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Abstract

Temporal planning is an active research area of Artificial
Intelligence because of its many applications ranging from
robotics to logistics and beyond. Traditionally, authors fo-
cused on the automatic synthesis of plans given a formal rep-
resentation of the domain and of the problem. However, the
effectiveness of such techniques is limited by the complexity
of the modeling phase: it is hard to produce a correct model
for the planning problem at hand.
In this paper, we present a technique to simplify the creation
of correct models by leveraging formal-verification tools for
automatic validation. We start by using the ANML language,
a very expressive language for temporal planning problems
that has been recently presented. We chose ANML because
of its usability and readability. Then, we present a sound-
and-complete, formal encoding of the language into Linear
Temporal Logic over predicates with infinite-state variables.
Thanks to this reduction, we enable the formal verification of
several relevant properties over the planning problem, provid-
ing useful feedback to the modeler.

Introduction
Automated planning aims at synthesizing a course of ac-
tions suitable to achieve a desired objective, given a domain
model describing the effect of the actions. Planning is a ma-
ture research field, that has known an impressive period of
improvement. Several tools and techniques able to handle
increasingly larger problems exist (Vallati et al. 2015).

Planners rely on the quality of the domain model (e.g.
how an exploration rover responds to internal commands
and external stimuli) to produce useful plans (e.g. to col-
lect an interesting sample and transmit suitable informa-
tion within daylight). Planning domains are described by
means of general-purpose action description languages. For
the case of temporal planning, where actions have durations,
and temporal constraints are involved, we mention PDDL2.1
(Fox and Long 2003) and the Action Notation Modeling
Language (ANML) (Smith, Frank, and Cushing 2008).

Unfortunately, writing planning domains is known to be
a hard and error-prone task (Long, Fox, and Howey 2009).
This is particularly relevant in temporal planning: the com-
plexity of temporal constraints, continuous time, and issues
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related to the concurrency, may cause common errors, such
as forgetting necessary conditions, or imposing overly re-
strictive constraints. Similarly, temporal plans are very hard
to understand and to inspect manually.

In this paper, we tackle the problem of validation in the
setting of Temporal Planning, making the following con-
tributions. First, we formally define a semantics for the
temporal fragment of ANML. ANML is equipped with a
continuous-time semantics, and it natively offers a very intu-
itive syntax and support for advanced features such as timed
goals, conditions and effects at arbitrary times during ac-
tions. Interestingly, ANML is able to capture the temporal
fragment (level 3, without instantaneous actions) of PDDL
2.1, for which a translation into ANML exists. Second,
we propose an encoding of the behaviors associated to the
ANML temporal domain and goal in a corresponding for-
mulation into Linear Temporal Logic (Pnueli 1977) modulo
Rational Arithmetic (LTLRA). This is an extension of the
classical LTL, where it is possible to reason about rational-
valued variables. We use the rational variables from LTLRA
to represent time points and temporal expressions from the
continuous-time semantics of the ANML language. Third,
we formalize as queries in LTLRA several structural prop-
erties of planning problems, that are intended to pinpoint
the most common flaws in temporal domain descriptions.
Queries of interest include checks for action executability
and mutual exclusion, plan validation and plan completion.
The proposed queries are made practical by leveraging re-
cent, efficient infinite-state verification techniques and tools
based on Satisfiability Modulo Theory (Barrett et al. 2009).

Related Work
The difficulty of writing domain descriptions is clearly rec-
ognized in the planning community. In fact, there has been a
line of research focusing on the development of knowledge-
based approaches to support the formalization of planning
domains and problems (Simpson, Kitchin, and McCluskey
2007; Jilani et al. 2014). Several Integrated Development
Environment tools have been developed, that provide sub-
stantial features like domain visualization and plan anima-
tion. These works are primarily oriented to classical plan-
ning, and provide virtually no support for temporal aspects.
Furthermore, the approaches concentrate on supporting the
conversion of informal knowledge into domain models. This

This is a pre-print version of the homonymous paper appearing in AAAI 2017.
Copyright (c) 2017 belongs to AAAI Press



line of work is radically different from our approach in two
respects: we consider the case of temporal planning, and our
focus is on the formal validation of planning models via
property checking. We see the two approaches as strongly
complementary, and believe that our techniques could be in-
tegrated in some of the tools used for model development in
order to allow for early debugging.

There are several approaches to validation based on for-
mal methods and temporal logics. Some focus on classical
planning, in which actions are instantaneous. Calvanese, De
Giacomo, and Vardi (2002) explored an LTL formalization
of planning in nondeterministic domains. Other works con-
sidering LTL encodings of classical planning are (Mayer et
al. 2007) and (Cerrito and Mayer 1998). Raimondi, Pecheur,
and Brat (2009) cast some verification queries for classical
planning into planning problems. The fundamental differ-
ence with respect to our work is that we tackle the case of
temporal planning, which raises significant issues due to du-
rations and concurrency.

The problem of validation in temporal planning is largely
unexplored (see (Bensalem, Havelund, and Orlandini 2014)
for a survey). Most works address the problem of plan vali-
dation, i.e. checking whether a given plan is a solution for a
given planning problem. The state-of-the-art is represented
by the VAL tool (Howey, Long, and Fox 2004), a fast valida-
tion procedure for the full PDDL language, including con-
tinuous dynamics and time. The technique is limited to val-
idating complete plans only, due to its simulation approach
based on concrete, numerical methods. Our approach also
supports other queries (such as domain validation), and can
also tackle a more expressive form of plan validation, deal-
ing with incomplete initial conditions and partial plans. In
fact, the two approaches can be seen as complementary, and
their integration is the objective of future research.

Many formal approaches for validation in the temporal
case are based on a reduction to timed automata. Our re-
duction, based on temporal logic, greatly simplifies the en-
coding, and allows us to handle a very rich set of constructs
and queries in a single framework. The works (Orlandini et
al. 2014; Cesta et al. 2010) focus on plan validation, with
particular emphasis on the analysis of temporal flexibility
(the plan is not represented as a time-triggered set of actions
with duration, but as a set of constraints: each model of the
constraints yield a plan), without considering the problem of
domain validation.

The domain validation problem is tackled in the tem-
poral setting by (Khatib, Muscettola, and Havelund 2000;
2001). These works reduce the HSTS planner language to a
Timed Automaton to be verified with the UPPAAL model
checker (Behrmann et al. 2006). This work also discusses
two structural queries: checking the mutual exclusion of two
predicates, and checking the reachability of a predicate (ei-
ther from a defined initial state, or from all the initial states).
Our work deals with a significantly more expressive lan-
guage, and covers in a single framework a much larger set
of queries. In (Penix, Pecheur, and Havelund 1998), abstrac-
tion is used to encode some queries over the HSTS language
into finite-state model-checking.

Finally, we mention the plan generation approach of (Si-

miniceanu, Butler, and Muñoz 2008): a temporal planning
language is encoded into a symbolic transition system in the
SAL (Bensalem et al. 2000) modeling language, and model
checking techniques are used for planning. Our focus is not
on plan generation but on many forms of validation. Further-
more, thanks to the use of a rich temporal logic, we are able
to deal with a richer domain description, and to succinctly
specify very expressive properties.

LTL Modulo Rational Arithmetic
We use an extension of the usual Linear Temporal Logic
(LTL) (Pnueli 1977) beyond the Boolean case. We allow for
the use of variables having domain over the rational numbers
and a first-order signature comprising arithmetic constants,
the operators + and× and the relations = and <. Moreover,
we allow for terms built with a special operator v′ where v
is a variable. This operator allows to express conditions on
the value of the variables in the next state of a trace. We
call this logic LTL Modulo Rational Arithmetic (LTLRA).
This logic is a fragment of the extended RELTL logic in-
troduced in (Cimatti, Roveri, and Tonetta 2015).

Let VR be a set of rational variables, and VB be a set of
Boolean variables. A formula λ in LTLRA over V =̇VR∪VB
is defined by the following grammar.

τ =̇ c | vR | v′R | τ1 + τ2 | τ1 × τ2
α =̇ vB | τ1 = τ2 | τ1 < τ2

λ =̇ α | ¬λ | λ1 ∧ λ2 | X λ | λ1 U λ2

Where c is an arithmetic constant, vR ∈ VR, and vB ∈ VB.
We use the following abbreviations: > =̇ (1 = 1), ⊥ =̇ ¬>,
λ1∨λ2=̇¬(¬λ1∧¬λ2), λ1 → λ2=̇¬λ1∨λ2, τ1 ≤ τ2=̇τ1 <
τ2∨τ1 = τ2, τ1 > τ2=̇τ2 < τ1, τ1 ≥ τ2=̇τ2 < τ1∨τ1 = τ2,
F λ =̇ > U λ, and G λ =̇ ¬F ¬λ. Moreover, given a set
of formulae Λ =̇ {λ1, · · · , λn}, we write EXACTLYONE(Λ)

for the formula (
∨n
i=1 λi)∧ (

∧n−1
i=1

∧n
j=i+1 ¬(λi∧λj)) that

holds if and only if exactly one of the λi ∈ Λ holds.
We interpret terms (τ ) and atoms (α) using standard first-

order semantics JK over the real arithmeticRA=̇〈R,+,×, <
〉. We slightly abuse the notation by using c for JcKRA for any
c ∈ R, + for J+KRA and × for J×KRA. An assignment for
V =̇VR∪VB is a function µ mapping each vR ∈ VB to B and
each vR ∈ VR to R. We write µ |=RA α to indicate that µ
satisfies α. We write µ′ for the assignment µ′(v′) = µ(v) for
all v ∈ V that assigns all the next operators applied to vari-
ables. We write µ ∪ µ′ to indicate the assignment obtained
by the union of functions µ and µ′ having disjoint domain.
LTLRA is interpreted over discrete traces with rational val-
ues. A trace over V is an infinite sequence of assignments
σ : N → Σ(V ), where Σ(V ) indicates all the possible as-
signments to V . Since we allow for the next operator we in-
terpret the logic on a pair of consecutive time points instead
of a single one.

• σ, i |= α iff σ(i) ∪ σ′(i+ 1) |=RA α;

• σ, i |= ¬λ iff σ, i 6|= λ;

• σ, i |= λ1 ∧ λ2 iff σ, i |= λ1 and σ, i |= λ2;

• σ, i |= X λ iff σ, i+ 1 |= λ;



• σ, i |= λ1 U λ2 iff exists j ≥ i s.t. σ, j |= λ2 and for all
i ≤ k < j, σ, k |= λ1.

In general, the satisfiability problem for LTLRA is undecid-
able. However, infinite-state model-checking techniques can
be applied to tackle the satisfiability problem in a sound-
but-incomplete way (Cimatti, Roveri, and Tonetta 2015).
Such technologies are based on efficient Satisfiability Mod-
ulo Theory (SMT) decision procedures and are becoming in-
creasingly efficient (Cimatti et al. 2014; Cavada et al. 2014).

Problem Definition
We now formalize the temporal planning fragment of the
ANML language that we consider in this work. We chose
to adopt the temporal fragment of ANML for two main rea-
sons. First, we believe that ANML is a good language for
hand-modeling complex scenarios thanks to its expressive
and simple syntax. Second, the temporal part of the widely
used PDDL 2.1 language (that is the fragment in which
no instantaneous actions and continuous dynamics are in-
volved) is subsumed by ANML, allowing us to experiment
also with PDDL domains1.

As a running example, we consider the classical Match
Cellar domain (Coles et al. 2009) taken from the tempo-
ral track of the 2014 International Planning Competition
(IPC). The problem consists in fixing a number of fuses
with the “MEND FUSE” action, but in order to mend a fuse,
we need light throughout the execution of the mending ac-
tion. Light can be provided by lighting matches with the
“LIGHT MATCH” action. For our example, we assume to
have a single match that can provide light for 5 time units
and two fuses, each needing 2 time units to be fixed. The
resulting planning problem in the ANML syntax is reported
in figure 1.

We now formalize the abstract syntax and the correspond-
ing semantics of a planning problem. Our language is in-
spired by the ANML language: we allow for rich temporal
conditions as well as infinite-state fluents2.
Definition 1. Given a finite set of rational fluents FR, a ra-
tional expression over FR is:

ρ =̇ c | fR | START | DUR | ρ1 + ρ2 | ρ1 × ρ2
where c ∈ R and fR ∈ FR.
Definition 2. Given a set of rational fluents FR and a set of
Boolean fluents FB, a Boolean expression over FR ∪ FB is:

β =̇ fB | ρ1 = ρ2 | ρ1 < ρ2 | β1 ∧ β2 | ¬β

where ρ1 and ρ2 rational formulae over FR and fB ∈ FB.
Analogously to the LTLRA case, we define the following

rewritings:> =̇ (1 = 1),⊥ =̇¬>, β1 ∨β2 =̇¬(¬β1 ∧¬β2),
β1 → β2 =̇ ¬β1 ∨ β2, ρ1 ≤ ρ2 =̇ ρ1 < ρ2 ∨ ρ1 = ρ2,
ρ1 > ρ2 =̇ ρ2 < ρ1, ρ1 ≥ ρ2 =̇ ρ2 < ρ1 ∨ ρ1 = ρ2, and
END =̇ START + DUR.

1The syntactical reduction from the temporal fragment of
PDDL 2.1 to ANML can be found online at https://es.fbk.
eu/people/amicheli/resources/aaai17.

2Following ANML terminology, we call “fluent” any variable
of the problem, rational or Boolean.

1 type fuse;
2 type match;
3
4 fluent boolean handfree;
5 fluent boolean light(match m);
6 fluent boolean mended(fuse f);
7 fluent boolean unused(match m);
8
9 action LIGHT_MATCH(match m) {

10 duration := 5;
11 [start] unused(m);
12 [start] unused(m) := false;
13 [start] light(m) := true;
14 [end] light(m) := false;
15 };
16
17 action MEND_FUSE(fuse f, match m) {
18 duration := 2;
19 [start] handfree; (start, end) light(m);
20 [start] handfree := false;
21 [end] mended(f) := true;
22 [end] handfree := true;
23 };
24
25 instance fuse f1, f2;
26 instance match m1;
27
28 [start] handfree := true;
29 [start] unused(m1) := true;
30 [end] mended(f1) and mended(f2);

Figure 1: The Match Cellar running example in ANML.

We say that an expression is constant if it contains no flu-
ents and that an expression is time-independent if it contains
no START nor DUR terms.

Definition 3. Given two rational expressions e1 and e2, we
define the four possible intervals:

1. [e1, e2] closed;
2. (e1, e2] left-open;
3. [e1, e2) right-open;
4. (e1, e2) open.

We write [(e1, e2)] to indicate an instance of the above pos-
sibilities without distinguishing the type, similarly [(e1, e2]
indicates an interval that can be open or close on the left,
but close on the right, and so on. Moreover, we write [e] to
indicate the single-point interval [e, e].

Definition 4. A planning problem P =̇ 〈F, T,A,G〉 is s.t.:

• F = FB∪FR is a finite set of Boolean and rational fluents.
• T is a finite set of Timed-Initial-Literals (TILs), each of

the form 〈[e1] f := e2〉 where f ∈ F , e1 is a constant,
rational expression and e2 is a constant time-independent
expression with the same type as f .

• A is a set of durative actions of the form a=̇〈C,E〉where:
– C is the set of conditions of the form 〈[(e1, e2)] e3〉 with
e1 and e2 being constant, rational expressions and e3
being a Boolean expression;

– E is a set of instantaneous effects of the form 〈[e1]f :=
e2〉 where f ∈ F , e1 is a constant, rational expression
and e2 is an expression of the same type of f .

• G is a set of timed goals each of the form 〈[(e1, e2)] e3〉
with e1 and e2 being constant,rational expressions and e3
being a Boolean expression.

Intuitively, the language allows the description of tempo-
ral planning domains that can modify a finite set of either
Boolean or rational valued fluents. The initial state and the



exogenous temporal evolution can be specified by means of
TILs: in fact, a TIL at time 0 is an initial condition. Ac-
tions can have arbitrary conditions on their duration and we
can express conditions having starting or ending times at
any point within an action. Note that we do not allow for
effects and condition outside the interval in which an ac-
tion occurs, and this fact is checked by the semantics be-
low. This abstract syntax closely corresponds to the ANML
one (Smith, Frank, and Cushing 2008). The only impor-
tant difference here is that we described a ground language,
while ANML allows for lifted specifications (and our exam-
ple in figure 1 show a use of this feature). In the follow-
ing, we report the grounded, abstract syntax for the example
problem. (Here and in the following, we indicate the flu-
ent handfree as hf , light(m1) as l1, mended(f1) as
m1, mended(f2) as m2, unused(m1) as u1, the action
LIGHT MATCH(m1) as LM1, MEND FUSE(f1) as MF1,
and MEND FUSE(f2) as MF2).

F =̇ FB =̇ {hf, l1,m1,m2, u1} G =̇ {〈[END]m1 ∧m2〉}

T =̇ {〈[0] hf := >〉, 〈[0] light(u1) := >〉, 〈[0] l1 := ⊥〉,

〈[0]m1 := ⊥〉, 〈[0]m2 := ⊥〉}

A =̇ {〈C1, E1〉, 〈C2, E2〉, 〈C2, E3〉}

C1 =̇ {〈[START] DUR = 5〉, 〈[START] u1〉}

E1 =̇ {〈[START] u1 := ⊥〉, 〈[START] l1 := >〉, 〈[END] l1 := ⊥〉}

C2 =̇ {〈[START] DUR = 2〉, 〈[START] hf〉, 〈(START, END) l1〉}

E2 =̇ {〈[START] hf := ⊥〉, 〈[END] hf := >〉, 〈[END]m1 := >〉}

E3 =̇ {〈[START] hf := ⊥〉, 〈[END] hf := >〉, 〈[END]m2 := >〉}

For the sake of this paper, we focus on time-triggered plans,
namely plans comprising a finite number of actions to be
executed at specified times each with specified duration.

Definition 5. A time triggered plan π for P is a se-
quence 〈〈s1, a1, d1〉, 〈s2, a2, d2〉, · · · , 〈sn, an, dn〉〉, where
si ∈ R+, ai ∈ A, di ∈ R+ and si ≤ si+1.

We give the semantics of the planning language by defin-
ing the validity of a plan π for a given problem P . As usual,
we say that P admits a solution if there exists a valid plan,
otherwise the problem is said to be unsolvable.

The basic element of our semantics is a chronicle, that
is used to assign a value to each fluent in F for each time
instant x ≥ 0 ∈ R+.

Definition 6. A chronicle τ for a given problem instance
P =̇ 〈F, T,A,G〉 is a set of functions {τf | f ∈ F}. Each
τf maps a positive rational into a value for f .

Definition 7. The value of an expression e in a chronicle τ
at a time t ∈ R+ in a context starting at time s ∈ R+ with
duration d ∈ R+ (written JeKτs,d(t)) is defined as follows:

1. JcKτs,d(t) =̇ c, with c ∈ R;
2. JfKτs,d(t) =̇ τf (t);
3. JSTARTKτs,d(t) =̇ s;
4. JDURKτs,d(t) =̇ d;
5. Je1 + e2Kτs,d(t) =̇ Je1Kτs,d(t) + Je2Kτs,d(t);
6. Je1 × e2Kτs,d(t) =̇ Je1Kτs,d(t)× Je2Kτs,d(t);

7. Je1 = e2Kτs,d(t) =̇> iff Je1Kτs,d(t) = Je2Kτs,d(t);

8. Je1 < e2Kτs,d(t) =̇> iff Je1Kτs,d(t) < Je2Kτs,d(t);

9. Je1 ∧ e2Kτs,d(t) =̇> iff Je1Kτs,d(t) and Je2Kτs,d(t);

10. J¬eKτs,d(t) =̇> iff JeKτs,d(t) is false.

For constant expressions we write JeKs,d (τ and t are not
needed). For constant, time independent expressions we
write JeK.

Definition 8. Given a plan π we define the make-span msπ
as max({t+ d | 〈t, a, d〉 ∈ π}).

Given a plan, we can now define the chronicle induced by
it. In our language we have two components that contribute
to change the state of a fluent, namely the TILs and the ac-
tion effects. Apart for these events, each fluent is assumed
to maintain its value in the other time instants. To formalize
this concept we start by collecting the set of change events
(with the temporal extremes of the intervals they appear in)
in the execution of the plan.

Definition 9. Given a planning problem P =̇ 〈F, T,A,G〉
and a plan π =̇ {〈ti, ai, di〉 | i ∈ [1, n]}, the set of changes
induced by π is a multi-set CH(P, π) s.t.:

• for all 〈[e1] f := e2〉 ∈ T , 〈Je1K0,msπ , f, e2, 0,msπ〉 ∈
CH(P, π);

• for all 〈t, a, d〉 ∈ π with a =̇ 〈C,E〉, ∀〈[e1] f := e2〉 ∈ E,
〈Je1Kt,d, f, e2, t, d〉 ∈ CH(P, π) if t ≤ Je1Kt,d ≤ t+ d.

The set of changes is defined as a multi-set because it is
possible for two identical effects to happen at the same time.
This will be a reason to declare a plan not-valid in Defini-
tion 12, but here we have to take this possibility into ac-
count. Note the last condition: we are requiring that each
effect of each action happens within the action itself. In
this way, an hypothetical effect 〈[START + 6] hf := >〉
in the action LM1 of the running example would make the
problem badly-defined. This also implies that each change
〈t, f, v, t0, d0〉 is such that t ≥ t0. Now we can define the
chronicle induced by a plan by imposing that at each change
point the chronicle changes its value and between any two
changes, the chronicle maintains the “older” value.

Definition 10. Given a planning problem P , the chron-
icle τπ induced by a plan π is s.t. for each x ∈ R+

and each 〈ts, f, v, t0, d0〉 ∈ CH(P, π) s.t ts < x ≤
min({te | 〈te, f, v′, t′, d′〉 ∈ CH(P, π) ∧ te > ts}),
τπf (x) = JvKτ

π

t0,d0
(t0).

Intuitively, each fluent in each time point assumes the
value imposed by the last change until another effect is ap-
plied. Note the strict inequality in the definition: we impose
the value of an effect immediately after the change is sched-
uled to happen. Also, there is no minimum time quantum
(as in PDDL 2.1): we only require a positive amount of time
between an effect and a condition requiring it.

As an auxiliary definition, we introduce the absolute-time
interval of a condition of an action appearing in a plan. The
idea is to define the subset of the time points in which each
condition is required to hold given a plan.



τhf

τm1

τm2

τu1

τl1

time0 1 2 3 4 5 6 7

LM1

MF1 MF2

Figure 2: Evolution of the running example on plan πex.

Definition 11. The absolute-time interval Ωτ (c, s, d) of a
condition c in a context starting at s with duration d is:

Ωτ (c, s, d)=̇


[Je1Kτs,d(s), Je2K

τ
s,d(s)] if c = 〈[e1, e2] φ〉

(Je1Kτs,d(s), Je2K
τ
s,d(s)] if c = 〈(e1, e2] φ〉

[Je1Kτs,d(s), Je2K
τ
s,d(s)) if c = 〈[e1, e2) φ〉

(Je1Kτs,d(s), Je2K
τ
s,d(s)) if c = 〈(e1, e2) φ〉

We now define the validity of a plan for a problem: it suf-
fices to check that no pair of changes are applied in the same
instant (1), that each action condition holds in its absolute-
time interval (2), and that each goal is also satisfied (3).
Definition 12. Given a problem P =̇ 〈F, T,A,G〉, a plan π
is valid, if the chronicle τπ is s.t:

1. for each t ∈ R and each f ∈ F ,
|〈JvKτπt0,d0(t) | 〈t, f, v, t0, d0〉 ∈ CH(P, π)〉| ≤ 1;

2. for each 〈t, a, d〉 ∈ π with a=̇〈C,E〉, and for each c ∈ C
(with c = 〈[(e1, e2)] e3〉) and each x ∈ Ωτπ (c, t, d), t ≤
x ≤ t+ d and Je3Kτ

π

t,d(x) holds;
3. for each goal condition c = 〈[(e1, e2)] e3〉 ∈ G,

Je3Kτ
π

0,msπ (x) holds for any x ∈ Ωτπ (c, 0,msπ).

Note that we are requiring that each condition of each
action happens during the action itself. Figure 2 shows the
chronicle for the running example problem on the following
(valid) plan:

πex=̇{〈2, LM(1), 5〉, 〈2.25,MF (1), 2〉, 〈4.75,MF (2), 2〉}.

Encoding in LTLRA

Given a planning problem P =̇ 〈F = FB ∪ FR, T, A,G〉,
we now describe how to encode P into an LTLRA formula
such that the models of such formula encode the executions
of P for any valid plan. First, we define the variables of the
encoding.
Definition 13. The set of variables appearing in the encod-
ing of P is V P =̇ V PB ∪ V PR where:

• V PB =̇ {a | a ∈ A} ∪ {f | f ∈ FB};
• V PR =̇ {t, ω} ∪ {δa, sa | a ∈ A} ∪ {f | f ∈ FR}.

Intuitively, t will record the current absolute time in the
execution, ω will mark the time at which the plan is termi-
nated (i.e. the make-span), each f with f ∈ F records the

value of the corresponding fluent and a, δa and sa are used
to encode the execution of the action a ∈ A.

The intuition behind the encoding is as follows. We ab-
stract the chronicles in the semantics of the planning lan-
guage by representing only the discrete points in which an
effect happens (this amounts to encode the set of changes
in Definition 9). This constitutes a trace that is accepted by
our LTLRA encoding, while all invalid traces are rejected.
Using the variables introduced above, we can constrain the
behaviors according to the planning problem semantics. For
example, the evolution depicted in figure 2 corresponds to
the trace σex defined as follows. (To save space, we only re-
port the Boolean variables set to> and the rational variables
set to a value different from 0.)

σex(0) =̇ {hf, u1, ω = 8}

σex(1) =̇ {hf, l1, LM1, sLM1
= 2, δLM1

= 5, t = 2, ω = 8}

σex(2) =̇ {l1,MF1LM1, sMF1
= 2.25, sLM1

= 2, δMF1
= 2,

δLM1
= 5, t = 2.25, ω = 8}

σex(3) =̇ {hf,m1, l1,MF1, LM1, sLM1
= 2, δLM1

= 5, t = 4.25, ω = 8}

σex(4) =̇ {m1, l1,MF2, LM1, sMF2
= 4.75, sLM1

= 2, δMF2
= 2,

δLM1
= 5, t = 4.75, ω = 8}

σex(5) =̇ {hf,m1,m2, l1,MF2, LM1, sLM1
= 2, δLM1

= 5,

t = 6.75, ω = 8}

σex(6) =̇ {hf,m1,m2, LM1, t = 7, ω = 8}

σex(7) =̇ {hf,m1,m2, t = 7.5, ω = 8}

σex(i) =̇ {hf,m1,m2, t = 8, ω = 8}for each i ≥ 8

We now introduce the encoding of expressions into
LTLRA. Intuitively, an expression in the planning language
is transposed in LTLRA by keeping its operators, but inter-
preting the references to fluents as variables of the formula
and by interpreting the START and DUR temporal references
depending on the context of the expression.
Definition 14. Let e be any expression in the planning prob-
lem P , and let a ∈ A∪{∅}, the encoding of e in the context
of a (written LeMa) is:

1. LcMa =̇ c, with c ∈ R;
2. LfMa =̇ f , with f ∈ F ;
3. LSTARTM∅ =̇ 0;
4. LSTARTMa =̇ sa with a ∈ A;
5. LDURM∅ =̇ ω;
6. LDURMa =̇ δa with a ∈ A;
7. Le1 + e2Ma =̇ Le1Ma + Le2Ma;
8. Le1 × e2Ma =̇ Le1Ma × Le2Ma;
9. Le1 = e2Ma =̇ Le1Ma = Le2Ma;

10. Le1 < e2Ma =̇ Le1Ma < Le2Ma;
11. Le1 ∧ e2Ma =̇ Le1Ma ∧ Le2Ma;
12. L¬eMa =̇ ¬LeMa.

We can now define the domain encoding εdP of P as the
conjunction of the following LTLRA formulae.

1. t = 0; i.e. the initial time is 0.
2. G (ω = ω′); i.e. the time horizon never changes.



3. G ((t < ω) → (t < t′)); i.e. the time always increases
before the time horizon.

4. G((t≥ω)→((
∧
f∈V P f=f

′
)∧(

∧
a∈A ¬a)∧(t= t′)); i.e.

after the time horizon, all the variables keep their values
and no action is executing.

5.
∧
a∈AG (a → (δ′a = δa ∧ s′a = sa)); i.e. the δa and sa

variables are kept during an action execution.

6.
∧
a∈AG ((¬a∧Xa)→ X (aU (X¬a∧ t = δa + sa)));

i.e. a terminates exactly at time t = δa + sa.

7. G ((¬a∧X a)→ X (aU (t = Le1Ma ∧ f = Le2Ma))) for
each effect [e1]f := e2 of each action a; i.e. each effect
changes the value of a fluent in a step that is forced to
happen at the time specified by e1.

8. G (((X a ∧ t < Le1M′a ∧ X (t ≥ Le1Ma)) → Le3Ma) ∧
((a∧t ≥ Le1Ma∧t < Le2Ma)→ Le3Ma)) for each condition
〈[e1, e2)] e3〉 of each action a; i.e. each durative condition
closed on the left is achieved before the time specified by
e1 and kept during the whole interval.

9. G (((X a ∧ t ≤ Le1M′a ∧ X (t > Le1Ma)) → Le3Ma) ∧
((a∧t > Le1Ma∧t < Le2Ma)→ Le3Ma)) for each condition
〈(e1, e2)] e3〉 of each action a; i.e. each durative condition
open on the left is achieved before or at the time specified
by e1 and kept during the whole interval.

This is the “domain” part of the encoding: we are defin-
ing the evolution of time (conjuncts 1 to 3), then we impose a
strictly looping trace in which the system stops moving after
the horizon that is fixed at ω (constraint 4). We encode each
action with an associated Boolean variable that can be set
to > when the action starts and is kept > during the action
execution. Conjunct 5 imposes that the values of the starting
time sa and of the duration δa are kept during the execution
of the action. In this way, the system is free to choose suit-
able values for the duration and the starting time (before the
action starts), but those cannot be changed during an action
execution. Then, we impose (constraint 6) that the action ter-
minates exactly at time sa+δa. Finally, constraint 7 imposes
that there must be a step in which each effect of the action is
realized, while constraints 8 and 9 ensure that all the action
conditions are satisfied. Note that, we do not need to encode
dedicated steps for the conditions bounds because we check
the value of each fluent before the starting of the condition
and during it, this is enough for the condition to be satisfied.

We define the problem encoding of P as the LTLRA for-
mula εpP =̇ τP ∧ γP ; where:
τP =̇

∧
〈[e1] f :=e2〉∈T ω > Le1M∅∧F(t = Le1M∅∧f = Le2M∅)

and γP is the conjunction of the following formulae:

1.
∧

[(e1,e2)]e3∈G ω ≥ Le2M∅;

2. G(((t < Le1M∅∧X(t ≥ Le1M∅))→ Le3M∅)∧((t ≥ Le1M∅∧
t < Le2M∅) → Le3M∅) ∧ ((t = Le1M∅ ∧ t = 0) → Le3M∅))
for each goal 〈e1, e2)] e3〉;

3.
∧

(e1,e2)]e3∈GG (((t ≤ Le1M∅ ∧ X (t > Le1M∅)) →
Le3M∅) ∧ ((t > Le1M∅ ∧ t < Le2M∅) → Le3M∅)) for each
goal 〈[e1, e2)] e3〉.

Intuitively, τP encodes the TILs of the problem by forc-
ing that we will eventually have a step corresponding to the
time of the TILs in which the corresponding effect is applied
(this is similar to an action effect). The formula γP requires
all the timed goals to be reached: the LTLRA encoding is
analogous to the condition of actions, but here we allow for
goals to be specified starting from time 0 and we interpret
the START and DUR time references relatively to time 0 and
the make-span of the execution, respectively.

Finally, we define the frame condition. In fact, we must
enforce that each change in the value of each fluent is moti-
vated by an effect, otherwise it would be possible for a fluent
to change value without a cause. For the subsequent analy-
ses, we define two different frame condition formulae, one
that only considers the domain actions (φdP ) and one that
considers the full problem (φpP ).
φdP =̇

∧
f∈V P G ((f 6= f

′
)→ EXACTLYONE(Acts))

φpP =̇
∧
f∈V P G((f 6= f

′
)→ EXACTLYONE(Acts∪Tils))

where Acts =̇ {X (a ∧ Le1Ma = t) | [e1]f := e2 ∈ E, a =
〈C,E〉 ∈ A} and Tils=̇{X(Le1M∅ = t) | [e1]f := e2 ∈ T }.

The difference between these two formulations is only in
the consideration of TILs: φdP does not consider them be-
cause we want to encode only the domain, without the initial
state and the timed effects, while φpP fully considers them.

The correctness of the domain-validation queries is based
on the following theorem3 stating that regardless of the ini-
tial state and the goal, the εdP formula captures any possible
evolution of the planning problem.
Theorem 1. Let P be a planning problem admitting a solu-
tion, then εdP is satisfiable.

Note that, the converse is not true: depending on the initial
state and the goals, it is possible that P is unsolvable while
εdP is satisfiable. The correctness of the problem- and plan-
validation queries relays on the following, stronger property.
Theorem 2. εdP ∧ ε

p
P ∧ φ

p
P is satisfiable if and only if the

planning problem P admits a solution.
The encoding does not bound the number of time points,

nor it requires the specification of an horizon (the horizon
exists for every execution of a plan, but the encoding decides
the horizon by setting the ω variable). However, the encod-
ing disallows self-concurrency: we have a Boolean variable
dedicated to each action that is kept true in the time points
in which the action is executing and this prevents another in-
stance of the same action to be executed concurrently. This
is a common limitation and a possible solution is to bound
the number of self-concurrent actions and instantiate the en-
coding on a problem with multiple copies of such actions.

Validation Queries
In this section, we show how to exploit our LTLRA en-
coding to perform several validation queries. The user can
clearly specify any LTLRA property of interest and check
its satisfiability or validity, but here we indicate how to en-
code some common properties of interest. We believe that

3All the theorem proofs are available at https://es.fbk.
eu/people/amicheli/resources/aaai17.



this could be a reasonable set of checks that a modeling tool
could perform automatically to help the domain-expert dur-
ing the development of domains and problems.
Action Executability. One common modeling error that can
arise in practice is the non-applicability of an action a due
to non-realizable conditions. This can be easily checked in
our framework by checking the property εdP ∧ φdP ∧ F a.
If the property is unsatisfiable, it means that regardless of
the initial state or the goal, the action a cannot be executed.
Otherwise, any satisfying trace shows a path that eventually
starts the action a. Note that, this formulation does not con-
sider TILs: due to the definition of φdP , we are only giving
the freedom to pick an arbitrary initial state, not to change
the values of fluents during the execution without an action
effect. If TILs have to be considered, we can use the φpP for-
mulation in place of φdP by filtering only the TILs of interest.

This check is important if an action has an effect or a con-
dition that happens outside of the action. In fact the encod-
ing forbids those, making the action non-executable (i.e. the
corresponding Boolean variable cannot be set to >).
Action Mutex. A second domain validation query is to
check if two given actions are mutually exclusive. Given two
actions a1 and a2, we can prove that the actions are mutually
exclusive in a given planning problem P by checking the
validity of εdP ∧ φdP → ¬F (a1 ∧ a2). Intuitively, we check
that for any execution respecting the domain constraints, it
is impossible to reach a state in which both a1 and a2 are
executing simultaneously.
Plan Generation. The plan generation problem can be re-
shaped as an LTLRA satisfiability check exploiting Theo-
rem 2. If εdP ∧ ε

p
P ∧φ

p
P is satisfiable, then the planning prob-

lem is solvable and any satisfying trace yields a plan. In or-
der to extract a plan from the trace, we can simply search for
the states in which an action a is set to > being previously
⊥: the starting time of the action will be the value of sa and
the prescribed duration will be the value of δa.

We highlight that, the performance of current model-
checkers in finding temporal plans is not comparable to
heuristic-based temporal planners, but this query is still very
useful for at least two purposes. First, differently from most
planners, if the problem admits no plan, the model checker is
able to eventually terminate proving that no plan exist. Sec-
ond, we can use this query to validate a planning algorithm
using any model-checker for LTLRA.
Plan Completion. We can check whether a given plan
π=̇{〈s1, a1, d1〉, · · · 〈sn, an, dn〉} can be extended to a valid
plan by checking the satisfiability of the LTLRA formula
εdP ∧ ε

p
P ∧ φ

p
P ∧ χπ , where χπ is defined as the formula∧

〈s,a,d〉∈π F (sa = s ∧ a ∧ δa = d). In particular, the for-
mula is unsatisfiable if and only if π is cannot be extended
to a solution plan for P , otherwise any satisfying trace for
the formula witnesses an execution in which at least all the
action prescribed by π are executed, and possibly other ac-
tions are used to complete the plan. We can construct the
complete plan analogously to the previous query.
Plan Validation. We can reduce the validity checking of
a given a plan π =̇ {〈s1, a1, d1〉, · · · 〈sn, an, dn〉}, to an
LTLRA satisfiability problem by considering εdP∧ε

p
P∧φ

p
P∧

χπ∧ξπ where, ξπ=̇
∧
a∈AG(a→

∨
〈s,a,d〉∈π(sa = s∧δa =

d)). If the formula is satisfiable, then the plan is valid and
each satisfying trace yields a witness of the plan execution,
otherwise the plan is invalid. The intuition is that we are
performing a plan completion check with the additional con-
straints that no actions can be added by the planner.
Domain specific. Apart for the aforementioned structural
queries, the user can also specify domain specific properties
directly in LTLRA, and check them against the encoding,
following an approach similar to (Cimatti et al. 2012).

For example, it is possible to check that a particular value
v for a fluent f needs to be eventually achieved in any valid
plan (i.e. f = v is a landmark) by checking the formula:
εdP ∧ ε

p
P ∧ φ

p
P → F (f = v).

In addition, it is also possible to inspect traces satisfying a
property, leveraging symbolic simulation provided by some
model-checkers.

Discussion and Conclusions
In this paper we tackled the problem of validation for tem-
poral planning. We presented a semantic characterization of
the temporal fragment of the ANML language, a provably
correct encoding into LTLRA, and we defined a number of
plan and domain validation queries.

The approach is made practical by leveraging efficient,
modern infinite-state model-checkers. We implemented a
prototype of the encoder and experimented with several
ANML and PDDL problems. We use the NUXMV (Cavada
et al. 2014) model-checker to check the satisfiability (or
the validity) of the produced formulae. Our implementation
is available at https://es.fbk.eu/people/amicheli/
resources/aaai17. The tool is able to quickly handle all
the ANML handcrafted domains we tested on the various
queries, and to prove action executability for all the domains
in the 2014 IPC (Vallati et al. 2015). The current approach
falls short when confronted with planning problems over
real-sized domains from the IPC. This is to be expected, due
to the huge size of the problems resulting from grounding,
and to the lack of heuristics, that reduces planning based on
LTLRA encoding to an iterative-deepening search.

There are several directions for future work. The first
one is to optimize our encoder and empirically evaluate it
on several benchmark problems to provide a coherent tool
that automatizes the interaction between the encoder and the
model-checker. Many optimizations are possible: for exam-
ple, the duration is often a constant, and need not be encoded
as a variable; furthermore, the initial state (i.e. the TILs spec-
ified at time 0) can be enforced inLTLRA instead of treating
it as a general-case TIL. We remark, however, that the pri-
mary purpose of the proposed techniques is not plan genera-
tion, but rather to support the elimination of modeling flaws
in temporal domains.

Other extensions include the modeling of continuous
change and resources, based on the use of a more expres-
sive logic over hybrid traces such as HRELTL (Cimatti,
Roveri, and Tonetta 2015). Finally, a fundamental direction
is the analysis of domains including actions with uncontrol-
lable durations and non-deterministic effects.
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