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Robots are increasingly used in subsea environments because 
of their positive impact on human safety and operational capa-
bilities in the deep ocean. However, achieving full autonomy 
remains challenging because of the extreme conditions they 
encounter. In this context, we propose an autonomous under-
water architecture for long-term deep-ocean inspection that 
robustly plans activities and efficiently deliberates with no 
human help. It combines the innovative Saipem’s Hydrone-R 
subsea vehicle with an advanced planning architecture, result-
ing in a robot that autonomously perceives its surroundings, 
plans a mission, and adapts in real time to contingencies and 
opportunities. After describing the robot hardware, we present 
the technological advancements achieved in building its soft-
ware, along with several compelling use cases. We explore 
scenarios where the robot conducts long-term underwater mis-
sions operating under resource constraints while remaining 

responsive to opportunities, such as new inspection points. 
Our solution gained significant reliability and acceptance 
within the oil and gas community as evidenced by its current 
deployment on a real field in Norway.

INTRODUCTION
Subsea pipelines play a crucial role in carrying oil and gas: 
any damage or malfunction can result in significant environ-
mental and financial repercussions. Consequently, regular 
inspections are essential to guarantee the assets’ integrity. 
These inspections can include internal checks conducted by 
intelligent pegs and crawling robots or external examinations 
utilizing electromagnetic, radiographic, acoustic, and fiber-optic 
sensors [1]. In this article, we focus on external inspection and 
aim to address the needs of asset owners and operators to opti-
mize procedures and offer adaptable technologies.

Unmanned underwater vehicles are pivotal in this regard 
as they can operate for an extended duration in deep waters, 
surpassing the depths reachable by human divers. Their usage 
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is independent of the field, and they can promptly react to 
changes in the setup or assignment. We distinguish remotely 
operated vehicles (ROVs), which rely on remote control by 
pilots and require connections to supporting vessels for con-
tinuous power supply, and autonomous underwater vehicles 
(AUVs), which instead operate autonomously. AUVs are 
particularly compelling for our specific application as they 
enhance efficiency and safety by minimizing human involve-
ment in demanding and high-risk tasks. Additionally, they 
help energy companies in reducing their ecological footprint.

For optimal task performance, AUVs must exhibit delib-
erate behavior. Deliberation involves undertaking actions 
driven by specific objectives backed by rational reasoning 
aligned with these objectives [2]. For instance, this capabil-
ity allows a vehicle to dynamically monitor the available 
resources, like the battery level, and optimize their consump-
tion. It enables the robot to be aware of its surroundings and 
adjust its parameters according to environmental changes, 
e.g., minimizing trajectory deviation while navigating. It 

guarantees the system to make informative decisions when 
handling unforeseen events.

We propose a hardware and software architecture that 
enables deliberative deep-sea inspection for extended peri-
ods. The robot is Saipem’s Hydrone-R: a drone equipped with 
innovative hardware designed to withstand the extreme condi-
tions of the deep ocean and make the system a subsea resident 
(see Figure 1). Indeed, Hydrone-R has been operating autono-
mously for more than 200 days (since June 2023) on a real 
offshore oil and gas field in Norway—the goal is to achieve 
10 years of service (see https://www.saipem.com/en/ 
projects/hydrone-njord-field-development). It is equipped 
with a range of specialized sensors, computing power, 
advanced control systems, and artificial intelligence (AI)-
driven navigation and inspection modules that leverage fea-
ture recognition. Such components empower the robot with 
the ability to autonomously perceive its surroundings, detect 
pipelines, precisely localize itself, and accurately estimate its 
internal state. We put on board a task planner that effectively  
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utilizes this information to plan safe inspection missions 
while adhering to resource constraints. An Orchestrator man-
ages the mission and triggers replanning in real time in case of 
contingencies, e.g., an unexpected decrease in available bat-
tery charge, and emerging opportunities, e.g., the inspection 
of not previously considered locations (see Figure 2). We per-
form planning via the Unified Planning (UP) 
library (available at https://github.com/aipla-
n4eu/unified-planning): the Python3 open 
source library developed by the AIPlan4EU 
project (see https://www.aiplan4eu-project.
eu/). It allows users to model and manipulate 
classical, numerical, and temporal assign-
ments [3] to the point of solving complex 
problems, such as multiagent and task and 
motion planning ones. In our case, we exploit 
the UP library to enable Hydrone-R in plan-
ning and optimizing numerical and temporal 
missions. This includes managing resource 
constraints, prioritizing targets, and defining 
ordering rules among the goals. These fea-
tures promote the vehicle’s long-term stay in 
the deep ocean.

The rest of the article is organized as 
follows. In the next section, we summarize 
related work. In the section “The Underwa-
ter Vehicle,” we present the robot hardware, 
and in the section “Problem Formulation,” 
we define the planning problem arising from 
autonomous deep-sea inspection. We describe the UP library, 
the planning architecture, and the methods implemented to 
handle contingencies and new opportunities in the sections 
“The UP Library,” “Our Advanced Planning Architecture,” 
and “Handling Contingencies and Opportunities,” respective-
ly. In the section “Experimental Experience,” we present our 
ongoing experimental experience. Finally, we draw some con-
clusions and discuss future work in the section “Conclusions.”

THE STATE OF THE ART
The number of available AUVs is continually increasing. 
Among others, KM’s HUGIN robot [4], although a general-

purpose AUV, has proven effective in subsea pipeline inspec-
tion, even if its torpedo shape necessitates constant forward 
motion. On the other hand, Saab’s Seaeye Sabertooth [5] and 
the Girona 500 [6] are purpose-built for asset inspection, with 
the latter tailor-made and widely employed in academic proj-
ects. However, they lack true autonomy, missing the capabili-

ty to dynamically adjust missions in real time 
to face unexpected or changed conditions. 
Moreover, they cannot be subsea residents for 
long periods (months or years). Our goal is to 
equip our robot with both capabilities. 
Indeed, full autonomy and subsea residency 
minimize reliance on support vessels, boost-
ing safety, reducing offshore personnel needs, 
and cutting the carbon footprint.

In this context, Saipem started developing 
underwater robots back in 2015. Its Hydrone 
family currently consists of three main vehi-
cles: Hydrone-W, FlatFish, and Hydrone-R.  
They share the whole control system (pro-
prietary and internally developed) and most 
of the algorithms but are tailored to answer 
to specific offshore energy needs. Hydrone-
W is a fully electric ROV integrated with 
autonomous capabilities designed only 
to assist human pilots when operating in 
extremely demanding conditions. FlatFish is 
a survey vehicle able to perform long fully 
autonomous missions. Finally, Hydrone-R 

is both a ROV and an AUV. It can be teleoperated, or it 
can autonomously track and follow pipelines, inspect ris-
ers, and accomplish complicated survey patterns and visual 
inspections. Most of all, it is proving to be a subsea resi-
dent: it has been operating in Norwegian waters for more 
than 200 days, intending to stay in the water for 10 years.

Along with cutting-edge hardware, we aim to give the robot 
decision-making and managerial skills that allow it to act 
deliberately and truly autonomously. In this sense, Albiez et al. 
utilize behavior-based methods to manage the tasks and a plan 
manager to control the deployment, activation, and deactivation 
of the behaviors to maintain progress, enable AUVs to fulfill 
the missions, and handle underinformed situations [7]. In [8], 
the authors compose deliberative and reactive layers that oper-
ate concurrently and exchange feedback on the environmental 
conditions, goals, plans, and situations. The former manages 
the execution of scheduled tasks, while the latter manages real-
time reactions to critical events. In [9], Cashmore et al. consider 
AUV assignments where opportunities to achieve additional 
utility can arise during execution. The authors frame the mis-
sions as temporal planning problems, treating the opportuni-
ties as soft goals with high utility. These goals are dynamically 
addressed as they arise, while ensuring the achievement of the 
problem’s hard goals. Finally, [10] proposes a fully automated 
task allocation algorithm for AUVs that optimizes mission 
planning for threat detection. The task assignment problem is 
modeled as a traveling salesman problem with distinct start and 

FIGURE 1. The Saipem Hydrone-R AUV.
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end points. The authors optimize the total sailing distance and 
AUV turning angle while traversing threat points in a specific 
order, considering constraints like the minimum radius of turn 
and speed. The problem is solved using an improved ant colony 
optimization algorithm with fuzzy logic and dynamic phero-
mone volatilization.

In contrast to existing approaches, our planning archi-
tecture gives generality to the problem addressed, allowing 
the robot to solve planning problems of different types— 
numerical and temporal—thanks to the exploitation of the 
UP library developed by AIPlan4EU. Our goal definition 
allows us to assign resource constraints to each mission, like 
restrictions on the residual battery, time allocation, and disk 
space usage. Moreover, we can sort the inspection targets in 
sequences, temporally concatenate them, or arrange them in a 
partial order fashion, facilitating the incorporation of optional 
goals and the definition of a custom priority hierarchy among 
them. Finally, we can replan in case of new opportunities and 
contingencies via a close interaction between the UP library 

and the robot’s Orchestrator. Such a system can operate across 
the entire Saipem Hydrone family, with its maximum utility 
being demonstrated when deployed on Hydrone-R.

THE UNDERWATER VEHICLE
In this section, we introduce Hydrone-R and the tools that 
enable it to support our planning module and act deliberately.

Hydrone-R serves as both a ROV and an AUV, capable 
of either teleoperation or autonomous functioning. It can 
track and inspect pipelines and risers and accomplish com-
plicated survey tasks. A detailed description of its compo-
nents follows.

• Optical communication. An optical modem enables 
wireless control of the vehicle from its docking station or 
locations where operators need to receive real-time feedback.

• Acoustic communication. A low-bandwidth, long-range 
acoustic modem enables operators to receive diagnostic data 

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIGURE 2. An overview of autonomous robotic pipeline inspection: Hydrone-R (a) plans the mission, (b) leaves its dock station, and  
(c) starts inspecting. (d) While surveying a cluster, it detects an anomaly in another cluster and (e) adapts on the fly its plan (f) to 
include the new location (g) The robot inspects the pipeline until its battery enforces (h) returning to the recharge station.
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and send task updates to the robot during 
missions. It also works as an ultrashort 
baseline positioning system.

• Advanced underwater vision system. 
Hydrone-R mounts two frontal cameras and 
one bottom camera used in conjunction with a 
laser projector to generate 3D point clouds. 
Lights maximize scene illumination and 
improve robot visibi l ity. The system 
enables pipeline tracking and following by 
recognizing structures and markers and 
providing position data. It can detect and 
avoid obstacles and catch anomalies.

• Sonars. In subsea environments, light 
propagation is limited, and water particles 
make vision effective only within a few 
meters of the robot. Long-range-view sonars become 
mandatory. Hydrone-R is equipped with a frontal 
multibeam imaging sonar (an acoustic camera) and a top-
mounted mechanical scanning imaging sonar that ensures a 
360° field of view to enhance situational awareness around 
the vehicle.

• Advanced navigation system. Hydrone-R has an inertial 
measurement unit sensor that combines optical fiber 
gyroscopes and solid-state accelerometers aided, through 
data fusion algorithms, by a Doppler velocity logger, an 
ultrashort baseline, and the aforementioned vision system. 
The system limits the navigation error to less than 0.05% of 
the traveled distance.

• Internal computational power and storage resources. 
Computing systems host sufficient power and storage 
resources for the robot to safely carry out assigned missions.

• Manipulators. Hydrone-R is equipped with a light 
manipulator and a grabber. At the time of writing, 
manipulation operations are performed in a teleoperated 
fashion.

• Integrated Tether Management System. To work in 
ROV mode, a tether and a tether management system provide 
real-time data exchange and battery-charging power when 
connected to the host base of the subsea system. The robot 
can connect to multiple bases, according to mission needs.

• Skid integration and vehicle capabilities extension. 
A skid is a set of sensors and electronics that one can 
attach to the bottom of the vehicle to extend its capa-
bilities. Data and power flows occur through the use of 
inductive connectors.

• Inductive connectors. To connect and disconnect 
tethers and skids, we use an inductive connector offering 

up to a 100-MB/s data exchange bit rate and 
2 kW of electrical power for charging. This 
contactless connector allows significantly 
more mating cycles compared to wet-
mateable connectors.

PROBLEM FORMULATION
To autonomously accomplish pipeline inspec-
tion, Hydrone-R must compute the sequence 
of actions required to achieve the goal while 
effectively managing the available resources 
and minimizing makespan. If new opportuni-
ties or contingencies occur during execution, 
e.g., a new cluster needs to be examined or 
the battery level drops unexpectedly, the robot 
replans to maximize the final outcome while 
preserving its safety; e.g., it may decide to 
return to the dock station (see Figure 2).

We define this problem as an automated planning problem, 
where automated planning is a branch of AI that, given a model 
of a system (the robot and its capabilities) and a goal to reach 
(inspection of a set of locations), finds a course of actions to 
drive the system from its current state to the target. When state 
variables include only rational numerical values, like the battery 
level, the problem to be solved is a numeric planning problem.

DEFINITION 1 
A numeric problem W  is a tuple , , , ,V I A GG H  where the fol-
lowing hold.

 ■ { , .., }V f fn1=  is a finite set of variables (or fluents) ,f V!  
each with a domain ( ) .Dom f

 ■ I is the initial state, which assigns a value ( ) ( )I f Dom f!  
to each variable .f V!

 ■ A is a set of actions ,a P E A!G H=  such that
 • P is a set of preconditions, each being a combination of 
atoms of the form ,f vA  with { , , , , },1 2A # $= =  

,f V!  and ( ) .v Dom f!

 • E is a set of instantaneous effects of the form = ,f v:  
with f V!  and ( ) .v Dom f!

 ■ G is the set of goal conditions, each being a combination 
of atoms of the form ,f v=  with f V!  and ( ) .v Dom f!

A plan r  that solves W  is a sequence of actions { , , }aa m0 f  
that brings the system from I to G by linking the effects of ai  
with the preconditions of .ai 1+

When including timed goals, time constraints, or durative 
actions, we enter the field of temporal planning.

DEFINITION 2
A temporal planning problem U  is a tuple , , , , ,V T I A GG H   
where

 ■ V, I, and G are defined as before.
 ■ T is a set of timed initial literals, each of the form 

[ ]t f vG H=:  where ,f V!  ( ),v Dom f!  and t R 0! 2  is 
the time at which f  will be assigned the value .v

 ■ A is the set of actions [ , ], , ,a l u C EG H=  where [ , ]l u  are 
the duration bounds, C is the set of conditions, each one 
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with start and end points, and E is the set 
of effects, each one becoming true at cer-
tain time instants [3].
r  that solves U  is a sequence { , , },t a dG H  

where a is paired with a start time instant 
t R 0! $  and a duration .d R 0! 2

We aim to solve both W  and U  in the con-
text of subsea pipeline inspection. Moreover, 
the robot must autonomously decide which 
location to inspect based on its significance 
and available resources. The goal becomes 

,G G Gh s,=  where Gh  is the set of hard 
goals that must be achieved in any goal state. 

,Gs  instead, is the set of soft goals , ( )g c gs sG H 
that the system may achieve: for each ,g Gs s!  
there exists a cost ( )c g Rs 0! 2  to be paid if 
gs  is not achieved by .r  The problem becomes 
a planning problem with oversubscription [11]. 
Finally, we allow the defining of an order-
ing rule ..o g gi j1 1=  among the goals in 
G so as to prioritize inspection points. Our 
goal becomes to find r  that complies with 
o, achieves all of the hard goals, and pays the 
minimum cost ( ) ( ) .minc c gsr = /

In this context, a new opportunity (e.g., inspection of a new 
cluster) is a soft goal , ( )g c gs sG H created at runtime by an event 

:[ ]E t f vG H= =  (i.e., an action effect or external occurrence), 
which instantiates a fluent f V!  via ( )v Dom f!  [12]. The 
problem becomes an opportunistic planning problem with 
oversubscription , ,A GG HW l l  (or , , ),A GG HU l l  where A A!l  
is the subset of actions that are preemptable and Gl is the set 
of new opportunities. If an opportunity is discovered, the ini-
tial state I is updated, and replanning is triggered. Being in a 
nondeterministic world, contingencies result in the same pro-
cedure, and Al collects the set of actions that are preemptible 
to handle both opportunities and contingencies.

In the following sections, we present the planning library 
used to solve the problem and the planning architecture imple-
mented to find r  and monitor its execution.

THE UP LIBRARY
To provide our robot with autonomous decision-making capabil-
ities, we adopted the UP library (https://github.com/aiplan4eu/ 
unified-planning). The UP library is open source, reusable, 
and planner agnostic. It allows one to easily model, manipu-
late, and solve several planning problems, including classical, 
numerical, and temporal assignments, multiagent tasks, and 
task and motion planning. The UP library is part of AIPla-
n4EU (https://www.aiplan4eu-project.eu/), an H2020 project 
that aims to enhance accessibility, reuse, and integration of 
planning algorithms and data.

The library’s application programming interfaces (APIs) 
provide users with the capability to model planning prob-
lems manually, parsing a formal language (e.g., PDDL [13] 
or ANML [14]), exploiting the interoperability interfaces 
with other frameworks (e.g., Tarski [15]), or mixing such 

approaches. It allows users to guide the plan 
search via custom heuristics, which provide 
functions to evaluate the goodness of a given 
state. It supports the specification of quality 
metrics to impose optimization criteria. For 
example, users can minimize the number of 
steps in the resulting plans or the action cost. It 
allows them to define optional goals, each with 
an associated cost that is paid if the goal is not 
achieved by the plan (oversubscription). Once 
all specifications have been outlined, the UP 
library passes them to the connected planning 
engines via operation modes. Each planning 
engine solves a specific planning problem 
(e.g., numerical, temporal, etc.), and each 
operation mode offers an abstract interface to 
such engines and gives access to some of their 
functionalities. The simplest operation mode 
is OneshotPlanner, which allows an engine 
to be used as a one-time plan generator. We 
also provide ways to validate a plan, simulate 
it (with associated resource consumption), or 
trigger a replanning routine.

Such capabilities make the UP library 
suitable to solve planning problems across diverse domains, 
like autonomous ocean inspection. In the next section, we 
detail its usage in this regard.

OUR ADVANCED PLANNING ARCHITECTURE
To grant our robot autonomous deliberation, we designed a 
new goal-specification grammar. Then, we developed a plan-
ning architecture that takes goals as input, retrieves the avail-
able resources, plans the mission, and imprints the robot with 
the commands needed to execute it.

The grammar allows one to represent a set of goals to 
be reached (see Figure 3). Each <single_goal> asks to 
reach an <expression> def ined as an internal state 
of the system (e.g., “switch from ROV to AUV”) or a condition 
of the environment in which it operates (e.g., “valve 1 must be 
closed”). Each target can be equipped with a set of resources 
(while <expression>) or time (within <interval>) con-
straints that must be observed while achieving it. For instance,  
we can limit the battery usage and makespan. Goals can 
be structured in sequences (each goal has a unique <id>), 
ordered (<ord_constrs> }= <id> < <id>), and con-
catenated (<ord_constrs> and <ord_constrs>). 
This flexibility empowers the incorporation of optional goals 
(optionally) and the definition of a custom priority hierarchy 
among them (optionally with priority <number>). For 
instance, we can ask the robot to “reach valve1-closed within 
[0, 30] while battery $ 50”, which means finding a plan to 
reach valve1-closed within 30 min, always maintaining the 
battery level above 50%. The optionally keyword marks desir-
able goals that are not mandatory: “optionally reach valve2-
photographed” specifies a desire to take a picture of valve2, 
but if this is not possible, the mission will be satisfied anyway.

TO AUTONOMOUSLY 
ACCOMPLISH PIPE-
LINE INSPECTION, 
HYDRONE-R MUST 
COMPUTE THE SE-
QUENCE OF AC-
TIONS REQUIRED 
TO ACHIEVE THE 
GOAL WHILE EF-
FECTIVELY MAN-

AGING THE AVAIL-
ABLE RESOURCES 
AND MINIMIZING 

MAKESPAN.
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Given a set of goals, we implemented an Online (Re)planner 
and an Orchestrator that cooperate to successfully reach them 
(see Figure 4). The former models the planning problem via 
Problem Encoder, finds a plan through the UP library, and sends 
it to the robot via Solution Decoder (see Algorithm 1). The lat-

ter manages the execution, monitors the robot state, and handles 
unforeseen situations by triggering safety operations or asking 
for replanning in real time. A description of each component of 
the Online (Re)planner follows, while the next section describes 
the ability of the Orchestrator to handle unforeseen events.

UP
Library

Solution
Decoder

Online (Re)planner

Problem Encoder

Domain
Encoder

Goal Semantic Scene Vehicle Model,
Specifications, ...

Technology-Specific Bridge

Request to (re)plan

Mission
Plan

Online Request-Replay (gRPC)

One-Time Communication

Orchestrator

Monitoring

State Estimator

Abnormal
Condition(s)

Vehicle
State

Lower Levels

Execute
This Mission
Line

Plan
Exec

FIGURE 4. Our software architecture. The Online (Re)planner takes as input the robot model, its current state, the scene, and the goal. 
It combines these data and models the planning problem via Problem Encoder, finds a plan through the UP library, and sends it to 
the Orchestrator via Solution Decoder. The Orchestrator sends the plan to the lower levels, manages its execution, monitors the robot 
state via State Estimator, and eventually asks for replanning in real time.

<opt> ::= <none>
| optionally
| optionally with priority <number>

<single_goal> ::= reach <expression>
| reach <expression> within <interval>
| reach <expression> while <expression>
| reach <expression> within <interval> while <expression>

<opt_single_goal> ::= <opt> <single_goal>
<goals_sequence> ::= <opt_single_goal>

| <opt_single_goal> ; goals_sequence
<id_goals_sequences> ::= <id> : <opt_single_goal>

| <id> : <opt_single_goal> ; <id_goals_sequence>
<ord_constrs> ::= <id> < <id>

| <ord_constrs> and <ord_constrs>
<goal_deordering> ::= <id_goals_sequences> ; <ord_constrs>
<goal_spec> ::= <goal_deordering>

| <goals_sequence>

FIGURE 3. Our goal grammar. It allows the users to represent a set of objectives defined as internal states of the system or conditions 
of the environment. Each goal can be equipped with resource and time constraints. We can apply ordering, optionality, and prior-
ity rules among goals. For example, “reach valve1-closed within [0, 30] while battery ≥ 50” asks to close valve1 within 30 min while 
keeping the battery level above 50%. “optionally reach valve2-photographed” specifies a desire to take a picture of valve2, but if this 
task is unfeasible, the mission will be satisfied anyway.
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STATE ESTIMATOR
The State Estimator retrieves the current state of the robot, 
that is, its current pose p, the available resources R (e.g., bat-
tery charge), and the goals G  already visited (line 4). <p, R> 
forms the initial state I of the system (line 5). Together with 

,G  they will be updated at each step of the mission.

PROBLEM ENCODER
The Encoder takes as input the initial state I, the current 
goal G, and the robot specifications, i.e., the logical and 
temporal expressions representing the set of actions A that 
the AUV can perform, like moving from a start location s 
to a goal g. It combines this information with the set of flu-
ents V needed for the problem (e.g., variables representing 
the resources under consideration) and—eventually—the 
timed initial literals T. Then, it models the problem U  (or 

)W  using the UP library API (line 6). It sends U  to the UP 
library and waits for a plan ,r  if one exists (line 7). Once 
received, the Encoder decorates r  with check events that 
aim to verify whether the real value of a resource aligns 
with the one estimated via the UP library’s Simulator for 
the corresponding time instant. This approach ensures the 
identification of any deviation and promptly triggers 
replanning in case of unforeseen events. In case of numeric 
planning, r  is an ordered sequence of actions, and we can 
add checkpoints at the end of each of them. When consid-
ering time, instead, actions may overlap: we must first 
transform r  into an ordered list of events (the effects of the 
actions), wherein the order reflects the time instants at 
which these events are scheduled. We enrich this list with 
the checkpoints and transform it back into a plan (lines 
9–19). The Encoder sends the decorated plan rl  to the 
Solution Decoder for its translation into a robot-compliant 
mission .t  If the Orchestrator triggers a replan request 
while executing ,t  the Encoder retrieves the new initial 
state I, the available opportunities G’, and the goals G  
already achieved, and it sends these data to the UP library 
asking for replanning.

UP LIBRARY
When the UP library receives a problem to be solved, it 
calls OneshotPlanner to solve it—with Oversubscription in 
case of optionality between goals (line 7 with mode = One-
shotPlanner). In the case of unforeseen events, instead, the 
UP library triggers Replanner, which updates the initial 
state of the robot and the goals to be reached according to 
the current situation and tries to solve the new problem 
(lines 22–27). In the case of numeric planning, Oneshot-
Planner solves the problem via Expressive Numeric Heuris-
tic Search Planner (ENHSP) [16]. When including time, we 
use Tamer [3].

SOLUTION DECODER
If r  exists, the Decoder translates it into a robot-compli-
ant mission t  (line 20) and sends it to the Orchestrator 
(line 21).

ORCHESTRATOR
This block consists of a Plan Executor, executing the mission, 
and a Monitor, retrieving and monitoring the vehicle state. If 
contingencies or new opportunities occur and affect either the 
vehicle state or the mission success, the Orchestrator pre-
empts the execution of the current assignment in real time, 
sends the useful information to the Problem Encoder, and 
allows it to online replan (lines 22–32).

Our planning architecture is hosted on board the robot 
to increase its level of autonomy, guarantee real-time 
responsiveness, and ensure the proper condition of the robot 
despite the unpredictable and nondeterministic nature of the 
deep ocean.

HANDLING CONTINGENCIES AND OPPORTUNITIES
Failures result from accidents, such as instrument faults, 
and require the immediate stop of the vehicle. If we are 
not to lose it at sea, we must abandon the mission and 

 1 connect StateEstimator
 2 connect Orchestrator
 3 procedure Replan(V, T, A, G, G’, mode)
 4     p, R, G !  StateEstimator. getCurrentState()
 5    ,p RI !1 2
 6    , , , ,V I T A G!1 2U

 7    !r  Planner.solve( ,U  mode)
 8    if None!r  then
 9       E’ !  []
10       E !  getEvents( )r
11       for each e !  E do
12          E’.push(e)
13          I !  Simulator.apply(I,e)
14          for each r R!  do
15             v .I! getValue (r)
16             E’.push(check(r, v))
17          end for
18       end for
19       !rl  getPlan(E’)
20       !t  decode( )rl
21       out !  Orchestrator.startMission( )t
22       if out == replan then
23          if replan == contingency then
24             return Replan(V, T, A, G - ,G  G’, replanner)
25          else if replan == opportunity then
26              return Replan(V, T, A, G - G + G’, ,4  replanner)
27          end if
28       else if out == success then
29          return True
30       else
31          return False
32       end if
33    else
34       return False
35    end if
36 end procedure

ALGORITHM 1: Online (Re)planner.
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perform procedures that bring the system to the surface. Con-
tingencies and new opportunities, instead, will pause the 
assignment. Examples include the detection of a battery level 
that is lower or higher than expected. In both cases, we need 

to replan to recover from the drop in system performance or 
to maximize the outcome.

The Orchestrator addresses these situations by exploit-
ing a finite-state machine (FSM) where each node is a mode 
of the robot. For instance, the AUV mode allows the vehicle 
to autonomously plan and execute a mission, while the ROV 
mode enables a human user to teleoperate the robot. standby 
enables the system to remain ready for further instructions, 
while all_stop brings the robot to a complete halt. A node can 
be preemptable or nonpreemptable. A preemptable node can be 
interrupted by an observation or a command leading to another 
node. A nonpreemptable node is a stand-alone external pro-
gram that is invoked and takes control of the entire system. The 
Orchestrator becomes insensible to any stimulus and waits for 
the termination of the external program to resume operation 
according to the transitions being specified. As an example, 
Figure 5 shows the AUV and emergency_surfacing nodes: the 
AUV node is preemptable, while emergency_surfacing is non-
preemptable and executes a precomputed routine that safely 
ascends the robot to the surface.

The edges of the FSM are the controls that allow the 
robot to change modality. We have three types of edges: 
command, trigger, and replan. The first is an external com-
mand received from a human operator or from the Online 
(Re)planner. For example, abort_mission aborts any mission 
running while in AUV mode and brings the robot to the ROV 
modality (see Figure  5). trigger applies the transitions trig-
gered by conditions that become true from the current node. 
For instance, imminent_collision suspends the autonomous 
modality of the robot and brings it to a safe location (see Fig-
ure 5). Once the transition is completed, the robot becomes 
autonomous again. Finally, replan is an edge that cycles on 
the AUV mode. It sends a replan request to the Online (Re)
planner and makes the robot wait for a new plan. If received, 
replan keeps the robot in the AUV modality but suspends 

the ongoing activities and starts execut-
ing the new plan from the current state 
of the robot.

Figure 6 shows part of the result-
ing FSM. The robot initially operates 
in ROV mode, entering standby until 
receiving a plan execution request 
from the Online (Re)planner through 
the Orchestrator, transitioning the 
FSM to AUV mode to begin execu-
tion. Plans may include check actions 
that require feedback from the State 
Estimator or replanning. In all cases, 
the FSM remains in the AUV mode 
until mission completion or abortion. 
During low-battery scenarios, initial 
replanning occurs to maintain the 
AUV mode. If it fails, the robot could 
shut down in an unreachable area. 
Then, we hold two threshold values, 
a  for low battery and b  for critical 
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FIGURE 6. One segment of the FSM used by the Orchestrator. Nodes are preemptable 
(single circles) or nonpreemptable (double circles). Edges are commands (bold lines), 
triggers (dashed lines), or replan requests (solid lines).

{
"nodes" : [
{
"id" : "AUV",
"kind" : "preemptable",
"plan_file" : "",
"emergency" : "EMERGENCY_SURFACING",

},
...

{
"id" : "EMERGENCY_SURFACING",
"kind" : "not_preemptable",
"executable" : "../emergency_surfacing",

}
"transitions" : [
{
"id" : "c1",
"source" : "AUV",
"command" : "abort_mission",
"to" : "ROV",
"preemption_policy" : "abort"

},
...
{
"id" : "t1",
"source" : "AUV",
"trigger" : "imminent_collision",
"to" : "GET_OFF_MY_BACK",
"preemption_policy" : "suspend"

}
}

FIGURE 5. Examples of nodes and transitions of the Orches-
trator’s FSM.
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battery, that trigger mode changes. a  prompts navigation to 
the charging station (go home), while b  initiates emergency 
surfacing to the water’s surface, crucial also for avoiding 
system loss in cases of localization or control loss. In the 
case of imminent collision, instead, we suddenly suspend 
the AUV mode and switch to the nonpreemptable get off my 
back mode. If, even in this case, collision remains imminent, 
we enter the emergency surfacing state. Other nodes and 
edges exist, but for brevity, we showed the most interesting 
one concerning our use case.

EXPERIMENTAL EXPERIENCE
We are engaged in a comprehensive and ongoing testing pro-
gram, proving our hardware and software contributions.

The hardware standpoint sees Hydrone-R oper-
ating on a real field in Norway for more than 200 days 
(since June 2023) uninterruptedly at a depth of 325 m. 
The goal is to achieve 10 years of service as a subsea 
resident, that is, a permanent subsea presence except for 
infrequent scheduled maintenance periods spread out over 
time. At present, the robot has started inspection activi-
ties and is being closely monitored to ensure its optimal 
performance and condition. Figure 7 shows the vehicle 
being deployed in the waters in June 2023, while Figure 8 
depicts the robot at work. As proof of Saipem’s efforts in 
developing resident robots for subsea pipe inspection, the 
FlatFish robot is also being tested. It is currently operat-
ing at a depth of approximately 1,700 m off the Brazilian 

coast. Figure 9 depicts FlatFish executing its autonomous 
docking routine (see the video available at https://www.
youtube.com/watch?v=3ni6kLWgvAk), while Figure 10 
shows FlatFish inspecting a pipeline.

Saipem offers also a simulated environment based 
on the Gazebo simulator [17]. It consists of a Hydrone-R 
robot (faithful to the real one), pipelines, and clusters to be 
inspected. In this context, we equipped the robot with the 
capability of performing an action a = move(s, g) that brings 
the system from s to g. To be executed, the robot must be 
at s with a battery level at least equal to that required to 
complete the action itself according to the robot consump-
tion model. As an effect, move brings the robot to t, mark-
ing this location as visited, and consumes the necessary 
battery. Then, we asked the robot to visit a set of targets. 
In the case of numeric planning, move is instantaneous, 
and, among its effects, it increases the plan duration d by 
the elapsed time computed according to the consump-
tion model of the robot. In the case of temporal planning, 
instead, move is a durative action with fixed duration d. In 
both cases, we tested the capability of our planning module 
to automatically generate valid plans, optimize resources, 
accept mandatory and optional goals, respect ordering 
rules, and replan. Details about the performed tests and 

FIGURE 8. Hydrone-R at work in Norwegian waters.

FIGURE 9. FlatFish autonomous docking.

FIGURE 10. FlatFish inspecting a pipeline in the Brazilian  
coastal area.

FIGURE 7. Hydrone-R has been deployed in Norwegian waters 
since June 2023.
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obtained results follow, subdivided accord-
ing to the features we want to prove. Table 1 
reports the planning time t (s), consumed 
battery b (%), number n of targets reached, 
duration d of the plan (s), and cost c of the 
plan (see the section “Problem Formulation”) 
both in the case of numeric (left side of each 
result) and temporal planning (right side). 
The UP library  automatically selects ENHSP 
in the case of numeric planning and Tamer in 
the case of temporal planning.

AUTOMATIC PLAN GENERATION  
AND VALIDATION
The robot has to visit N 6=  targets randomly 
sampled in a cube of side A 1003 =  m 
around the initial pose of the robot. The robot 
has enough battery to visit them all. We do 
not apply any additional optimization metrics 
or constraints. All goals are mandatory. The 
result is one sequence of move actions that 
enables the robot to visit all of the locations in an order that 
differs depending on whether the problem is numerical or 
temporal—see battery consumption (92% versus 89%) and 
plan duration (279.9 s versus 274.2 s)  of Test 0 of Table 1.

PLAN AND OPTIMIZE RESOURCES
We repeat the same test while optimizing the battery usage. 
The UP library still does not provide an optimal temporal 
planner; thus, results are available only for the numeric use 
case. ENHSP outputs a plan that consumes 86% of the bat-
tery instead of 92% (Test 1).

ACCEPT MANDATORY AND OPTIONAL GOALS
We ask the robot to visit N 8=  random targets, each with 
an associated cost: { : ,t 70  : ,t 61  : ,t 32  : ,t 13  : ,t 54  : ,t 85  : ,t 26  

: }t 47 —for a total cost of 36 if no target is reached. Given 
the robot’s consumption models, it cannot visit all 

assigned locations, but such points are 
optional, which means the robot will pay 
the cost of missed goals. We performed the 
test with no constraint, a “while battery > 
10%” constraint for each goal, and a “with-
in 180 seconds” constraint for each goal. If 
no constraint is applied, ENHSP and 
Tamer output different plans (see b and d 
of Test 2), but they both discard t3  (with 

( ) )c t 13 =  so as to pay the lowest possible 
price. When applying the numerical con-
straint, instead, they discard .t6  In this 
case, they have to find a good balance 
between the cost to pay and the fact that 
the battery should be greater than 10% at 
each step. Indeed, they visited all of the 
targets, saving about 10% of the battery 
compared with the unconstrained test (Test 
3). When we ask to reach each goal within 
180 s, both engines compute a path that 
passes through four out of eight goals 

(Test 4). In both cases, the plan duration is almost equal 
to our upper time (175.7 s in the case of numeric planning 
and 177.9 s in the case of temporal planning), and the cost 
is the minimum payable when discarding four goals from 
the weighted list ( ) .c 1 2 3 4= + + +

ACCEPT ORDERING RULES
The robot should visit an ordered set of N 6=  mandatory 
targets [ ,tt0 41  ,tt1 51  ,tt2 31  ,tt3 51  ]tt4 51  (N 4=  with 
[ ,tt0 31  ,tt1 21  ]tt2 31  when we apply the time constraint). 
ENHSP and Tamer find a plan whether or not numerical and/
or temporal constraints are applied (Tests 5–7). For example, 
if no constraint is applied, ENHSP outputs (s t t t1 2 0" " " "

),t t t4 3 5" "  which consumes 84% of the battery, while 
Tamer outputs  ( ),s t t t t t t1 0 4 2 3 5" " " " " "  which con-
sumes 87% of the battery. Plans are valid as they meet the 
constraints imposed.

TEST OPTIMAL OPTIONAL ORDERED A3  N t (s) b (%) n (≤N) d (s) c 

0 – – – 100 6 0.68 | 0.16 92 | 89 6 | 6 279.9 | 274.2 –

1 [] – 100 6 0.74 | – 86 | – 6 | – 268.46 | – –

2 – [] – 100 8 10.27 | 767.52 99 | 97 7 | 7 292.1 | 287.96 1 | 1 (out of 36)

3 – [while] – 100 8 2.96 | 221.22 86 | 86 7 | 7 266.7 | 266.7 2 | 2 (out of 36)

4 – [within] – 100 8 2.5 | 186.84 55 | 57 4 | 4 175.7 | 177.9 10 | 10 (out of 36)

5 – – [] 100 6 0.72 | 0.21 84 | 87 6 | 6 265.2 | 269.51 –

6 – – [while] 100 6 0.76 | 51.49 89 | 89 6 | 6 274.3 | 274.56 –

7 – – [within] 100 4 0.49 | 33.19 54 | 54 4 | 4 174.1 | 174.3 –

Hydrone-R must visit N targets randomly sampled on a cube of side .A3  We ask for optimal plans and plans including optional or ordered targets. We 
impose no constraints ([]), numeric constraints ([while battery > 10%]), and temporal constraints ([within 180 s]). Results show the obtained planning 
time t (s), consumed battery b (%), number n of targets reached, duration d of the plan (s), and its cost c in the case of numeric (left) and temporal 
(right) planning.

TABLE 1. Performance of our planning module.

WE TESTED THE 
CAPABILITY OF OUR 
PLANNING MOD-
ULE TO AUTOMATI-
CALLY GENERATE 
VALID PLANS, OP-

TIMIZE RESOURCES, 
ACCEPT MANDATO-
RY AND OPTIONAL 
GOALS, RESPECT 
ORDERING RULES, 

AND REPLAN.
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REPLAN
We ask the robot to reach t0  while keeping in memory an 
ordered set of opportunities , , .G t t t1 2 3=l " ,  We decorate 
the plan with check actions verifying the battery level is 
 consistent with the simulated one. If greater than expected or 
enough to keep the robot operating, we add the first target of 
Gl not yet inspected. Once t0  is reached, check estimates that 
the battery level should be at least equal to 93.63%. It is cur-
rently 99.34%: we add .t1  The procedure continues until all 
targets in Gl are visited as the robot’s consumption model 
permits it. Without replanning, the robot would have visited 
only ,t0  leaving Gl for future missions.

The results are promising. Before exploiting the UP 
library, plans were manually calculated. For medium and 
complicated missions, the total time to write a valid, non-
optimized task was around three to 10 times its duration (for 
writing, simulation, and correction), which exceeds the aver-
age planning time we obtained in our tests. The error rate 
was linear with the complexity and length of the mission. 
The human could not formulate optimal plans, and the abil-
ity to assign opportunities and manage abnormal conditions 
was limited to a restricted number of conditions decided a 
priori with the customer. The goal was to handle those faults 
that make the robot inoperative via a priori-defined rescue 
operations. Now, contingencies can be arbitrarily defined 
and managed in real time via replanning.

CONCLUSIONS
In this article, we presented Hydrone-R, an AUV designed 
for autonomous deep-ocean inspection that can optimize 
available resources and minimize makespan. Moreover, it 
adapts to unforeseen situations and capitalizes on new oppor-
tunities. The planning module exploits the advanced UP 
library, which enhances decision making and enables effi-
cient (re)planning during underwater inspections. The library 
is open source and was developed as part of the AIPlan4EU 
project. We described the hardware and software architecture 
of our proposal and discussed its practical applications in the 
offshore energy industry. We believe that the proposed solu-
tion represents a step forward in the state of the art of under-
water robots, enabling true autonomy and ocean residence.
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