s
to a goal g. It combines this information with the set of flu-
ents V needed for the problem (e.g., variables representing
the resources under consideration) and—eventually—the
timed initial literals T. Then, it models the problem U (or

)W using the UP library API (line 6). It sends U to the UP
library and waits for a plan ,r if one exists (line 7). Once
received, the Encoder decorates r with check events that
aim to verify whether the real value of a resource aligns
with the one estimated via the UP library’s Simulator for
the corresponding time instant. This approach ensures the
identification of any deviation and promptly triggers
replanning in case of unforeseen events. In case of numeric
planning, r is an ordered sequence of actions, and we can
add checkpoints at the end of each of them. When consid-
ering time, instead, actions may overlap: we must first
transform r into an ordered list of events (the effects of the
actions), wherein the order reflects the time instants at
which these events are scheduled. We enrich this list with
the checkpoints and transform it back into a plan (lines
9–19). The Encoder sends the decorated plan rl to the
Solution Decoder for its translation into a robot-compliant
mission .t If the Orchestrator triggers a replan request
while executing ,t the Encoder retrieves the new initial
state I, the available opportunities G’, and the goals G
already achieved, and it sends these data to the UP library
asking for replanning.

UP LIBRARY
When the UP library receives a problem to be solved, it
calls OneshotPlanner to solve it—with Oversubscription in
case of optionality between goals (line 7 with mode = One-
shotPlanner). In the case of unforeseen events, instead, the
UP library triggers Replanner, which updates the initial
state of the robot and the goals to be reached according to
the current situation and tries to solve the new problem
(lines 22–27). In the case of numeric planning, Oneshot-
Planner solves the problem via Expressive Numeric Heuris-
tic Search Planner (ENHSP) [16]. When including time, we
use Tamer [3].

SOLUTION DECODER
If r exists, the Decoder translates it into a robot-compli-
ant mission t (line 20) and sends it to the Orchestrator
(line 21).

ORCHESTRATOR
This block consists of a Plan Executor, executing the mission,
and a Monitor, retrieving and monitoring the vehicle state. If
contingencies or new opportunities occur and affect either the
vehicle state or the mission success, the Orchestrator pre-
empts the execution of the current assignment in real time,
sends the useful information to the Problem Encoder, and
allows it to online replan (lines 22–32).

Our planning architecture is hosted on board the robot
to increase its level of autonomy, guarantee real-time
responsiveness, and ensure the proper condition of the robot
despite the unpredictable and nondeterministic nature of the
deep ocean.

HANDLING CONTINGENCIES AND OPPORTUNITIES
Failures result from accidents, such as instrument faults,
and require the immediate stop of the vehicle. If we are
not to lose it at sea, we must abandon the mission and

 1 connect StateEstimator
 2 connect Orchestrator
 3 procedure Replan(V, T, A, G, G’, mode)
 4 p, R, G ! StateEstimator. getCurrentState()
 5 ,p RI !1 2
 6 , , , ,V I T A G!1 2U

 7 !r Planner.solve(,U mode)
 8 if None!r then
 9 E’ ! []
10 E ! getEvents()r
11 for each e ! E do
12 E’.push(e)
13 I ! Simulator.apply(I,e)
14 for each r R! do
15 v .I! getValue (r)
16 E’.push(check(r, v))
17 end for
18 end for
19 !rl getPlan(E’)
20 !t decode()rl
21 out ! Orchestrator.startMission()t
22 if out == replan then
23 if replan == contingency then
24 return Replan(V, T, A, G - ,G G’, replanner)
25 else if replan == opportunity then
26 return Replan(V, T, A, G - G + G’, ,4 replanner)
27 end if
28 else if out == success then
29 return True
30 else
31 return False
32 end if
33 else
34 return False
35 end if
36 end procedure

ALGORITHM 1: Online (Re)planner.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE MARCH 202480

perform procedures that bring the system to the surface. Con-
tingencies and new opportunities, instead, will pause the
assignment. Examples include the detection of a battery level
that is lower or higher than expected. In both cases, we need

to replan to recover from the drop in system performance or
to maximize the outcome.

The Orchestrator addresses these situations by exploit-
ing a finite-state machine (FSM) where each node is a mode
of the robot. For instance, the AUV mode allows the vehicle
to autonomously plan and execute a mission, while the ROV
mode enables a human user to teleoperate the robot. standby
enables the system to remain ready for further instructions,
while all_stop brings the robot to a complete halt. A node can
be preemptable or nonpreemptable. A preemptable node can be
interrupted by an observation or a command leading to another
node. A nonpreemptable node is a stand-alone external pro-
gram that is invoked and takes control of the entire system. The
Orchestrator becomes insensible to any stimulus and waits for
the termination of the external program to resume operation
according to the transitions being specified. As an example,
Figure 5 shows the AUV and emergency_surfacing nodes: the
AUV node is preemptable, while emergency_surfacing is non-
preemptable and executes a precomputed routine that safely
ascends the robot to the surface.

The edges of the FSM are the controls that allow the
robot to change modality. We have three types of edges:
command, trigger, and replan. The first is an external com-
mand received from a human operator or from the Online
(Re)planner. For example, abort_mission aborts any mission
running while in AUV mode and brings the robot to the ROV
modality (see Figure 5). trigger applies the transitions trig-
gered by conditions that become true from the current node.
For instance, imminent_collision suspends the autonomous
modality of the robot and brings it to a safe location (see Fig-
ure 5). Once the transition is completed, the robot becomes
autonomous again. Finally, replan is an edge that cycles on
the AUV mode. It sends a replan request to the Online (Re)
planner and makes the robot wait for a new plan. If received,
replan keeps the robot in the AUV modality but suspends

the ongoing activities and starts execut-
ing the new plan from the current state
of the robot.

Figure 6 shows part of the result-
ing FSM. The robot initially operates
in ROV mode, entering standby until
receiving a plan execution request
from the Online (Re)planner through
the Orchestrator, transitioning the
FSM to AUV mode to begin execu-
tion. Plans may include check actions
that require feedback from the State
Estimator or replanning. In all cases,
the FSM remains in the AUV mode
until mission completion or abortion.
During low-battery scenarios, initial
replanning occurs to maintain the
AUV mode. If it fails, the robot could
shut down in an unreachable area.
Then, we hold two threshold values,
a for low battery and b for critical

ROV Emergency
Surfacing

Standby AUV

Go
Home

Get Off
My Back

Critical Battery

Pose Loss

P
au

se

Pose
/C

ontro
l Loss

Criti
ca

l Batte
ry

Lo
w

Ba
tte

ry

Give Mission

C
ri

tic
al

B
at

te
ry

P
os

e/
C

on
tr

ol
Lo

ss

Mission
Completed/Aborted

Miss
ion Tim

eout

Low
Batte

ry

Replan

Collision

Critical Battery

Pose/Control Loss

C
ollision

Collision

FIGURE 6. One segment of the FSM used by the Orchestrator. Nodes are preemptable
(single circles) or nonpreemptable (double circles). Edges are commands (bold lines),
triggers (dashed lines), or replan requests (solid lines).

{
"nodes" : [
{
"id" : "AUV",
"kind" : "preemptable",
"plan_file" : "",
"emergency" : "EMERGENCY_SURFACING",

},
...

{
"id" : "EMERGENCY_SURFACING",
"kind" : "not_preemptable",
"executable" : "../emergency_surfacing",

}
"transitions" : [
{
"id" : "c1",
"source" : "AUV",
"command" : "abort_mission",
"to" : "ROV",
"preemption_policy" : "abort"

},
...
{
"id" : "t1",
"source" : "AUV",
"trigger" : "imminent_collision",
"to" : "GET_OFF_MY_BACK",
"preemption_policy" : "suspend"

}
}

FIGURE 5. Examples of nodes and transitions of the Orches-
trator’s FSM.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

81MARCH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

battery, that trigger mode changes. a prompts navigation to
the charging station (go home), while b initiates emergency
surfacing to the water’s surface, crucial also for avoiding
system loss in cases of localization or control loss. In the
case of imminent collision, instead, we suddenly suspend
the AUV mode and switch to the nonpreemptable get off my
back mode. If, even in this case, collision remains imminent,
we enter the emergency surfacing state. Other nodes and
edges exist, but for brevity, we showed the most interesting
one concerning our use case.

EXPERIMENTAL EXPERIENCE
We are engaged in a comprehensive and ongoing testing pro-
gram, proving our hardware and software contributions.

The hardware standpoint sees Hydrone-R oper-
ating on a real field in Norway for more than 200 days
(since June 2023) uninterruptedly at a depth of 325 m.
The goal is to achieve 10 years of service as a subsea
resident, that is, a permanent subsea presence except for
infrequent scheduled maintenance periods spread out over
time. At present, the robot has started inspection activi-
ties and is being closely monitored to ensure its optimal
performance and condition. Figure 7 shows the vehicle
being deployed in the waters in June 2023, while Figure 8
depicts the robot at work. As proof of Saipem’s efforts in
developing resident robots for subsea pipe inspection, the
FlatFish robot is also being tested. It is currently operat-
ing at a depth of approximately 1,700 m off the Brazilian

coast. Figure 9 depicts FlatFish executing its autonomous
docking routine (see the video available at https://www.
youtube.com/watch?v=3ni6kLWgvAk), while Figure 10
shows FlatFish inspecting a pipeline.

Saipem offers also a simulated environment based
on the Gazebo simulator [17]. It consists of a Hydrone-R
robot (faithful to the real one), pipelines, and clusters to be
inspected. In this context, we equipped the robot with the
capability of performing an action a = move(s, g) that brings
the system from s to g. To be executed, the robot must be
at s with a battery level at least equal to that required to
complete the action itself according to the robot consump-
tion model. As an effect, move brings the robot to t, mark-
ing this location as visited, and consumes the necessary
battery. Then, we asked the robot to visit a set of targets.
In the case of numeric planning, move is instantaneous,
and, among its effects, it increases the plan duration d by
the elapsed time computed according to the consump-
tion model of the robot. In the case of temporal planning,
instead, move is a durative action with fixed duration d. In
both cases, we tested the capability of our planning module
to automatically generate valid plans, optimize resources,
accept mandatory and optional goals, respect ordering
rules, and replan. Details about the performed tests and

FIGURE 8. Hydrone-R at work in Norwegian waters.

FIGURE 9. FlatFish autonomous docking.

FIGURE 10. FlatFish inspecting a pipeline in the Brazilian
coastal area.

FIGURE 7. Hydrone-R has been deployed in Norwegian waters
since June 2023.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

https://www.youtube.com/watch?v=3ni6kLWgvAk)
https://www.youtube.com/watch?v=3ni6kLWgvAk)

IEEE ROBOTICS & AUTOMATION MAGAZINE MARCH 202482

obtained results follow, subdivided accord-
ing to the features we want to prove. Table 1
reports the planning time t (s), consumed
battery b (%), number n of targets reached,
duration d of the plan (s), and cost c of the
plan (see the section “Problem Formulation”)
both in the case of numeric (left side of each
result) and temporal planning (right side).
The UP library automatically selects ENHSP
in the case of numeric planning and Tamer in
the case of temporal planning.

AUTOMATIC PLAN GENERATION
AND VALIDATION
The robot has to visit N 6= targets randomly
sampled in a cube of side A 1003 = m
around the initial pose of the robot. The robot
has enough battery to visit them all. We do
not apply any additional optimization metrics
or constraints. All goals are mandatory. The
result is one sequence of move actions that
enables the robot to visit all of the locations in an order that
differs depending on whether the problem is numerical or
temporal—see battery consumption (92% versus 89%) and
plan duration (279.9 s versus 274.2 s) of Test 0 of Table 1.

PLAN AND OPTIMIZE RESOURCES
We repeat the same test while optimizing the battery usage.
The UP library still does not provide an optimal temporal
planner; thus, results are available only for the numeric use
case. ENHSP outputs a plan that consumes 86% of the bat-
tery instead of 92% (Test 1).

ACCEPT MANDATORY AND OPTIONAL GOALS
We ask the robot to visit N 8= random targets, each with
an associated cost: { : ,t 70 : ,t 61 : ,t 32 : ,t 13 : ,t 54 : ,t 85 : ,t 26

: }t 47 —for a total cost of 36 if no target is reached. Given
the robot’s consumption models, it cannot visit all

assigned locations, but such points are
optional, which means the robot will pay
the cost of missed goals. We performed the
test with no constraint, a “while battery >
10%” constraint for each goal, and a “with-
in 180 seconds” constraint for each goal. If
no constraint is applied, ENHSP and
Tamer output different plans (see b and d
of Test 2), but they both discard t3 (with

())c t 13 = so as to pay the lowest possible
price. When applying the numerical con-
straint, instead, they discard .t6 In this
case, they have to find a good balance
between the cost to pay and the fact that
the battery should be greater than 10% at
each step. Indeed, they visited all of the
targets, saving about 10% of the battery
compared with the unconstrained test (Test
3). When we ask to reach each goal within
180 s, both engines compute a path that
passes through four out of eight goals

(Test 4). In both cases, the plan duration is almost equal
to our upper time (175.7 s in the case of numeric planning
and 177.9 s in the case of temporal planning), and the cost
is the minimum payable when discarding four goals from
the weighted list () .c 1 2 3 4= + + +

ACCEPT ORDERING RULES
The robot should visit an ordered set of N 6= mandatory
targets [,tt0 41 ,tt1 51 ,tt2 31 ,tt3 51]tt4 51 (N 4= with
[,tt0 31 ,tt1 21]tt2 31 when we apply the time constraint).
ENHSP and Tamer find a plan whether or not numerical and/
or temporal constraints are applied (Tests 5–7). For example,
if no constraint is applied, ENHSP outputs (s t t t1 2 0" " " "

),t t t4 3 5" " which consumes 84% of the battery, while
Tamer outputs (),s t t t t t t1 0 4 2 3 5" " " " " " which con-
sumes 87% of the battery. Plans are valid as they meet the
constraints imposed.

TEST OPTIMAL OPTIONAL ORDERED A3 N t (s) b (%) n (≤N) d (s) c

0 – – – 100 6 0.68 | 0.16 92 | 89 6 | 6 279.9 | 274.2 –

1 [] – 100 6 0.74 | – 86 | – 6 | – 268.46 | – –

2 – [] – 100 8 10.27 | 767.52 99 | 97 7 | 7 292.1 | 287.96 1 | 1 (out of 36)

3 – [while] – 100 8 2.96 | 221.22 86 | 86 7 | 7 266.7 | 266.7 2 | 2 (out of 36)

4 – [within] – 100 8 2.5 | 186.84 55 | 57 4 | 4 175.7 | 177.9 10 | 10 (out of 36)

5 – – [] 100 6 0.72 | 0.21 84 | 87 6 | 6 265.2 | 269.51 –

6 – – [while] 100 6 0.76 | 51.49 89 | 89 6 | 6 274.3 | 274.56 –

7 – – [within] 100 4 0.49 | 33.19 54 | 54 4 | 4 174.1 | 174.3 –

Hydrone-R must visit N targets randomly sampled on a cube of side .A3 We ask for optimal plans and plans including optional or ordered targets. We
impose no constraints ([]), numeric constraints ([while battery > 10%]), and temporal constraints ([within 180 s]). Results show the obtained planning
time t (s), consumed battery b (%), number n of targets reached, duration d of the plan (s), and its cost c in the case of numeric (left) and temporal
(right) planning.

TABLE 1. Performance of our planning module.

WE TESTED THE
CAPABILITY OF OUR
PLANNING MOD-
ULE TO AUTOMATI-
CALLY GENERATE
VALID PLANS, OP-

TIMIZE RESOURCES,
ACCEPT MANDATO-
RY AND OPTIONAL
GOALS, RESPECT
ORDERING RULES,

AND REPLAN.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

83MARCH 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

REPLAN
We ask the robot to reach t0 while keeping in memory an
ordered set of opportunities , , .G t t t1 2 3=l " , We decorate
the plan with check actions verifying the battery level is
 consistent with the simulated one. If greater than expected or
enough to keep the robot operating, we add the first target of
Gl not yet inspected. Once t0 is reached, check estimates that
the battery level should be at least equal to 93.63%. It is cur-
rently 99.34%: we add .t1 The procedure continues until all
targets in Gl are visited as the robot’s consumption model
permits it. Without replanning, the robot would have visited
only ,t0 leaving Gl for future missions.

The results are promising. Before exploiting the UP
library, plans were manually calculated. For medium and
complicated missions, the total time to write a valid, non-
optimized task was around three to 10 times its duration (for
writing, simulation, and correction), which exceeds the aver-
age planning time we obtained in our tests. The error rate
was linear with the complexity and length of the mission.
The human could not formulate optimal plans, and the abil-
ity to assign opportunities and manage abnormal conditions
was limited to a restricted number of conditions decided a
priori with the customer. The goal was to handle those faults
that make the robot inoperative via a priori-defined rescue
operations. Now, contingencies can be arbitrarily defined
and managed in real time via replanning.

CONCLUSIONS
In this article, we presented Hydrone-R, an AUV designed
for autonomous deep-ocean inspection that can optimize
available resources and minimize makespan. Moreover, it
adapts to unforeseen situations and capitalizes on new oppor-
tunities. The planning module exploits the advanced UP
library, which enhances decision making and enables effi-
cient (re)planning during underwater inspections. The library
is open source and was developed as part of the AIPlan4EU
project. We described the hardware and software architecture
of our proposal and discussed its practical applications in the
offshore energy industry. We believe that the proposed solu-
tion represents a step forward in the state of the art of under-
water robots, enabling true autonomy and ocean residence.

ACKNOWLEDGMENT
This work has been partly supported by the AIPlan4EU
project funded by the EU Horizon 2020 research and inno-
vation programme under GA 101016442, the AI@TN proj-
ect funded by the Autonomous Province of Trento, and by
the Interconnected Nord-Est Innovation Ecosystem funded
by the European Union Next-GenerationEU (Piano Nazio-
nale di Ripresa e Resilienza – missione 4 componente 2,
investimento 1.5 – D.D. 1058 23/06/2022, ECS00000043).

AUTHORS
Elisa Tosello, Fondazione Bruno Kessler, 38123 Trento, Italy.
E-mail: etosello@fbk.eu.

Paolo Bonel, Saipem s.p.a. - Sonsub Robotics, 35129
Venice, Italy. E-mail: paolo.bonel@saipem.com.

Alberto Buranello, Saipem s.p.a. - Sonsub Robotics,
35129 Venice, Italy. E-mail: alberto.buranello@saipem.com.

Marco Carraro, Saipem s.p.a. - Sonsub Robotics, 35129
Venice, Italy. E-mail: marco.carraro@saipem.com.

Alessandro Cimatti, Fondazione Bruno Kessler, 38123
Trento, Italy. E-mail: cimatti@fbk.eu.

Lorenzo Granelli, Saipem s.p.a. - Sonsub Robotics,
35129 Venice, Italy. E-mail: lorenzo.granelli@saipem.com.

Stefan Panjkovic, Fondazione Bruno Kessler, 38123
Trento, Italy. E-mail: spanjkovic@fbk.eu.

Andrea Micheli, Fondazione Bruno Kessler, 38123
Trento, Italy. E-mail: amicheli@fbk.eu.

REFERENCES
[1] A. G. Rumson, “The application of fully unmanned robotic systems for inspec-
tion of subsea pipelines,” Ocean Eng., vol. 235, Sep. 2021, Art. no. 109214, doi:
10.1016/j.oceaneng.2021.109214.

[2] F. Ingrand and M. Ghallab, “Deliberation for autonomous robots: A survey,”
Artif. Intell., vol. 247, pp. 10–44, Jun. 2017, doi: 10.1016/j.artint.2014.
11.003.

[3] A. Valentini, A. Micheli, and A. Cimatti, “Temporal planning with intermedi-
ate conditions and effects,” Proc. AAAI Conf. Artif. Intell., vol. 34, no. 6, pp.
9975–9982, 2020, doi: 10.1609/aaai.v34i06.6553.

[4] K. B. Ånonsen, O. K. Hagen, Ø. Hegrenæs, and P. E. Hagen, “The HUGIN
AUV terrain navigation module,” in Proc. OCEANS-San Diego, Piscataway, NJ,
USA: IEEE Press, 2013, pp. 1–8.

[5] B. Johansson, J. Siesjö, and M. Furuholmen, “Seaeye Sabertooth, a hybrid
AUV/ROV offshore system,” in presented at the SPE Offshore Eur. Conf. Exhib.,
2011, Paper SPE-146121-MS.

[6] D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and A. Mallios, “Girona 500
AUV: From survey to intervention,” IEEE/ASME Trans. Mechatronics, vol. 17,
no. 1, pp. 46–53, Feb. 2012, doi: 10.1109/TMECH.2011.2174065.

[7] J. Albiez, S. Joyeux, and M. Hildebrandt, “Adaptive AUV mission manage-
ment in under-informed situations,” in Proc. OCEANS MTS/IEEE SEATTLE,
2010, pp. 1–10, doi: 10.1109/OCEANS.2010.5664350.

[8] S. MahmoudZadeh, D. M. W. Powers, K. Sammut, A. Atyabi, and A. Yazdani,
“A hierarchal planning framework for AUV mission management in a spatiotem-
poral varying ocean,” Comput. Elect. Eng., vol. 67, pp. 741–760, Apr. 2018, doi:
10.1016/j.compeleceng.2017.12.035.

[9] M. Cashmore, M. Fox, D. Long, D. Magazzeni, and B. Ridder,
“Opportunistic planning in autonomous underwater missions,” IEEE Trans.
Autom. Sci. Eng., vol. 15, no. 2, pp. 519–530, Apr. 2018, doi: 10.1109/TASE.2016.
2636662.

[10] Z. Yan, W. Liu, W. Xing, and E. Herrera-Viedma, “A multi-objective mission
planning method for AUV target search,” J. Mar. Sci. Eng., vol. 11, no. 1, 2023,
Art. no. 144, doi: 10.3390/jmse11010144.

[11] D. E. Smith, “Choosing objectives in over-subscription planning,” in Proc.
Int. Conf. Automated Planning Scheduling, 2004, pp. 393–401.

[12] D. M. Gaines, T. Estlin, F. Fisher, C. Chouinard, R. Castano, and R. C.
Anderson, Planning for Rover Opportunistic Science. Pasadena, CA, USA: Jet
Propulsion Laboratory, National Aeronautics and Space, 2004.

[13] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing tem-
poral planning domains,” J. Artif. Intell. Res., vol. 20, pp. 61–124, Dec. 2003, doi:
10.1613/jair.1129.

[14] D. E. Smith, J. Frank, and W. Cushing, “The ANML language,” in Proc.
ICAPS Workshop Knowl. Eng. Planning Scheduling (KEPS), 2008, vol. 31.

[15] G. Francés and M. Ramirez. “Tarski: An AI planning modeling framework.”
GitHub. Accessed: Jan. 18, 2023. [Online]. Available: https://github.com/aig-upf/
tarski

[16] E. Scala, P. Haslum, and S. Thiébaux, “Heuristics for numeric planning
via subgoaling,” in Proc. 25th Int . Joint Conf. Artif. Intell ., 2016,
pp. 3228–3234.

[17] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-
source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), 2004, vol. 3, pp. 2149–2154, doi: 10.1109/IROS.2004.1389727.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on March 20,2024 at 12:09:27 UTC from IEEE Xplore. Restrictions apply.

mailto:etosello@fbk.eu
mailto:paolo.bonel@saipem.com
mailto:alberto.buranello@saipem.com
mailto:cimatti@fbk.eu
mailto:lorenzo.granelli@saipem.com
mailto:spanjkovic@fbk.eu
mailto:amicheli@fbk.eu
https://orcid.org/0009-0000-5325-6745
https://orcid.org/0000-0002-1315-6990
https://orcid.org/0000-0002-1315-6990
https://orcid.org/ 0000-0002-6370-1061
https://orcid.org/0000-0003-3278-0091
https://orcid.org/0000-0002-6370-1061
https://orcid.org/0000-0002-6370-1061

