
Artificial Intelligence 307 (2022) 103686

This is a pre-print version of the homonymous paper appearing in Artificial Intelligence 2022.
Copyright (c) 2022 belongs to Elsevier.
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Decidability and complexity of action-based temporal
planning over dense time

Nicola Gigante a,∗, Andrea Micheli b, Angelo Montanari c, Enrico Scala d

a Free University of Bozen-Bolzano, Italy
b Fondazione Bruno Kessler, Trento, Italy
c University of Udine, Italy
d University of Brescia, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 December 2020
Received in revised form 23 February 2022
Accepted 1 March 2022
Available online 4 March 2022

Keywords:
Temporal planning
Computational complexity
Timed automata
Tiling problems

In this paper, we study the computational complexity of action-based temporal planning
interpreted over dense time. When time is assumed to be discrete, the problem is
known to be EXPSPACE-complete. However, the official PDDL 2.1 semantics and many
implementations interpret time as a dense domain. This work provides several results
about the complexity of the problem, focusing on some particularly interesting cases:
whether a minimum amount ε of separation between mutually exclusive events is given,
in contrast to the separation being simply required to be non-zero, and whether or not
actions are allowed to overlap already running instances of themselves. We prove the
problem to be PSPACE-complete when self-overlap is forbidden, whereas, when it is
allowed, it becomes EXPSPACE-complete with ε-separation and even undecidable with
non-zero separation. These results clarify the computational consequences of different
choices in the definition at the core of the PDDL 2.1 semantics, which have been vague
until now.1

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Domain-independent planning [33] is one of the classical fields of Artificial Intelligence and received considerable at-
tention over the years. One of the most active research directions in this context is temporal planning, which represents
and reasons about the flow of time explicitly. A popular modeling language for such problems is PDDL 2.1 [28], an action-
centered formalism that extends classical planning by explicitly modeling the duration of actions. A temporal planning
problem in PDDL 2.1 consists of looking for a sequence of actions that is not only causally executable (as in classical plan-
ning), but also schedulable, in accordance to a given set of constraints on action duration, along a timeline of unbounded
length. Several planning systems [18,27,31,46] as well as various international planning competitions [19,52] adopt or have
adopted PDDL 2.1 for the specification of the temporal planning problem.

Here, we study the computational complexity of temporal planning problems over a dense temporal domain, that is, when
time points are interpreted as elements of a dense linear order (one where there is always a third element between any

* Corresponding author.
E-mail addresses: nicola.gigante@unibz.it (N. Gigante), amicheli@fbk.eu (A. Micheli), angelo.montanari@uniud.it (A. Montanari), enrico.scala@unibs.it

(E. Scala).
1 This paper is a considerably extended and revised version of [36].
https://doi.org/10.1016/j.artint.2022.103686
0004-3702/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.artint.2022.103686
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2022.103686&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nicola.gigante@unibz.it
mailto:amicheli@fbk.eu
mailto:angelo.montanari@uniud.it
mailto:enrico.scala@unibs.it
https://doi.org/10.1016/j.artint.2022.103686
http://creativecommons.org/licenses/by-nc-nd/4.0/

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
Table 1
Complexity bounds for the different considered dense-time semantics. La = Ua is the case where duration is
fixed, while [La, Ua] is the case where the duration can be any value in the interval. Bold font indicates novel
results. We recall that Rintanen [48] proves PSPACE-completeness and EXPSPACE-completeness for the case of
discrete-time for the >0-separation-semantics and ε-separation-semantics, respectively, while all cases in this
table assume that time is dense.

ε-separation (La = Ua) ε-separation ([La, Ua]) >0-separation ([La, Ua])
w/o self-overlap PSPACE-complete PSPACE-complete
self-overlap EXPSPACE-complete EXPSPACE-complete undecidable

two). The problem we are studying includes the essential temporal aspects of the full syntax of PDDL 2.1. More precisely, we
restrict our attention on fully ground action representations with simple unconditional effects, and conjunctive preconditions
and goals.

To the best of our knowledge, to date, only Rintanen [48], Cushing et al. [21], and Cushing [20] approached temporal
planning from a theoretical point of view; however, they focused their attention on a temporal model that is substantially
discrete. In particular, Rintanen [48] proves the problem to be EXPSPACE-complete over discrete time in the general case,
and PSPACE-complete when actions are disallowed to self-overlap with already running instances of themselves. These
results apply to the dense setting if a specific ε is given as the minimum amount of time separating mutually exclusive
(mutex) events, and if actions are given only a specific fixed duration, whereas PDDL 2.1 generally specifies actions with an
interval of admissible values for the duration.

The computational complexity arising from using a dense temporal model with no ε value given upfront remains still
poorly understood. It is worth noticing that the formal specification of PDDL 2.1 [28, Section 8] only requires mutex events
to be separated by a non-zero amount of time; the idea of accepting an ε-separation value as input comes later in the
text as an expedient to facilitate plan validation (Section 10 - Plan Validation). The very same authors do however admit
that this ambiguity was at that time problematic and they did not find a definitive and principled way to account for it.
Clarifying this aspect is relevant not only because it could be at times impractical to provide the right ε value upfront, but
also because many planners do not use a discrete temporal model at all [18,51]. The distance between practice and theory
seems unnecessarily high.

In order to work out these issues, this paper analyzes the computational complexity of temporal planning problems over
dense time taking into account, in a comprehensive manner, a number of variants: the case with ε-separation, where an ε
value of separation between mutex events is given upfront, and the case with >0-separation, where mutex events are only
required to not appear at the same time. Both cases are studied either allowing or forbidding self-overlap of actions.

The results of our work can be summarized as follows: when self-overlap of actions is forbidden temporal planning
over dense time is not harder than classical planning (PSPACE-complete), regardless of the mutex separation criterion.
On the other hand, allowing actions to self-overlap makes the problem harder: EXPSPACE-complete with ε-separation and,
perhaps most surprisingly, undecidable in the >0-separation case. We prove these results by studying the problems with and
without self-overlapping separately. For the case with no self-overlap, we devise a novel polynomial reduction to updatable
timed automata [2,10], which gives us the PSPACE upper bound for both the ε-separation and >0-separation cases. For
the case with self-overlap, we provide a reduction from two specific variants of the corridor tiling problem [53], known to
respectively be EXPSPACE-complete and undecidable, to temporal planning problems with ε-separation and >0-separation
semantics, respectively. We work with actions with a non-fixed duration, thus extending the bound found by Rintanen [48]
to a more general setting. Table 1 summarizes the results of the paper.

Our theoretical results highlight that, at least from a computational complexity standpoint, the adoption of a truly con-
tinuous representation of time does not necessarily make temporal planning harder than classical planning; indeed, when
self-overlapping is forbidden, there is no reason for the user to anticipate some domain dependent epsilon before planning,
regardless of whether the duration is fixed (equality) or simply formulated as a min-max interval. On the other hand, our
undecidability result can be seen as a further indication that the interpretation with self-overlapping is not only of dubious
usefulness, but is likely also an unintended feature of the formalism.

The paper is structured as follows. Section 2 formally defines the problem, and Section 3 surveys related work. Then,
Section 4 provides a complexity analysis of the problem when self-overlap of actions is forbidden, and Section 5 when it is
allowed. Section 6 concludes the paper with some final remarks.

2. Dense-time temporal planning

This section introduces the temporal planning problem we are interested in. Our analysis deals with the core aspects of
PDDL 2.1 [28], limiting the full syntax to the STRIPS fragment with a set-theoretical representation [32].

Definition 2.1 (Temporal planning problem). A temporal planning problem is a tuple P = 〈P , A, I, G〉, where P is a set of
propositions, A is a set of durative actions, I ⊆ P is the initial state, and G ⊆ P is the goal condition. A snap (instantaneous)
action is a tuple h = 〈pre(h), eff+(h), eff−(h)〉, where pre(h) ⊆ P is the set of preconditions and eff+(h), eff−(h) ⊆ P are two
disjoint sets of propositions, called the positive and negative effects of h, respectively. We write eff(h) for eff+(h) ∪ eff−(h).
2

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
A durative action a ∈ A is a tuple 〈a�, a	, pre↔(a), [La, Ua]〉, where a� and a	 are the start and end snap actions, respectively,
pre↔(a) ⊆ P is the over-all condition, and La ∈Q>0 and Ua ∈Q≥0 ∪ {∞} are the bounds on the action duration.

As we are using a set-theoretic representation, both states and conditions are subsets of P , which is the universe of facts
over which one can determine the status of things, and the possible transitions that may take place in the system. When
interpreted as a state, a subset s of P lists those atoms which hold true in it and implicitly asserts false those which are
not part of it (closed-world assumption). When interpreted as a condition, the subset lists those atoms that need to be
true in order for the condition to be satisfied. The initial state I specifies what holds at the beginning, before execution,
while action tuples in A specify the dynamics of the system, that is, how a state can change, and under which propositional
and temporal conditions such changes may happen. An action tuple delegates the specification of the state transition to
two snap actions: one is relative to when the durative action starts, and one to when the durative action ends. As classical
planning actions, these instantaneous transitions are represented by a pair, which encodes the applicability of the transition
(pre(h)), and the effects that the transition has on the state when applied (eff(h)). Unlike in classical planning problems,
however, in temporal planning actions last for a certain time (they are durative), and their duration has to satisfy the given
lower and upper time limits, that is, [La, Ua]. Moreover, since the state can change while the action is under execution, we
can further require that all intermediate states satisfy a given invariant condition (pre↔(a)). Note that PDDL 2.1 allows for
instantaneous classical actions to be defined alongside durative actions. Here, for simplicity we do not allow for this feature,
but it would be straightforward to do so. Finally, all the propositions in G determine what needs to be achieved in order
for the problem to be solved.

A collection of action tuples from A, together with a starting time and a duration, is called a plan.

Definition 2.2 (Plan). Let P = 〈P , A, I, G〉 be a planning problem. A plan for P is a set of tuples π = {〈a1, t1, d1〉, · · · ,

〈an, tn, dn〉}, where, for each 1 ≤ i ≤ n, ai ∈ A is a durative action, ti ∈Q≥0 is its start time, and di ∈Q>0 is its duration.

A plan can be understood as a set of timed decisions the agent can take over time. Indeed, each tuple of a plan defines
what action needs to start (an), when it must be initiated (tn), and how long it has to last (dn).

In order to precisely state whether a given plan is valid with respect to the temporal planning problem it represents
a candidate solution for, in the following we recall and summarize the state-transition model interpretation of a temporal
plan given by Fox and Long [28].

Definition 2.3 (Set of timed snap actions). A timed snap action (TSA) is a pair 〈t, h〉, where t ∈ Q≥0 and h is a snap action.
Given a plan π = {〈a1, t1, d1〉, · · · , 〈an, tn, dn〉}, the set of TSAs of π is defined as:

H(π) = {〈t1,a1�〉, 〈t1 + d1,a1	〉, · · · , 〈tn,an�〉, 〈tn + dn,an	〉}

Given a set of timed snap actions, we define the induced parallel plan, as the sequence of sets of timed snap actions
sharing the same time index. As we will see, the validity of plans can be stated by defining constraints over the induced
parallel plan that can be extracted from the timed snap actions of a plan.

Definition 2.4 (Induced parallel plan). Let π be a plan and let H(π) = {〈t′
1, h1〉, · · · , 〈t′

m, hm〉} be the set of TSAs of π . The
induced parallel plan for π is the sequence π ind = 〈〈t′′

1, {h | 〈t′′
1, h〉 ∈ H(π)}〉, · · · , 〈t′′

k , {h | 〈t′′
k , h〉 ∈ H(π)}〉〉, which is ordered

and grouped with respect to the time index, that is, ∀i, j ∈ {1, · · · , k}, i < j if and only if t′′
i < t′′

j , and if t′′
i = t′′

j , then i = j.
Given ci = 〈ai, ti, di〉 ∈ π , we denote by π ind� (ci) = x, with t′′

x = ti , and π ind	 (ci) = y, with t′′
y = ti +di , the indexes of the pairs

in π ind containing, in the right hand side, the snap actions ai� and ai	 relative to ci , respectively.

The semantics variants of temporal plans that we study in this paper rely on classical planning and the mutex relation
between pairs of snap actions. We say that two snap actions are mutex whenever one interferes with at least one effect or
precondition of the other.2 They are formally defined as follows.

Definition 2.5 (Mutex snap actions). Two snap actions h and z are mutually exclusive (mutex), denoted by mutex(h, z), if either
pre(h) ∩ eff(z) �= ∅, or pre(z) ∩ eff(h) �=∅, or eff+(h) ∩ eff−(z) �=∅, or eff+(z) ∩ eff−(h) �=∅.

We are now ready to define the notion of plan validity. Intuitively, a plan is said to be valid if (i) the induced plan is
a classical goal-reaching execution where all overall and duration constraints are satisfied, and (ii) mutex snap actions do
not appear at the same time in a plan. Depending on whether a minimum amount ε of separation between any pair of

2 The notion of mutex between snap actions has been introduced by Fox and Long [28] as a conservative measure to enforce the no moving targets rule:
no two actions can simultaneously make use of a value if one of the two is accessing the value to update it – the value is a moving target for the other action to access.
3

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
Fig. 1. Accepted plans according to the semantics variants: ε stands for the ε-separation semantics (analogously, >0 stands for the >0-separation);
so indicates whether self-overlapping is allowed or not (¬so).

mutex snap actions must be enforced or any separation suffices, different ways of meeting requirement (ii) are possible.
Two different notions of plan validity can be therefore defined.

Definition 2.6 (>0-separation plan validity). Let P = 〈P , A, I, G〉 be a temporal planning problem, π = {〈a1, t1, d1〉, · · · ,

〈an, tn, dn〉} be a plan for P , and π ind = 〈〈t′
1, B1〉, · · · , 〈t′

m, Bm〉〉 be its induced plan. Then, π is valid under the >0-separation
semantics if the following statements hold:

(i) ∀i ∈ {1, · · · , n} Lai ≤ di ≤ Uai ,
(ii) there are no h, z ∈ Bi , with h �= z, for some i ∈ {1, · · · , m}, such that mutex(h, z),

(iii) given s0 = I , for all i ∈ {1, . . . , m}, it holds that:
(a)

⋃
h∈Bi

pre(h) ⊆ si ;

(b) si = (si−1 \ ⋃
h∈Bi

eff−(h)) ∪ ⋃
h∈Bi

eff+(h);
(c) G ⊆ sm ,

(iv) for all c = 〈a, t, d〉 ∈ π and all π ind� (c) ≤ k < π ind	 (c), we have pre↔(a) ⊆ sk .

Definition 2.7 (ε-separation plan validity). Let P = 〈P , A, I, G〉 be a temporal planning problem, π = {〈a1, t1, d1〉, · · · ,

〈an, tn, dn〉} be a plan for P , π ind = 〈〈t′
1, B1〉, · · · , 〈t′

m, Bm〉〉 be its induced plan, and ε ∈ Q>0. Then, π is valid under the
ε-separation semantics if it is valid under the >0-separation semantics and the following additional condition holds as well:

(v) for all i, j ∈ {1, · · · , m}, with i �= j, such that there exist h ∈ Bi and z ∈ B j , with mutex(h, z), we have that |t′
i − t′

j | ≥ ε.

Another feature has relevant consequences from a computational perspective, both under ε-separation and >0-separation
semantics: self-overlap of actions.

Definition 2.8 (Self-overlap of actions). Let P = 〈P , A, I, G〉 be a temporal planning problem and π = {〈a1, t1, d1〉, . . . ,
〈an, tn, dn〉} be a plan for P . An action a ∈ A is said to self-overlap in π if there exist 1 ≤ i, j ≤ n, with i �= j, such that
a = ai = a j and ti ≤ t j ≤ ti + di .

Fig. 1 shows the relationships among the plans accepted by the various notions of plan validity defined so far. In the
following, we study the computational complexity of deciding whether a solution plan exists for a given planning problem
P , under both the above-defined notions of plan validity, considering the cases where self-overlap is allowed and where it
is not.

We conclude the section by introducing a syntactic variant of the temporal planning problem that allows general Boolean
formulas as conditions of actions. Such a variant will be exploited in Section 5, where a reduction from a tiling problem to
temporal planning will be defined.

Let P be a set of propositions. A Boolean condition is a Boolean formula over P . Temporal planning with Boolean condi-
tions is defined as follows.

Definition 2.9 (Temporal planning problem with Boolean conditions). A temporal planning problem with Boolean conditions is
a temporal planning problem where the precondition pre(h) of each snap action h, the over-all condition pre↔(a) of each
action a, and the goal G are Boolean conditions.

Planning problems with Boolean conditions can be turned into planning problems with set-theoretic conditions. The
semantics of Boolean conditions immediately follows from such a translation. It is well known that the temporal planning
4

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
problem with Boolean conditions of Definition 2.9 is equivalent to the temporal planning problem with set-theoretic condi-
tions of Definition 2.1 in terms of expressive power, but it can be exponentially more succinct. In other words, translating
Boolean conditions into set-theoretic conditions can incur into an exponential blowup in the size of the Boolean conditions.
However, we are not going to be affected by this blowup, as explained in Section 5.

3. Related work

In this section, we discuss related work on the computational complexity of timed systems represented by planning
languages (both action-based and timeline-based), verification formalisms, temporal logics, and process algebras.

3.1. Action-based planning

Classical planning, which is devoid of an explicit (metric) temporal dimension, has received considerable attention over
the years. The basic planning problem has been proved to be PSPACE-complete [14]; moreover, fixed-parameter tractable
fragments have been studied [7], and strict time and space bounds have been identified [6]. Complexity, decidability and
undecidability results have been also given for many variants of the problem [25]. A parameterized complexity analysis of
cost-optimal planning has been done in [1]. Hierarchical planning, that is, planning with action decomposition, has been
studied as well [26]. Planning problems with nondeterministic aspects have been investigated and thoroughly classified in
a series of papers [40,41,44,47], including planning problems under full observability of the current state (FOND planning,
e.g., [16]), under partial observability [47], and with probabilistic domains [42].

Two major approaches have been proposed in the literature to deal with temporal planning problems, where timing
aspects explicitly come into play: classical action-based temporal planning and timeline-based planning.

Temporal planning adds a temporal dimension to classical action-based planning [28]. Cushing [20] discusses at length
the philosophical subtleties of some semantic aspects, including the impact of the non-zero vs. ε-separation issue in
PDDL 2.1. However, he diverges significantly from the PDDL 2.1 modeling formulation, and gives no complexity results.
Relevant to our analysis is also the work by Shin and Davis [51], who raise the ambiguity between ε-separation and >0-
separation, and favor the latter in their SMT encoding of the problem. Note that, despite the confusion on this matter,
PDDL 2.1 semantics does not prescribe to accept an ε separation value as input to the planner. The ε input is only suggested
by Fox and Long [28] as a way to alleviate the burden of a potentially complex plan validation task. Rintanen [48] focuses
on temporal planning over discrete time, showing the problem to be EXPSPACE-complete. Then, he proceeds showing that
forbidding action self-overlap, with constant action durations (La = Ua), makes the problem PSPACE-complete, that is, re-
ducible to classical planning. The result improves the quite restrictive conditions of temporally simple languages previously
identified by Cushing et al. [21]. Transferring these results to dense time is a priori possible only assuming ε-separation,
since then problems can be suitably scaled and discretized at will. As we will show, discretization is not always possible
under >0-separation, as the problem becomes undecidable when self-overlap is allowed. Moreover, while the restriction to
fixed action durations is just syntactic convenience in the discrete case, since an action with an interval [La, Ua] of possible
durations can be replaced by a finite number of copies, with dense time this is, in general, not possible.

Other action-based languages have been proposed to model temporal planning problems. The NDL language [49] is a
formalism that allows actions with timed effects, and supports action concurrency by using a resource-based model. Each
action can be associated with a set of resource requests, each representing which resource is used by the action, and over
which interval. As resources can have finite capacity, a valid plan has to ensure that resources are not used by multiple
actions at the same time. PDDL+ [29] is another extension of classical planning capable of dealing with time. Unlike PDDL
2.1, where actions are durative and defined over intervals, PDDL+ semantics is based on instantaneous actions representing
choices and autonomous processes that model the evolution of the system through time. In addition, PDDL+ also supports
exogenous events. In its general form, PDDL+ is undecidable [29], while the computational complexity of NDL is still an open
problem.

3.2. Timeline-based planning

In timeline-based planning (TP for short), planning domains are described as collections of independent, but interacting,
components, each one consisting of a set of state variables. The evolution of the values of the variables is modeled by means
of a set of timelines (sequences of tokens), and it is governed by a set of transition functions, one for each state variable, and
a set of synchronization rules, that constrain the temporal relations among state variables. A systematic analysis of the com-
putational complexity of timeline-based planning, over both discrete [23,34,35] and dense time [13], has been undertaken in
the last years. In [34], Gigante et al. showed that (discrete) TP with bounded temporal relations and token durations, and no
temporal horizon, is EXPSPACE-complete and expressive enough to capture action-based temporal planning. Later, Gigante
et al. proved that TP with unbounded interval relations is still EXPSPACE-complete [35] (it becomes NEXPTIME-complete
if an upper bound is added to the temporal horizon), and that the same holds for TP with recurrent goals [43].

TP over dense time has been studied in [13], where it has been shown to be undecidable even when a single state
variable is used. Decidability can be recovered by suitably constraining the logical structure of synchronization rules. In
general, synchronization rules make it possible to universally quantify over the tokens of a timeline (triggers). By restricting
5

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
to rules in purely existential form, the TP problem becomes NP-complete. In [13], various intermediate cases have been
studied. A first possibility is to constrain any non-trigger token to appear exactly once in the body of the rule (simple trigger
rules). Such a restriction prevents temporal comparisons of a single, non-trigger token with many others. A second one
concerns future and past tokens. When a token is selected by a trigger, the synchronization rule allows one to compare such
a token with other tokens of the timelines both preceding (past) and following (future) it. One can restrict the comparison
only to future tokens (future semantics of trigger rules). It has been shown that the TP problem restricted to simple trigger
rules [13] or to trigger rules with the future semantic [12] is still undecidable. Decidability can be recovered by restricting
to future TP with simple trigger rules, which is non-primitive recursive-hard. Better complexity results can be obtained by
restricting also the type of intervals used in the simple trigger rules to compare tokens. In particular, future TP with simple
trigger rules without singular intervals (intervals of the form [a, a], for a ∈N) is EXPSPACE-complete, PSPACE-complete if
one only allows intervals of the forms [0, a] and [b, +∞[.

In this paper, we focus on action-based temporal planning in the dense-time setting, and extend the results obtained
for the discrete case by naturally handling actions of non-constant durations and by covering both ε-separation and >0-
separation semantics, with or without self-overlap. Table 1 summarizes the old and, in bold, the new results. When
comparing the results in Table 1 with those for the timeline-based planning paradigm, it is interesting to note a similar
complexity jump, with a problem that is EXPSPACE-complete over discrete time [35], but becomes undecidable over dense
time [13].3

3.3. Timed systems verification

The formal verification of systems that evolve over time, in particular the analysis of the computational complexity of
the problem of checking their properties, is a key topic in many research areas.

In the verification setting, timed automata are commonly used to model timed systems and to check their properties
[2]. The fundamental problem of finding a path leading to a certain location (reachability problem) in a timed automaton
is known to be PSPACE-complete [2]. Variants of timed automata have been studied [10], in particular the reachability
problem for timed automata with constant updates has been shown to be PSPACE-complete as well. In analogy to other
approaches [9,11,38], to provide suitable complexity bounds to action-based temporal planning problem, we will reduce
it to a reachability problem for a timed automaton; however, unlike previous work, we will show how to express the
semantics of PDDL 2.1 with a polynomial-size timed automaton. Extensions of classical Petri nets, that make it possible
to explicitly represent time and to deal with timing constraints, have also been proposed in the literature (Timed Petri
nets [55]). They have been used, for instance, to model and analyze communicating systems with timing constraints and
delays. Their reachability problem is, in general, undecidable; however, fragments and variants with better complexity have
been studied [30]. Besides timed automata and Petri nets, other formalisms have been developed to model timed systems.
A fully-symbolic representation of infinite-state timed systems with clock constraints can be found in [17], and it allows
one to efficiently perform model-checking analyses, while Max-Plus linear systems, which are able to model repetitive
temporal behaviors and synchronizations, have been successfully applied to the analyses of production lines and railway
schedules [37].

3.4. Temporal logics and process algebras

The problem of representing real-time constraints and system dynamics have also been addressed in the field of temporal
logic. One of the most successful proposals is Metric Temporal Logic (MTL) [45], that generalizes LTL operators to cope
with different interpretations of time. Another meaningful extension of LTL is Timed Propositional Temporal Logic (TPTL)
[3,4], which introduces explicit clocks and allows one to constrain their values. The satisfiability problem for both MTL
and TPTL is undecidable when continuous time and an unbounded horizon are assumed. Suitable restrictions must be
imposed to recover decidability. As an example, in [22], it has been shown that timeline-based planning with bounded
temporal constraints, over a discrete temporal domain, can be captured by a bounded version of TPTL, augmented with past
operators, whose satisfiability problem is EXPSPACE-complete. Similar extensions have been developed for the branching
time logic CTL yielding Timed CTL [5].

Finally, various extensions of process algebras with timing operators have been proposed in the literature. In particular,
extensions of CCS and ACP are given in [39] and [8], respectively. They can be used to model and analyze concurrent
behaviors of protocols and programs where timings, delays, and synchronizations are crucial aspects.

4. Forbidding self-overlap of actions

In this section, we determine the complexity of temporal planning over dense time when actions are not allowed to
overlap with themselves. Since temporal planning extends classical one, which is known to be PSPACE-complete [14], it is
trivially PSPACE-hard. We prove that the problem can be solved in polynomial space by encoding it into a particular kind
of timed automata.

3 As a matter of fact, neither self-overlap nor ε-separation/>0-separation is supported in TP, making a direct comparison of complexity results difficult.
6

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
4.1. Updatable timed automata

A timed automaton (TA) is a finite automaton augmented with a set of clocks [2], which explicitly track the flow of time.
Each transition in a TA may include temporal constraints, called guards, that disable the transition if not satisfied by the
current clock values. Each transition may also include clock resets that cause specified clocks to be reset to zero whenever
the transition is taken. Finally, each location may include an invariant—that is, a constraint specifying the conditions under
which the automaton may stay in that location. Here, we use the more general updatable timed automata [10], that allow
clocks to be reset to any constant rational value, not only to zero.

Let X be a set of elements, called clocks. The set C(X) of constraints over the clocks in X contains conjunctions of
constraints of the form x �� k or y − x �� k, where x, y ∈X , k ∈Q, and �� ∈ {<, ≤, =, >, ≥}. The set U(X) of updates on the
clocks in X is the set of all basic statements of the form x := k, with x ∈X and k ∈Q.

Definition 4.1 (Updatable timed automaton). An updatable timed automaton is a tuple T = 〈�, L, �0, X , �, Inv〉, where:

1. � is the alphabet;
2. L is a finite set of locations;
3. �0 ∈L is the initial location;
4. X is a finite set of clocks;
5. � ⊆L × C(X) × � × 2U(X) ×L is the transition relation;
6. Inv :L → C(X) maps each location to its invariant.

Definition 4.2 (Semantics of an updatable timed automaton). Given an updatable timed automaton T = 〈�, L, �0, X , �, Inv〉, a
state is a pair 〈�, v〉, where � ∈L and v :X →Q≥0. Intuitively, a state represents a location where the automaton is in and
a value assignment for each of the clocks.

Given a set of clock updates U and a valuation of clocks v , we indicate the valuation obtained by applying the updates
in U to v as v[U], defined as:

v[U](x) =
{

k if x := k ∈ U

v(x) otherwise

Furthermore, we define v + δ, with δ ∈ Q≥0, as the valuation such that, for all x ∈ X , (v + δ)(x) = v(x) + δ. Moreover,
we define the valuation �0 such that �0(x) = 0, for all x ∈X .

From a state that satisfies the location invariant (v |= Inv(�)), the automaton can either make a transition to a different
location or let time elapse. This is formally captured by a transition relation → defined as follows:

timed transition: 〈�, v〉 δ−→ 〈�, v ′〉, with δ ∈Q≥0, v ′ = v + δ and v ′ |= Inv(�);

discrete transition: 〈�, v〉 a−→ 〈�′, v ′〉, with a = 〈�, C, σ , U , �′〉 ∈ �, v |= C , v ′ = v[U], and v ′ |= Inv(�′).

The semantics of an updatable timed automaton T is a labeled transition system 〈Q , q0,
s−→〉, where Q is the set of

states of the automaton, q0 = 〈�0, �0〉, and s takes value in the set of labels � ∪Q≥0. A run of T is a sequence of alternating
timed and discrete transitions in the labeled transition system.

The reachability problem for a TA T = 〈�, L, �0, X , �, Inv〉 and a goal G ⊆ L is the problem of deciding whether there
exists a run of T that starts from �0 and ends in a location �∗ ∈ G . The problem is PSPACE-complete with standard resets
and constant updates [10].

To simplify the exposition, we make use of the concept of urgent locations, that is, locations where time is stationary,
which are encoded by adding an extra clock that is reset to zero by each incoming transition and forced to be zero by
the location invariant. Since the size of the automaton increases polynomially, the complexity of the reachability problem
remains unchanged.

The intuition behind the encoding comes from decision-epoch planners [24,50]: at each step, the automaton can either
execute a set of snap actions (by checking their preconditions and applying their effects) or decide to wait a certain amount
of time (delta-transition). Unlike decision-epoch planners, however, the amount of time to wait is decided symbolically and
is not forced to be aligned with a future event, avoiding the incompleteness problems of decision-epoch planners [20].
Crucially, to keep the size of the resulting automaton polynomial, there cannot be a distinct location for each propositional
state (that is, for every possible truth assignment to the predicates) of the planning problem. Instead, we symbolically
encode the predicates using clocks that maintain a truth value recognizable in the guards of the automaton. We use constant
updates to apply the effects of actions on such clocks. As we will see, the encoding can be adapted to support either the
ε-separation or the >0-separation semantics, hence proving the complexity of both cases, without self-overlap of actions.
7

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
Fig. 2. The updatable timed automaton of Theorem 4.1. Note that hi indicates any snap action, i.e., either ai� or ai	 , for some ai ∈ A, and, similarly, chi
stands for csai or ceai , for some ai ∈ A.

4.2. Encoding temporal planning by means of updatable timed automata

We start by defining the updatable timed automaton that captures the semantics of a given planning problem. The
description of the automaton proceeds as follows. First, we define the alphabet, the set of locations, and the set of clock
variables used in the encoding; then, we define the transition relation. A graphical account of the resulting automaton is
given in Fig. 2.

Let P = 〈P , A, I, G〉 be a temporal planning problem, without self-overlap of actions. The Updatable Timed Automaton
T [P] = 〈�, L, �0, X , �, Inv〉, that encodes it, is formally defined as follows.

Let A = {a1, . . . , aM} and P = {p1, . . . , pN}.

1. The alphabet � is an arbitrary singleton { }. In the proposed encoding, the words accepted by the automaton are indeed
irrelevant, since all pieces of information are encoded by the timestamps of the accepted trace.

2. The set of locations L consists of:
• the three locations �0 (the initial location), �∗ (the goal location), and �δ (the time-passing location);
• a set {r0, r1, . . . , rM+N } of M + N + 1 state decoding locations4;
• a set {d0, d1, . . . , d2M} of 2M + 1 decision making locations;
• a set {e0, e1, . . . , e2M} of 2M + 1 execution locations.
All locations, excepting �δ , are urgent.

3. The set of clock variables X includes:
• a clock cγ , that is never reset, called the global clock;
• a clock cδ;
• a clock cpi , for each pi ∈ P ;
• five clocks, cxa� , cxa	 , cra , csa , and cea , for each a ∈ A.

4. No invariant conditions are needed (except for the ones that are implicitly defined by urgent states), and thus Inv = ∅.

We now define the transition relation �, explaining how the automaton works and how the above-defined locations
are connected. A schema of the construction is depicted in Fig. 2. Remember that the time-passing location �δ is the only
location where time can pass, all the other locations being urgent. The initial location immediately transitions to the time-
passing location, setting some of the cpi clocks to one, depending on the initial state:

〈�0,�, , {cpi := 1 | pi ∈ I}, �δ〉 ∈ �

Let B = {cpi | pi ∈ P } ∪ {cra | a ∈ A} be a subset of the clocks, that we call the binary clocks, and let us denote them,
with an arbitrary order, as B = {b1, . . . , bM+N }. The initial transition establishes an invariant that is kept by construction
throughout the automaton: when the execution enters �δ , it holds that cδ = 0 and, for bk ∈ B , either bk = 0 or bk = 1. Since
clocks advance together while the automaton stays in the time-passing location, the difference between any bk ∈ B and cδ

will always be either zero or one, accordingly. In this way, these clocks can be used as binary variables, and, in particular,
the cpi clocks can be used to represent the state of the planning problem propositions.

4 Note that M + N + 1 locations are necessary because we need to decode each proposition in P as well as the auxiliary binary clock cra , for each action
a ∈ A.
8

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
In the time-passing location, the automaton can decide at any time to make a transition to the first state decoding
location r0:

〈�δ,�, ,∅, r0〉 ∈ �

The r0 location starts a chain of M + N locations, that goes up to rM+N , called the state decoding path. Its purpose is to reset
each clock bk ∈ B to a binary value, to allow the subsequent transitions to use such clocks as binary variables: at each step
of the state decoding path, say in the transition from rk−1 to rk , the bk clock is reset to zero if bk − cδ = 0, and it is reset
to one if bk − cδ = 1, hence we have:

〈rk−1,bk − cδ = 0, , {bk := 0}, rk〉 ∈ �

〈rk−1,bk − cδ > 0, , {bk := 1}, rk〉 ∈ �

for all k ∈ {1, . . . , M + N}. By the time the automaton reaches rM+N , the value of the cpi clocks directly corresponds to
the binary values of the planning problem propositions at the current time in the encoded plan. Hence, the guards of
later transitions can directly encode any propositional formula over those propositions. Instead, the other binary clocks cra
will be used to keep track of whether the a action is being executed, that is, “running”, at the current time (we exclude
self-overlap of actions).

The automaton traverses the state decoding path either at the start or at the end of an action or when the execution
ends because the goal was reached. In the former case, we move to the location d0 unconditionally:

〈rM+N ,�, ,∅,d0〉 ∈ �

Starting from d0, the automaton can decide which subset of the snap actions to execute in parallel by setting the execution
clock cxh either to 1 or to 0, for each snap h. This can be done polynomially by a construction analogous to the state
decoding path. For each ak ∈ A, we have the following transitions:

〈d2k−2,guard(ak�), , {cxak� := 1},d2k−1〉 ∈ �

〈d2k−2,�, , {cxak� := 0},d2k−1〉 ∈ �

〈d2k−1,guard(ak), , {cxak	 := 1},d2k〉 ∈ �

〈d2k−1,�, , {cxak	 := 0},d2k〉 ∈ �

Intuitively, the automaton can either take a transition that sets to zero the clock relative to a snap action, stating that such
an action is not to be executed at the current time, or take the transition checking the guard of the snap action and setting
the clock to one. The guard of a starting snap action is:

guard(a�) =
∧

pi∈pre(a�)

cpi = 1 ∧ cra = 0 ∧ sep(a�)

where:

sep(h) =
∧

mutex(b�,h)

csb > 0 ∧
∧

mutex(b	,h)

ceb > 0 ∧
∧

mutex(b�,h)

cxb� = 0 ∧
∧

mutex(b	,h)

cxb	 = 0

The condition expressed by guard(a�) checks that the preconditions of a� are satisfied, and that the action is not already
running. Then, sep(a�) encodes the time separation between mutex snap actions and prevents the decision to execute two
mutex snap actions in the same round. By checking that the corresponding clocks of each mutex snap actions are positive,
we enforce the >0-separation condition. By replacing the csb > 0 and ceb > 0 conditions with csb ≥ ε and ceb ≥ ε, we
can easily capture the ε-separation semantics. We indicate the encoding with the former constraints as T [P]>0 and the
latter as T [P]≥ε .

The guard for the end of an action is very similar, but it checks that the action is actually already running and that the
action duration is compatible with its duration constraints:

guard(a) =
∧

pi∈pre(a)

cpi = 1 ∧ cra = 1 ∧ sep(a) ∧ dur(a)

where:

dur(a) = csa ≥ La ∧ csa ≤ Ua

At this point, for each snap action h, the value of the execution clock cxh is either 0 or 1 depending on whether h must
be executed or not. To apply the effects, we traverse another sequence of locations e0, · · · , e2M that apply the effects of
each snap action if the corresponding execution clock is set to 1.
9

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
〈d2M ,�, ,∅, e0〉 ∈ �

〈e2k−2,cxak� = 1, ,effects(a�), e2k−1〉 ∈ �

〈e2k−2,cxak� = 0, ,∅, e2k−1〉 ∈ �

〈e2k−1,cxak	 = 1, ,effects(a), e2k〉 ∈ �

〈e2k−1,cxak	 = 0, ,∅, e2k〉 ∈ �

Note that guard(·) and effects(·) use the cpi clocks to, respectively, enforce the preconditions and produce the effects of
the snap action at hand. The effects of the start of an action are defined as follows:

effects(a�) = {cra := 1,csa := 0}
∪ {cpi := 1 | pi ∈ eff+(a�)}
∪ {cpi := 0 | pi ∈ eff−(a�)}

Hence, effects(a�) sets cra to record that a is executing and resets the clock csa , which is used to record the time elapsed
since the last time the a action was started. It also sets the binary clocks cpi according to the positive or negative effects
of the action. The effects for the end of actions, effects(a), are defined similarly, but the clock cea , instead of csa , is reset,
to record the time elapsed since the last time the action a ended, and cra is set to 0.

When all effects have been produced (location e2M has been reached), we can return to location �δ by resetting the clock
cδ. In this way, we reset the invariant for binary clocks, and the automaton can decide how much time to wait until the
next subset of snap actions is executed. In such a transition, we perform a final check to ensure that the over-all conditions
of each running action are respected:

〈e2M ,
∧
a∈A

oc(a), , {cδ := 0}, �δ〉 ∈ �

where:

oc(a) =
∧

pi∈pre↔(a)

cra − cpi ≤ 0

Intuitively, the formula oc(a) checks that if a is running (that is, cra = 1), then the over-all conditions of a must be true
(that is, each cpi must be 1 for each pi ∈ pre↔(a)). This implication is captured by the above difference that is false only
when cra = 1 and cpi = 0. This ensures that, in any accepted run, the guard cannot be false due to a condition being
violated.

Finally, if the automaton takes the state decoding path when the goal condition is satisfied and no action is running,
then it can transition to the goal state, reaching its objective:

〈rM+N ,
∧

pi∈G

cpi = 1 ∧
∧
a∈A

cra = 0, ,∅, �∗〉 ∈ �

Now we can note that the number of locations is polynomial in the size of P . In particular, we have M + N locations in the
state decoding path, 2M locations in the decision making path, and 2M locations in the execution path. Recall that M is the
number of actions and N is the number of propositions of the planning problem, hence we have a number of locations that
is linear in the number of actions and propositions.

4.3. PSPACE-completeness when self-overlap of actions is disallowed

In the previous section, we introduced the updatable timed automaton T [P] corresponding to a temporal planning
problem P . Now, we show that every execution reaching �∗ from �0 corresponds to a plan for P , and vice versa.

We start by defining the plan induced by a run of the automaton.

Definition 4.3 (Plan induced by a run). Let R = 〈�0, �0〉 δ1−→ 〈�1, v1〉 a2−→ 〈�2, v2〉 · · · 〈�∗, vn〉 be a finite run of T [P] starting at �0

and ending in �∗ . The plan π [R] induced by R is defined as follows:

π [R] = {〈a, t,d〉 | 〈�i, vi〉 la	−→ 〈�i+1, vi+1〉, d = vi(csa), t = vi(cγ) − d},
with la	 = 〈�i, cxa	 = 1, , effects(a), �i+1〉.

Each label la	 corresponds to a decision to terminate an action instance (setting the cxa	 clock to 0). It is easy to see
that in each state 〈�i, vi〉, the value of the global clock vi(cγ) indicates the time elapsed since the beginning of the run,
while vi(csa) indicates the time elapsed since a has been started, and, in a state where la is taken, vi(csa) indicates the
chosen duration of the action a.
10

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
Lemma 4.1. For any run R of T [P]>0 reaching �∗ from �0 , the plan π [R] is valid for P = 〈P , A, I, G〉 according to the non-zero
separation semantics.

Proof. We proceed by showing that all the conditions of Definition 2.6 hold. Complete proof in the appendix. �
A similar result holds for the ε-separation case.

Lemma 4.2. For any run R of T [P]≥ε reaching �∗ from �0 , the plan π [R] is valid for P according to the ε-separation semantics.

Proof. We proceed as in the proof of the previous lemma, and then we add what is necessary to satisfy Definition 2.7.
Complete proof in the appendix. �
Lemma 4.3. Let π = {〈t1, a1, d1〉, · · · , 〈tn, an, dn〉} be a valid plan for P = 〈P , A, I, G〉 according to the >0-separation semantics.
Then, there exists a run R[π] of T [P]>0 that reaches �∗ from �0 .

Proof. We construct the run R[π] by reversing the argument of Lemma 4.1. Complete proof in the appendix. �
Lemma 4.4. Let π = {〈t1, a1, d1〉, · · · , 〈tn, an, dn〉} be a valid plan for P = 〈P , A, I, G〉 according to the ε-separation semantics. Then,
there exists a run R[π] of T [P]≥ε that reaches �∗ from �0 .

Proof. The proof is identical to that of Lemma 4.3. �
We conclude the section by formally stating the computational complexity of temporal planning over dense time, when

self-overlap of actions is excluded.

Theorem 4.1. Temporal planning over dense time, without self-overlap of actions, is PSPACE-complete for both >0-separation and
ε-separation semantics.

Proof. PSPACE-hardness follows from PSPACE-completeness of classical planning [14], as it can be easily shown that any
classical planning problem can be polynomially encoded into our formulation of temporal planning.

The standard representation of classical planning in STRIPS [32] is, indeed, very close to our encoding of temporal plan-
ning except for (i) all actions are assumed to be instantaneous, instead of durative, (ii) there is no distinction between
starting and ending conditions or effects and (iii) there are no overall conditions. In particular, classical planning actions
are syntactically identical to snap actions. The semantics of STRIPS in its turn is a subset of the temporal one: a STRIPS
plan is a sequence of actions 〈a1, · · · , an〉 that reaches the goal from the initial state. Formally, it amounts to say that there
is a sequence of states s0 = I, s1, · · · , sn ⊆ G such that si = (si−1 \ eff−(ai)) ∪ eff+(ai). Given the standard formulation of
the classical planning problem, it suffices to transform each STRIPS instantaneous action a = 〈pre(a), eff+(a), eff−(a)〉 into
a durative action da = 〈a, 〈∅, ∅, ∅〉, ∅, [1, 1]〉. Any valid plan for the resulting temporal planning problem encodes a valid
STRIPS plan, where the sequence of starting snap actions, ordered according to the starting time indicated in the temporal
plan, are the only actions being considered. Indeed, all the ending snap actions have neither conditions nor effects and rule
(iii) of Definitions 2.6 and 2.7 subsumes the validity of STRIPS.

As for the opposite direction, given a valid STRIPS plan πS T R I P S = 〈a1, · · · , an〉, we can turn it into a temporal plan π =
{(dai, i, 1) | ai ∈ πS T R I P S } which is valid either for the ε-separation or for the >0-separation semantics, because satisfaction
of condition (iii) follows from the validity of the STRIPS plan and all the other rules of Definitions 2.6 and 2.7 are vacuously
satisfied.

As for membership, consider any temporal planning problem P . We use the definition of the T [P] automaton for one
of the two semantics: its size is obviously polynomial and we showed that �∗ is reachable from �0 if and only if P admits
a solution plan according that semantics. Being the reachability problem PSPACE-complete for Updatable Timed Automata,
it follows that temporal planning without self-overlapping actions is in PSPACE as well. �
5. Allowing self-overlap of actions

This section focuses on the problem of dense-time temporal planning in the case where actions are allowed to overlap
with themselves. Here, the distinction between the ε-separation and >0-separation semantics plays an important role.
Indeed, the problem turns out to be EXPSPACE-complete in the former case and undecidable in the latter. The section is
structured as follows. First, we recall the definition of two variants of the tiling problem, a problem commonly used for
hardness proofs in logic and combinatorics (a detailed survey on the topic is provided by van Emde Boas [53]). Then, we
prove that the undecidable unbounded (corridor) tiling problem can be reduced to temporal planning under >0-separation
semantics This allows us to conclude its undecidability. Finally, by a suitable adaptation of such a reduction, we show
11

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
that the simpler exponential corridor tiling problem can be reduced to temporal planning under ε-separation semantics, thus
proving its EXPSPACE-hardness.

5.1. Tiling problems

Generally speaking, tiling problems ask whether it is possible to tile (a portion of) the two-dimensional plane with tiles
of a finite set of types in such a way that adjacent tiles satisfy a certain relation, e.g., same color on matching sides. In what
follows, for all n ≥ 0, we denote the set {0 . . .n} by [n].

Definition 5.1 (Tiling structures). A (finite) tiling structure is a tuple T = 〈T , t0, t∗, H, V 〉, where T is a finite set of tile types,
t0 ∈ T and t∗ ∈ T are, respectively, the initial and final tile types, and H, V ⊆ T × T , are the horizontal and vertical adjacency
relations.

Definition 5.2 (Tilings). A tiling for a tiling structure T = 〈T , t0, t∗, H, V 〉 is a function f : [n] × [h] → T , for some n ≥ 0 and
h ≥ 0, mapping any pair (i, j) ∈ [n] × [h] to a tile type f (i, j) ∈ T such that:

1. f (0, 0) = t0;
2. f (n, h) = t∗;
3. for all x ∈ [n − 1] and y ∈ [h], f (x, y) H f (x + 1, y);
4. for all x ∈ [n] and y ∈ [h − 1], f (x, y) V f (x, y + 1).

Several interesting combinatorial problems can be defined, with complexities ranging from NP to highly undecidable,
depending on which portion of the plane we are asked to tile, in particular, whether some bound on the size of such a
portion is given. Here, we introduce the two instances of the tiling problem that are used in the following.

Definition 5.3 (Unbounded (corridor) tiling problem). Let T = 〈T , t0, t∗, H, V 〉 be a tiling structure. The unbounded (corridor)
tiling problem asks whether there exists a tiling f : [m] × [h] → T , for some m ≥ 0 and h ≥ 0.

The unbounded (corridor) tiling problem is as simple to state as complex to solve. Indeed, it can be shown to be
undecidable by a direct reduction from the halting problem of Turing machines [53]. By restricting the width of the corridor
beforehand, we obtain a decidable variant of it.

Definition 5.4 (Exponential corridor tiling problem). Let T = 〈T , t0, t∗, H, V 〉 be a tiling structure, and let n ≥ 0 be an integer.
The exponential corridor tiling problem asks whether there exists a tiling f : [m] × [h] → T , for some 0 ≤ m ≤ n and h ≥ 0.

Intuitively, the exponential corridor tiling problem recovers decidability by restricting beforehand the width of the area
to be tiled. Here, exponential refer to the fact that the natural encoding of n in the problem input is binary, hence the
upper bound on the corridor width is exponential in the size of the input. For this reason, the problem can be shown to be
EXPSPACE-complete, as opposed to the simpler corridor tiling problem, where a unary encoding of n is assumed, which is
PSPACE-complete [53].

5.2. The reduction

In the following, we show how to reduce the above-considered tiling problems to temporal planning ones by encoding
the tiling functions into plans. In the general case, the reduction introduces an unbounded number of self-overlaps, which
is the source of undecidability in the >0-separation case.

Let T = 〈T , t0, t∗, H, V 〉 be a tiling structure. Fig. 3 shows how an example tiling of nine tiles (top-left of the figure) is
flattened into the corresponding temporal plan, which is represented by a set of rectangular intertwined blocks. Underneath
the temporal plan, the figure shows the evolution of the values of a number of variables whose role is explained below.

In order to encode a tiling for T into a temporal plan, we make use of two actions at and at
� for each tile type t ∈ T ,

assuming a unit duration for each of them. The sequence of such actions in the plan represents the corresponding tiling
row-by-row, with actions at

� positioned only at places that correspond to the left border of the tiling. At the beginning of
the plan, a certain number of actions get started before the end of the first one. Such actions represent the first row of the
tiling, and thus their number is equal to the number of columns of the tiling. Then, after the end of the first action, the
plan proceeds with a strict alternation of starts and ends of actions, in such a way that each action starts immediately after
the end of the action corresponding to the tile at the same position in the preceding row. For example, in Fig. 3, action n. 5
represents the tile at position (1, 1), that is, second column and second row, and starts immediately after action n. 2, which
represents the tile above it, at position (0, 1), that is, second column and first row. When the final tile has been placed, a
special action end, which does not correspond to any tile, marks the end of the tiling; the start/end alternation ends with
12

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
Fig. 3. Example of temporal plan encoding a tiling. On the top-left, a square tiling of nine tiles {1, . . . , 9}. On the bottom-right, the corresponding temporal
plan, with the executed actions on top, and the values of auxiliary fluents below. Colors identify different tile types, while numbers are used to highlight
the correspondence between the single tiles in the example tiling and the actions in the plan. (For interpretation of the colors in the figure(s), the reader
is referred to the web version of this article.)

the end of all the actions that are still running. The end of the end action has the effect to set the goal fluent, which is the
goal of the planning problem, so the plan can terminate.

Two sets of bookkeeping fluents, τ̄ = 〈τ0, . . . , τn−1〉 and π̄ = 〈π0, . . . ,πn−1〉, where n = �log2(|T |)�, are used to enforce
the horizontal and vertical adjacency relations as follows. The τ̄ fluents are updated at the start of each action, so that each
action knows the tile placed by the action before, and can enforce the horizontal adjacency relation. On the converse, the π̄
fluents are updated at the end of each action, so that each action knows as well the tile placed by the action immediately
above it, and the vertical adjacency relation can be checked.

A number of auxiliary fluents are used to build this machinery. The top and bottom fluents are used to know whether
the execution of the plan is currently positioned at the top or bottom row of the tiling, respectively. The s fluent is used to
enforce the start/end alternance in the middle part of the plan. Finally, the left is used to mark the first column of the plan.

To formally specify such an encoding, we need to introduce some notation. To this end, we make use of the syntax of
temporal planning problems with Boolean conditions, as defined in Definition 2.9. For each t ∈ T , a formula τ = t (resp.,
π = t) is defined as a simple conjunction stating the truth value of the τi (resp., πi) fluents corresponding to t (similarly to
SAS+ planning state variables [15]). Analogously, the shorthands τ := t and π := t are used to denote the effect of setting
the τi and πi fluents to the tuple of values corresponding to t . Finally, we write (τ , t) ∈ H and (π, t) ∈ V to say that the
current values of the τi and πi fluents, respectively, are related to t by the H and V relations:

(τ , t) ∈ H ↔
∨
t′∈T

(t′,t)∈H

τ = t′ (π, t) ∈ V ↔
∨
t′∈T

(t′,t)∈V

π = t′

Now, we are ready to formally describe the reduction.

Definition 5.5 (Planning problem for a tiling structure).
Let T = 〈T , t0, t∗, H, V 〉 be a tiling structure. The temporal planning problem associated with T is the problem PT =

〈PT , AT , IT , GT 〉, where

1. the set of propositions is

PT = {τ0, . . . , τn−1} ∪ {π0, . . . ,πn−1} ∪ {s, top,bottom, left, g},
with n = �log2(|T |)�;

2. the initial state is IT = {top, left};
3. the goal condition is GT = {g};
4. the set of actions is AT = {at | t ∈ T } ∪ {at

� | t ∈ T } ∪ {end}, where each action is defined as follows:
(a) for each a ∈ AT , we have La = Ua = 1 and pre↔(a) = �;
13

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
(b) for each t ∈ T , conditions and effects of the actions at and at
� (both denoted as at∗ below) are defined as follows:

pre(at∗�) = ¬bottom

∧ left ← only for at
�

∧ ¬left ← only for at

∧ ¬(top ∧ left) ← except for at0

∧ ¬top → s

∧ ¬top → (π, t) ∈ V

∧ ¬left → (τ , t) ∈ H

eff(at∗�) = ¬s ∧ ¬left ∧ τ := t

pre(at∗) = ¬bottom → ¬s

eff(at∗) = s ∧ ¬top ∧ π := t

∧ left ← only for at
�

Finally, conditions and effects of the end action are defined as follows:

pre(end�) = left

eff(end�) = bottom

pre(end) = (π = t∗)
eff(end) = g

A note on the size of the encoding of Definition 5.5 is due. As mentioned, we used the syntactic extension of Boolean
conditions as defined in Definition 2.9, which may in principle require an exponential blowup to be translated into the
set-theoretic conditions of Definition 2.1. Notably, the proof of undecidability of Theorem 5.1 would not be affected by any
sort of size blowup, since it provides a reduction from an undecidable problem. However, for this encoding to be used as a
polynomial reduction in the proof of Theorem 5.2, we need to prove that the exponential blowup does not happen in this
case.

Lemma 5.1. Let T be a tiling structure. The temporal planning problem PT associated with T , as defined in Definition 5.5, can be
mapped into a temporal planning problem without Boolean conditions with only a polynomial increase in size.

Proof. The well-known compilation of Boolean conditions into set-theoretic conditions involves the translation of the con-
ditions of each snap action into disjunctive normal form (DNF), and a duplication of each action with a new copy of itself for
each disjunct of the resulting formula. This step is the source of the exponential blowup that may arise in general. To see
why it does not happen in this case, observe that (i) all the conditions of the problem in Definition 5.5 are in essence in
conjunctive normal form, and (ii) the number of clauses is fixed and it does not depend on the size of the input problem. In
particular, in pre(at�), there are always only five clauses, and only the last two clauses grow linearly in the number of tiles
of T . The number of disjuncts in the DNF of pre(at�) thus grows quadratically in the number of tiles. �

By making use of the encoding of Definition 5.5, we prove the undecidability of the temporal planning problem when
the >0-separation semantics is assumed.

Theorem 5.1 (Undecidability). Temporal planning over dense time, with >0-separation semantics and self-overlap of actions, is
undecidable.

Proof. We prove that the encoding described in Definition 5.5 is a sound and complete reduction from the unbounded
(corridor) tiling problem to temporal planning with >0-separation semantics and self-overlap of actions. Since the former
problem is undecidable [53], the latter is undecidable as well.

Let T = 〈T , t0, t∗, H, V 〉 be a tiling structure and let PT = 〈PT , AT , IT , GT 〉 be its associated temporal planning prob-
lem as specified in Definition 5.5.

(⇒) Suppose there is a tiling f : [n] ×[h] → T for T , for some n, h > 0. We build a solution plan for PT by laying out the
actions that represent the tiling in a row-by-row layout (recall Fig. 3). For i ∈ {0, . . . , n} and j ∈ {0, . . . , h}, let ti, j = f (i, j) be
the tile placed at position (i, j) by the tiling f and let ai, j = ati, j , for j > 0, and ai, j = a

ti, j , for j = 0, be the corresponding
�

14

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
action. Note that actions at
� are placed along the left border of the tiling. Moreover, let a0,h+1 = end and δ = 1/n. Formally,

the plan πT representing T can be defined as follows:

πT =
⋃

i∈{0,...,n}
j∈{0,...,h}

{〈ai, j, j · (1 + δ

2
) + δ · i,1〉} ∪ {〈a0,h+1, (h + 1) · (1 + δ

2
),1〉}

It can be checked that mutex events in πT are correctly separated as required by the >0-separation semantics defined in
Definition 2.6.

Intuitively, δ is the amount of time that separates the start of consecutive actions of a given row j. In this way, the start
of all the actions of the j-th row are contained inside its first action a0, j . When a0, j ends, the next row then begins with
a0, j+1, which starts δ

2 later, just before the end of a1, j . All the actions have unit duration as specified by PT .
To start with, we observe a few facts.

1. In the whole plan, excepting during a0,0 and end = a0,h+1, there is a strict alternation of starts and ends of actions, that
is, each start is placed between two ends and each end is placed between two starts.

2. The effect of at
�	 makes proposition left hold only between the end of a0, j and the start of a0, j+1, for all j ∈ [h].

Then, we can check that the preconditions of all the actions are satisfied.
Let us consider pre(a�), for all a ∈ AT .

1. ¬bottom is always satisfied since bottom is initially false and it is only set to true by the start of end, which, by
construction, is the last action to start in the plan.

2. left (for at
�) and ¬left (for at) are satisfied by the way the actions are placed, with at

� placed always and only at the left
border of the tiling.

3. top and left are both initially true, but ¬(top ∧ left) is not required by at0 = a0,0. After that, all the ai, j� set left to false.
Proposition left is set to true again by all the a0, j	 , which, however, also set ¬top, and thus top and left never become
true together again.

4. ¬top → s is satisfied thanks to the strict start/end alternation enforced in the plan starting from a0,0	 , which is the
first ending snap action in the plan and, among its effects, sets ¬top.

5. By construction, for all i > 0 and j ≥ 0, the action ai, j starts immediately after the end of ai−1, j , hence after π̄ have
just been set to ti−1, j . Consequently, since f is a tiling for T , we know that (ti−1, j, ti, j) ∈ H , and thus (π̄ , ti, j) ∈ H is
satisfied.

6. By construction, for all i ≥ 0 and j > 0, the action ai, j is the first to start after the start of ai, j−1, hence after τ̄ have
been set to ti, j−1. Consequently, since f is a tiling for T , we know that (ti, j−1, ti, j) ∈ V , and thus (τ̄ , ti, j) ∈ V is
satisfied.

The case of pre(a) is similar: ¬s is set as the effect of each ai, j� , and each action ends after the start of some other,
excepting after end� , which, however, sets bottom to true. Hence, ¬bottom → ¬s is satisfied at the end of each action.

Let us consider now start and end conditions of the end action. Since end = a0,h+1, the action starts when left is true,
and thus pre(end) is satisfied. Moreover, end ends just after an,h , which sets π̄ to tn,h = t∗ , hence pre(end) is satisfied.

Finally, we observe that the goal condition is reached, since end is executed, which implies that proposition g is set to
true as required by the goal condition.

(⇐) Suppose there is a solution plan π for PT . We show how to extract a candidate tiling f from π , and then that
f is indeed a tiling for T . We first show that π necessarily has a certain structure, that we use afterwards to extract the
tiling f . In particular, we show that π consists of a sequence of starts of a number of actions, followed by a segment of
strict alternation of starts and ends of actions, followed by a sequence of ends. To this end, we observe that:

1. The start of any action requires s only if ¬top, and thus, at the beginning of the plan, we may have an unbounded
sequence of starts.

2. Such a sequence stops at the end of the first action, which sets ¬top. From there, each start requires s and sets ¬s,
while each end requires ¬s and sets s, thus requiring a strict alternation of starts and ends.

3. The end of the distinguished end action is the only event that sets the g fluent, which is the goal of the problem. Since
π is a solution plan, sooner or later end is executed.

4. The end action is the last action to start, since its start sets bottom, and the start of any other action requires ¬bottom.
Moreover, the end of end is the last event of the plan, since all the actions have the same unit duration, and thus all
the actions started before end have time to conclude.

5. During the execution of end, the sequence of the ends of all the actions started before and not yet concluded takes
place.

Now, let a0, . . . , ak−1 be the sequence of actions of the plan in the order in which they are started, and let n be the
number of actions that start before the end of a0, that is, the first sequence of starts. The left fluent, initially true, is set to
15

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
false by the start of any action, and thus it is immediately set to false by a0. However, actions at
� , which start only when

left is true, set left true again at their ends. Note that a0 must be of the form at
� , hence the end of a0 sets left again. This

happens after n starts. Then, left is set to false again by the n + 1 start event, to be set true again by the end following the
2n-th start, and so on. Hence, left is set to true after every n start events. Finally, note that since end requires left, it can
only be started after m · n starts, for some m > 0, and thus the total number k of actions is of the form k = m · n + 1.

We can now explain how the tiling f is extracted from π . It is an n × m tiling f : [n] × [m] → T such that f (i, j) = ti, j ,
where ai·n+ j = a

ti, j∗ (where ati, j∗ is either ati, j or ati, j
�). Intuitively, n is the number of columns of the tiling, the start of each

action places a tile, and left is true at the start of every action at the leftmost border of the tiling.
It remains to check that f is indeed a tiling for T . To do this, consider that the start of each action at∗ sets the τ̄ fluents

to t , and requires that (τ̄ , t) ∈ H . The τ̄ fluents thus track which tile is placed in the current position and are used to check
the horizontal adjacency relation. The vertical adjacency relation is enforced in a similar, but slightly more complex, way.
The end of at sets π̄ to t . If at = ai , then this happens right before the start of ai+n , that is, before the start of the action/tile
at the same column in the following row. Thus, when the start of ai+n = at′ checks that (π̄ , t′) ∈ V , it correctly checks the
vertical adjacency relation. Thus, f is a tiling for T . �

The above construction can be adapted to the ε-separation semantics, using a reduction from the computationally simpler
exponential corridor tiling problem.

Theorem 5.2. Temporal planning over dense time, with ε-separation semantics and self-overlap of actions, is EXPSPACE-complete.

Proof. Let P = (P , A, I, G) be a dense-time temporal planning problem with ε-separation semantics and self-overlap of
actions. It can be easily shown that it belongs to EXPSPACE. An equivalent problem of exponential size P ′ = (P ′, A′, I ′, G ′),
with |P ′| ∈O(2|P|), can indeed be obtained from it such that P has a solution plan admitting self-overlap of actions if and
only if P ′ admits a plan without any self-overlap. Then, by Theorem 4.1, P ′ can in turn be solved in space polynomial in
|P ′|, hence exponential in |P|. Let Dmax be the maximum duration allowed for any action in A. P ′ can obtained from P
by duplicating each action a ∈ A into k copies a1, . . . , ak , where k = Dmax/ε, which corresponds to the maximum number of
overlapping instances of the same action (note that the start of an action is mutex with itself).

To show that the problem is EXPSPACE-hard, we exploit a reduction from the exponential corridor tiling problem. Given
a tiling structure T and an integer n > 0, the structure can be encoded into a temporal planning problem P that admits
a solution plan if and only if T admits an m-tiling for some m ≤ n. The encoding is the same as the one described in
Definition 5.5, and thus we do not repeat it here. We just remark that, by Lemma 5.1, the size of the resulting planning
problem is polynomial in the size of the tiling structure, even when expressed with set-theoretic conditions. Now, since the
maximum number of columns in the tiling is now known in advance, the resulting planning problem can be solved with
ε-separation by choosing a suitable value for ε. First, note that all snap actions produced in the reduction are mutex, since
their effects and preconditions share at least the flag bit s. Then, at worst, the action corresponding to the first tile of each
row has to contain the end of the m actions of the previous row, and the start of the other m − 1 tiles of the row. This
divides the unit time interval of the action into 2m − 2 subintervals, hence ε = 1

(2n−2)
ensures enough granularity for any

tiling with only and at most n columns. �
6. Conclusions

The paper studies the computational complexity of temporal planning, as specified by PDDL 2.1, and it provides a com-
prehensive picture of the complexity of the problem under different semantic interpretations. More precisely, we distinguish
between two ways of separating mutually exclusive events: they can be constrained to be separated by a given minimum
quantum of time (ε-separation) or just by any positive amount of time (>0-separation). Moreover, we consider both the
case where actions are allowed to overlap with running instances of themselves and the case where such an overlapping is
disallowed.

The outcome of the analysis is the following. Dense-time temporal planning is PSPACE-complete, that is, no harder than
classical planning, when self-overlap is forbidden, regardless of the adopted form of separation of mutually exclusive events.
When self-overlap is allowed, the problem becomes EXPSPACE-complete with ε-separation and even undecidable with >0-
separation. These results clarify the computational consequences of different choices in the PDDL 2.1 semantics, which were
vague until now.

It is worth pointing out that the proof of PSPACE-membership makes use of an original polynomial-size encoding of
action-based temporal planning into timed automata. In analogy to (or in combination with) other contributions, where
timed automata or their extensions have been exploited to deal with planning problems [9,54], this may lead to novel
approaches of practical interest.

We would like to remark that we focused our attention on the PDDL 2.1 fragment, where only conjunctive preconditions
and goals are allowed, and actions do not contain conditional effects. Much as it happens in the case of STRIPS [14], an
interesting research question is whether the obtained results carry on to the more general setting. We expect the problem
to be challenging, in particular, the support for conditional effects, as their specification leads to reasoning over many
16

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
contextual situations, and it is not clear how such a generalization, and the necessary reformulation of mutex conditions,
may affect the temporal reasoning task. Still looking at action-based languages for temporal planning, we would also like to
understand whether our constructions can be adapted for analyzing the computational complexity of NDL [49] that, to the
best of our knowledge, has not yet been explored.

Last but not least, we would like to systematically compare the achieved results with those obtained for timeline-based
planning over dense time [11,13], in analogy to what has been already done in the discrete setting [34].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

Andrea Micheli and Enrico Scala have been supported by AIPlan4EU, a project funded by EU Horizon 2020 research and
innovation programme under GA n. 101016442 (since 2021), by the Autonomous Province of Trento in the scope of L.P. n.
6/1999 with grant MAIS (n. 2017-D323-00056 del. n. 941 of 16/06/2017, until 2019) and by EIT Digital within the AWARD
project (until 2019). Nicola Gigante and Angelo Montanari have been supported by the PRID project ENCASE - Efforts in the
uNderstanding of Complex interActing SystEms, funded by the University of Udine, and by the ¡NδA � GNCS project Strategic
Reasoning and Automatic Synthesis of Multi-Agent Systems.

Appendix A. Proofs of Section 4

Lemma 4.1. For any run R of T [P]>0 reaching �∗ from �0 , the plan π [R] is valid for P = 〈P , A, I, G〉 according to the non-zero
separation semantics.

Proof. We proceed by showing that all the conditions of Definition 2.6 hold for π [R] = {〈t1, a1, d1〉, · · · , 〈tn, an, dn〉}. Let
π [R]ind = 〈〈t′

1, B1〉, · · · , 〈t′
m, Bm〉〉.

(i) We have to show that ∀i ∈ {1 · · ·n}.Lai ≤ di ≤ Uai .
The duration of each action instance a is set (by Definition 4.3) to the value of csa when transition la	 = 〈�i, cxa	 =
1, , effects(a), �i+1〉 is taken. Then, the only way to satisfy the guard cxa	 = 1 is to have a previous transition labeled
with ga = 〈�k, guard(a), , {cxa	 := 1}, �w〉 without a positive time elapse between the two transitions. Since the run
R is valid, then the guard of ga is satisfied and guard(a) imposes the condition dur(a) = csa ≥ La ∧csa ≤ Ua , hence
fulfilling the duration constraint of the plan.

(ii) We have to show that there are no h, z ∈ Bi , with h �= z, for some i ∈ {1, · · · , m}, such that mutex(h, z).

By contradiction, suppose that there are such h and z. Then, there must be a transition 〈�i, vi〉 l−→ 〈�i+1, vi+1〉 in R with
l = 〈�i, cxh = 1, , effects(h), �i+1〉. In turn, the only way to satisfy the guard cxh = 1 is to have a previous transition
with label l′ = 〈dk, guard(h), , {cxh := 1}, dk+1〉 for some k, without a positive time elapse between l and l′ . To satisfy
the guard of l′ , the formula sep(h) must be satisfied. This implies that cz > 0, because mutex(h, z), but then z /∈ Bi ,
hence the contradiction.

(iii) We have to show that, given s0 = I , for all i ∈ {1, . . . , m}, it holds that:
(a)

⋃
h∈Bi

pre(h) ⊆ si ,

(b) si = (si−1 \ ⋃
h∈Bi

eff−(h)) ∪ ⋃
h∈Bi

eff+(h), and
(c) G ⊆ sm .
Given a clock valuation vi , we define the decoded state as s[vi] = {p j | p j ∈ P ∧ vi(cpj) = 1}. The first transition

of R must obviously be 〈�0, �0〉 l−→ 〈�δ, v0〉, with l = 〈�0, �, , {cpi := 1 | pi ∈ I}, �δ〉. Clearly, s0 = s[v0] = I given

the updates of l. Now, for each 〈t, B〉 ∈ π [R]ind , let si = s[vk], where 〈�k−1, vk−1〉 lh−→ 〈�k, vk〉 with lh = 〈�i, cxh =
1, , effects(h), �i+1〉, vk(cγ) = t , and h ∈ B . Note that si does exist by Definition 4.3.
It is easy to see that Item (b) holds, that is, si = (si−1 \ ⋃

h∈Bi
eff−(h)) ∪ ⋃

h∈Bi
eff+(h)): it directly follows from the

formulae effects(h), for each h ∈ B , and the inertia of the clocks, that remain still during each transition unless explicitly
updated. No other update touches the binary clocks, except for the state update that only scales them back to either 0
or 1 without changing their binary meaning.
Let us show now that Item (a), i.e.,

⋃
h∈Bi

pre(h) ⊆ si , for all i ∈ {1, . . . , m}, holds as well. Following the same reasoning

path of point (iii), there is a transition 〈�i, vi〉 l−→ 〈� j+1, v j+1〉 in R with l = 〈� j, cxh = 1, , effects(h), � j+1〉. In turn, the
only way to satisfy the guard cxh = 1 is to have a previous transition with label l′ = 〈dk, guard(h), , {cxh := 1}, dk+1〉
for some k, without a positive time elapse between l and l′ . Now, due to the formula guard(h), it must be the case that
pre(h) ⊆ si , because no snap action mutex with h can be executed between l and l′ in R .
17

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
Finally, we show that Item (c), i.e., G ⊆ sm , holds. Since the run R terminates in �∗ , the last transition is labeled as
〈rM+N ,

∧
pi∈G cpi = 1 ∧ ∧

a∈A cra = 0, , ∅, �∗〉, and thus G ⊆ sm , as the guard
∧

pi∈G cpi = 1 must be satisfied.

(iv) To complete the proof, we need to show that, for all c = 〈t, a, d〉 ∈ π , we have that ∀π ind� (c) ≤ k < π ind	 (c). pre↔(a) ⊆ sk .
Along run R , cra − cδ = 1 between consecutive transitions 〈�i, cxa� = 1, , effects(a�), �i+1〉 and 〈� j, cxa	 =
1, , effects(a), � j+1〉 (these transitions must come in pairs due to the guard(a�) formula). Each of these pairs corre-
sponds to π ind� (c) and π ind	 (c). Therefore, pre↔(a) ⊆ sk for each π ind� (c) ≤ k < π ind	 (c) because in all the clock valuations
vk corresponding to each sk , vk(cra) = 1 and the formula oc(a) must be satisfied, forcing vk(cpi) to be 1 for all
pi ∈ pre↔(a). �

Lemma 4.2. For any run R of T [P]≥ε reaching �∗ from �0 , the plan π [R] is valid for P according to the ε-separation semantics.

Proof. We proceed as in the proof of the previous lemma, then we add the following part to prove the satisfaction of
Definition 2.7.

(v) For all i, j ∈ {1, · · · , m}, with i �= j, such that there exist h ∈ Bi and z ∈ B j , with mutex(h, z), we have that |t′
i − t′

j | ≥ ε.
By contradiction, suppose that there are i, j ∈ {1, · · · , m}, with i �= j, such that there exist h ∈ Bi and z ∈ B j with

mutex(h, z) and |ti − t j | < ε. Without loss of generality, suppose i < j. Then, there is a transition 〈�i, �i〉 l−→ 〈�i+1, vi+1〉
in R with l = 〈�i, cxh = 1, , effects(h), �i+1〉. In turn, the only way to satisfy the guard cxh = 1 is to have a previous
transition with label l′ = 〈d2k−2, guard(h), , {cxh := 1}, d2k−1〉 without a positive time elapse between l and l′ . To satisfy
the guard of l′ , the formula sep(h) must be satisfied. This implies that cz ≥ ε, as mutex(h, z), hence the contradiction,
because the only way to satisfy cz≥ ε is to have |ti − t j | ≥ ε. �

Lemma 4.3. Let π = {〈t1, a1, d1〉, · · · , 〈tn, an, dn〉} be a valid plan for P = 〈P , A, I, G〉 according to the >0-separation semantics.
Then, there exists a run R[π] of T [P]>0 that reaches �∗ from �0 .

Proof. We construct the run R[π] by reversing the argument of Lemma 4.1. We will omit the time-elapse transitions with
duration 0, since all the locations of T [P]>0, with the exception of �δ , are urgent. Let π ind = 〈〈t1, B1〉, · · · , 〈tm, Bm〉〉.

By Definition 2.6, we know that there exists a sequence of states s0 · · · , sm such that s0 = I , si = (si−1 \ ⋃
h∈Bi

eff−(h)) ∪⋃
h∈Bi

eff+(h), and G ⊆ sm .
Moreover, let 〈ρ0, · · · , ρk〉 a sequence of sets of actions where ρi = {a | #{ j | a� ∈ B j, j ≤ i} − #{ j | a	 ∈ B j, j ≤ i} = 1}.

Intuitively, since we are disallowing self-overlapping of actions, ρi contains all the actions running while the system is in
state si . Equivalently, one can assume to have a fresh predicate for each action, and have it set to true when the action it
refers to is started and set to false when it does terminate; in this case, ρi would be the set of actions having their fluent
set to true in si . Clearly, ρ0 = ρk = ∅, because at the beginning and at the end of the plan no action can be running.

We proceed by induction on π ind showing that starting from an automaton state 〈�δ, vi〉, with si = s[vi] and ρi = {a |
vi(cra) = 1}, we can construct the run R[π] that reaches �∗ .

The run R[π] invariantly starts with the transition 〈�0, �0〉 l−→ 〈�δ, v1〉, with l = 〈�0, �, , {cpi := 1 | pi ∈ I}, �δ〉. This
transition can always be taken because the guard is a tautology. It is easy to see that s[v1] = s0 as in the proof of Lemma 4.1.

Let 〈�δ, vi〉 be the last state of the prefix of the run constructed so far. We can deterministically add to R[π] a sequence
of transitions that traverse the state-decoding portion of the timed automaton till location rM+N . This is always possible,
because the two alternative transitions between location ri and ri+1 are incompatible one another due to their guards and
either of the two guards is surely satisfied.

Let the new last state of the run R[π] be 〈rM+N , v j〉. It is easy to see that s[vi] = s[v j] because the only modification
operated by the state-decoding part of the automaton is to bring back the binary clocks to either 0 or 1.

Base case. If π ind is empty, then s0 = sk and we can add to R[π] the transition 〈rM+N , v j〉 l−→ 〈�∗, vk〉 with l =
〈rM+N ,

∧
pi∈G cpi = 1 ∧ ∧

a∈A cra = 0, , ∅, �∗〉. This transition must be possible, as, being the plan valid according to
Definition 4.3, G ⊆ s[v j] and

∧
a∈A cra = 0 (cra is set to 1 when starting an action and reset to 0 upon action termination,

and in π ind each a� is paired with a a). Hence, if π ind is empty, all cra must be 0.

Inductive case. Let 〈ti, Bi〉 the first element of π ind . First, we add to the run R[π] a sequence of transitions bringing the
automaton from 〈rM+N , v j〉 to 〈d2M , vq〉. From 〈rM+N , v j〉, we can immediately move to 〈d0, v j〉 as the guard is true and
no clock is reset. Then, for each h ∈ Bi , we take the transition 〈dk, guard(h), , {cxh := 1}, dk+1〉, and for each z /∈ Bi , we
take the transition 〈dk, �, , {cxz := 0}, dk+1〉. Note that the latter is trivially enabled, as the guard is a tautology, while,
in order to take the former transition. we need to show that guard(h) is satisfied. Since (

⋃
h∈Bi

pre(h)) ⊆ si , it follows that
pre(h) ⊆ si . Moreover, it is clear that in all the states 〈di, wi〉 belonging to the decision-making section of the automaton,
the valuation of all the clocks, except for cxh , is the same as the one in v j , and thus, since si = s[v j] = s[wi], guard(h)

must be satisfied. Note that by constraint (ii) and constraint (i) of Definition 2.6, subformula sep(h) and subformula dur(h)

are satisfied, respectively.
18

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
Since moving from d2M to e0 is always possible, we can conclude that from 〈rM+N , v j〉 we can reach a state 〈e0, w0〉.
It is then possible to traverse the states from 〈e0, w0〉 to 〈e2M , w2M〉 deterministically, because either the guard of the
transition 〈ek−1, cxh = 1, , effects(h), ek〉 or the one of 〈ek, cxh = 0, , ∅, ek〉 is enabled at each step. The run constructed
so far, indeed, sets all cxh either to 1 (if h ∈ Bi) or to 0 (otherwise). Now, it is easy to see that si+1 = s[w2M], as we applied
all the updates in effects(h), for each b ∈ Bi . Moreover, ρi+1 = {a | vi(cra) = 1}, as cra is set to 1 when h = a� , and to 0
otherwise.

Let us show now that, at 〈e2M , w2M〉, transition 〈e2M ,
∧

a∈A oc(a), , {cδ := 0}, �δ〉 can be taken. By constraint (iv) of
Definition 2.6, we know that, for all c = 〈t, a, d〉 ∈ π , it holds that ∀π ind� (c) ≤ k < π ind	 (c). pre↔(a) ⊆ sk . Therefore, when
a ∈ ρi pre↔(a) ⊆ si . This directly satisfies the guard formula oc(a).

Finally, we add a timed transition 〈�δ, vi〉 ti+1−ti−−−−→ 〈�δ, v j〉 to the run R[π] so that time advances and v j(cγ) = ti+1.
Now, as before, we can deterministically traverse the state-decoding portion and arrive at 〈rM+N , v j〉, with si+1 = s[v j] and
ρi+1 = {a | vi(cra) = 1}, where, by the inductive hypothesis, we can extend the run R[π] till �∗ . �
References

[1] Meysam Aghighi, Christer Bäckström, Cost-optimal and net-benefit planning - a parameterized complexity view, in: Proc. of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, AAAI Press, 2015, pp. 1487–1493.

[2] Rajeev Alur, David L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (2) (1994) 183–235.
[3] Rajeev Alur, Thomas A. Henzinger, Real-time logics: complexity and expressiveness, Inf. Comput. 104 (1) (1993) 35–77.
[4] Rajeev Alur, Thomas A. Henzinger, A really temporal logic, J. ACM 41 (1) (1994) 181–203.
[5] Rajeev Alur, Costas Courcoubetis, David Dill, Model-checking for real-time systems, in: Proc. of the Fifth Annual IEEE Symposium on Logic in Computer

Science, IEEE, 1990, pp. 414–425.
[6] Christer Bäckström, Peter Jonsson, Time and space bounds for planning, J. Artif. Intell. Res. 60 (2017) 595–638, https://doi .org /10 .1613 /jair.5535.
[7] Christer Bäckström, Peter Jonsson, Sebastian Ordyniak, Stefan Szeider, A complete parameterized complexity analysis of bounded planning, J. Comput.

Syst. Sci. 81 (7) (2015) 1311–1332, https://doi .org /10 .1016 /j .jcss .2015 .04 .002.
[8] J.C.M. Baeten, C.A. Middelburg, Process algebra with timing: real time and discrete time, in: J.A. Bergstra, A. Ponse, S.A. Smolka (Eds.), Handbook of

Process Algebra, ISBN 978-0-444-82830-9, 2001, pp. 627–684.
[9] Sergiy Bogomolov, Daniele Magazzeni, Stefano Minopoli, Martin Wehrle, PDDL+ planning with hybrid automata: foundations of translating must be-

havior, in: Proc. of the 25th International Conference on Automated Planning and Scheduling, 2015, pp. 42–46.
[10] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, Antoine Petit, Updatable timed automata, Theor. Comput. Sci. (ISSN 0304-3975) 321 (2) (2004)

291–345, https://doi .org /10 .1016 /j .tcs .2004 .04 .003.
[11] Laura Bozzelli, Angelo Montanari, Adriano Peron, Taming the complexity of timeline-based planning over dense temporal domains, in: Proc. of the

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, in: LIPIcs, vol. 150, 2019, pp. 34:1–34:14.
[12] Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, Undecidability of future timeline-based planning over dense temporal domains?, in:

Gennaro Cordasco, Luisa Gargano, Adele A. Rescigno (Eds.), Proceedings of the 21st Italian Conference on Theoretical Computer Science, Ischia, Italy,
September 14–16, 2020, in: CEUR Workshop Proceedings, vol. 2756, CEUR-WS.org, 2020, pp. 155–166, http://ceur-ws .org /Vol -2756 /paper _15 .pdf.

[13] Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, Gerhard J. Woeginger, Timeline-based planning over dense temporal domains, Theor.
Comput. Sci. 813 (2020) 305–326, https://doi .org /10 .1016 /j .tcs .2019 .12 .030.

[14] Tom Bylander, The computational complexity of propositional STRIPS planning, Artif. Intell. 69 (1–2) (1994) 165–204.
[15] Christer Bäckström, Bernhard Nebel, Complexity results for SAS+ planning, Comput. Intell. 11 (4) (1995) 625–655, https://doi .org /10 .1111 /j .1467 -8640 .

1995 .tb00052 .x.
[16] Alessandro Cimatti, Marco Pistore, Marco Roveri, Paolo Traverso, Weak, strong, and strong cyclic planning via symbolic model checking, Artif. Intell.

147 (1) (2003) 35–84.
[17] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri, Stefano Tonetta, Extending nuXmv with timed transition systems and timed tem-

poral properties, in: Proc. of the 31st International Conference on Computer Aided Verification, in: Lecture Notes in Computer Science, vol. 11561,
Springer, 2019, pp. 376–386.

[18] Amanda J. Coles, Andrew Coles, Maria Fox, Derek Long, Forward-chaining partial-order planning, in: Proc. of the 20th International Conference on
Automated Planning and Scheduling, AAAI, 2010, pp. 42–49.

[19] Amanda J. Coles, Andrew Coles, Angel García Olaya, Sergio Jiménez Celorrio, Carlos Linares López, Scott Sanner, Sungwook Yoon, A survey of the
seventh international planning competition, AI Mag. 33 (1) (2012).

[20] William A. Cushing, When is temporal planning really temporal?, PhD thesis, Arizona State University, 2012.
[21] William A. Cushing, Subbarao Kambhampati Mausam, Daniel S. Weld, When is temporal planning really temporal?, in: Proc. of the 20th International

Joint Conference on Artificial Intelligence, 2007, pp. 1852–1859.
[22] Dario Della Monica, Nicola Gigante, Angelo Montanari, Pietro Sala, Guido Sciavicco, Bounded timed propositional temporal logic with past captures

timeline-based planning with bounded constraints, in: Carles Sierra (Ed.), Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017, 2017.

[23] Dario Della Monica, Nicola Gigante, Salvatore La Torre, Angelo Montanari, Complexity of qualitative timeline-based planning, in: Proc. of the 27th
International Symposium on Temporal Representation and Reasoning, in: LIPIcs, vol. 178, 2020, pp. 16:1–16:13.

[24] Minh Binh Do, Subbarao Kambhampati, Sapa: a multi-objective metric temporal planner, J. Artif. Intell. Res. 20 (2003) 155–194, https://doi .org /10 .
1613 /jair.1156.

[25] Kutluhan Erol, Dana S. Nau, V.S. Subrahmanian, Complexity, decidability and undecidability results for domain-independent planning, Artif. Intell.
76 (1–2) (1995) 75–88, https://doi .org /10 .1016 /0004 -3702(94)00080 -K.

[26] Kutluhan Erol, James A. Hendler, Dana S. Nau, Complexity results for HTN planning, Ann. Math. Artif. Intell. 18 (1) (1996) 69–93.
[27] Patrick Eyerich, Robert Mattmüller, Gabriele Röger, Using the context-enhanced additive heuristic for temporal and numeric planning, in: Towards

Service Robots for Everyday Environments, in: Springer Tracts in Advanced Robotics, vol. 76, Springer, 2012, pp. 49–64.
[28] M. Fox, D. Long, PDDL2.1: an extension to PDDL for expressing temporal planning domains, J. Artif. Intell. Res. 20 (2003) 61–124.
[29] Maria Fox, Derek Long, Modelling mixed discrete-continuous domains for planning, J. Artif. Intell. Res. 27 (2006) 235–297.
[30] Estíbaliz Fraca, Serge Haddad, Complexity analysis of continuous Petri nets, Fundam. Inform. 137 (1) (2015) 1–28.
[31] Alfonso Gerevini, Alessandro Saetti, Ivan Serina, Planning through stochastic local search and temporal action graphs in LPG, J. Artif. Intell. Res. 20

(2003) 239–290.
19

http://refhub.elsevier.com/S0004-3702(22)00026-1/bib89CAF09CD9843C0B810E6813489C6953s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib89CAF09CD9843C0B810E6813489C6953s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib1E32A225DCD2D59FD2EA424565A02C27s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib3C1C1F372449BAD1B4FDB84FD7EFC3F5s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibD453022B72344D3DD3C61A07F15605B3s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibA94778E615A97D3212713399465DBCDEs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibA94778E615A97D3212713399465DBCDEs1
https://doi.org/10.1613/jair.5535
https://doi.org/10.1016/j.jcss.2015.04.002
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibDE4D6F1E3D4F9A65EC8E8D87D8A7D9DDs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibDE4D6F1E3D4F9A65EC8E8D87D8A7D9DDs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib21ECA118C9F9FC891D62DE86F09D2D89s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib21ECA118C9F9FC891D62DE86F09D2D89s1
https://doi.org/10.1016/j.tcs.2004.04.003
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib1927C531EED97FE92F15141249FE97BDs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib1927C531EED97FE92F15141249FE97BDs1
http://ceur-ws.org/Vol-2756/paper_15.pdf
https://doi.org/10.1016/j.tcs.2019.12.030
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibB963DFA1D4F3B84D5020A0FF727C75B8s1
https://doi.org/10.1111/j.1467-8640.1995.tb00052.x
https://doi.org/10.1111/j.1467-8640.1995.tb00052.x
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib476DE2F953FE9309AB77306D491D9874s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib476DE2F953FE9309AB77306D491D9874s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib8AEDD4315A3B157AB010BA55AF363071s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib8AEDD4315A3B157AB010BA55AF363071s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib8AEDD4315A3B157AB010BA55AF363071s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib24D2AB1D4894C0C025309E1D3E974FAAs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib24D2AB1D4894C0C025309E1D3E974FAAs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib900902187ACCC77635CF83F5D2F0A4A7s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib900902187ACCC77635CF83F5D2F0A4A7s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibC29458F3CC7209CFC5B67D59DD4CA098s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib4AC614FF9CD600B40D3FC2730D0C04A7s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib4AC614FF9CD600B40D3FC2730D0C04A7s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib4589B22B5107A62294F574E6433A276Fs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib4589B22B5107A62294F574E6433A276Fs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib4589B22B5107A62294F574E6433A276Fs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibA576B8A09C7E698DF58AA84814924F8Bs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibA576B8A09C7E698DF58AA84814924F8Bs1
https://doi.org/10.1613/jair.1156
https://doi.org/10.1613/jair.1156
https://doi.org/10.1016/0004-3702(94)00080-K
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib95DAF13A6A180307EEAA5B6E256897DEs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibF8AC01103C0095B1FF766ED987B65D80s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibF8AC01103C0095B1FF766ED987B65D80s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibDFA1587C9419090074EC8732F8A6A8ADs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibE6F0E77CF85484DEE3280588201EECBEs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibFC70DC26B232EDA3C4A0CC8A05E900A7s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib33E857DD863BD5CBE93F584D13C6BFC7s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib33E857DD863BD5CBE93F584D13C6BFC7s1

N. Gigante, A. Micheli, A. Montanari et al. Artificial Intelligence 307 (2022) 103686
[32] Malik Ghallab, Dana S. Nau, Paolo Traverso, Automated Planning - Theory and Practice, Elsevier, 2004.
[33] Malik Ghallab, Dana S. Nau, Paolo Traverso, Automated Planning and Acting, Cambridge University Press, ISBN 978-1-107-03727-4, 2016.
[34] Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer, Andrea Orlandini, Timelines are expressive enough to capture action-based temporal planning,

in: Proc. of the 23rd International Symposium on Temporal Representation and Reasoning, IEEE Computer Society, 2016, pp. 100–109.
[35] Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer, Andrea Orlandini, Complexity of timeline-based planning, in: Proc. of the 27th International

Conference on Automated Planning and Scheduling, AAAI Press, 2017, pp. 116–124.
[36] Nicola Gigante, Andrea Micheli, Angelo Montanari, Enrico Scala, Decidability and complexity of action-based temporal planning over dense time, in:

Proc. of the Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI Press, 2020, pp. 9859–9866.
[37] Bernd Heidergott, Geert Jan Olsder, Jacob Van der Woude, Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus

Algebra and Its Applications, Princeton University Press, 2014.
[38] Alexander Heinz, Martin Wehrle, Sergiy Bogomolov, Daniele Magazzeni, Marius Greitschus, Andreas Podelski, Temporal planning as refinement-based

model checking, in: Proc. of the 29th International Conference on Automated Planning and Scheduling, AAAI Press, 2019, pp. 195–199.
[39] M. Hennessy, T. Regan, A process algebra for timed systems, Inf. Comput. (ISSN 0890-5401) 117 (2) (1995) 221–239, https://doi .org /10 .1006 /inco .1995 .

1041.
[40] Michael L. Littman, Probabilistic propositional planning: representations and complexity, in: Proc. of the 14th National Conference on Artificial Intelli-

gence and the 9th Innovative Applications of Artificial Intelligence Conference, AAAI Press, 1997, pp. 748–754.
[41] Michael L. Littman, Judy Goldsmith, Martin Mundhenk, The computational complexity of probabilistic planning, J. Artif. Intell. Res. 9 (1998) 1–36,

https://doi .org /10 .1613 /jair.505.
[42] Omid Madani, Steve Hanks, Anne Condon, On the undecidability of probabilistic planning and related stochastic optimization problems, Artif. Intell.

147 (1–2) (2003) 5–34, https://doi .org /10 .1016 /S0004 -3702(02)00378 -8.
[43] Dario Della Monica, Nicola Gigante, Angelo Montanari, Pietro Sala, A novel automata-theoretic approach to timeline-based planning, in: Michael

Thielscher, Francesca Toni, Frank Wolter (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International
Conference, KR 2018, Tempe, Arizona, 30 October, 2 November 2018, AAAI Press, 2018, pp. 541–550, https://aaai .org /ocs /index .php /KR /KR18 /paper /
view /18024.

[44] Martin Mundhenk, Judy Goldsmith, Christopher Lusena, Eric Allender, Complexity of finite-horizon Markov decision process problems, J. ACM 47 (4)
(2000) 681–720, https://doi .org /10 .1145 /347476 .347480.

[45] Joël Ouaknine, James Worrell, On the decidability of metric temporal logic, in: Proc. of the 20th Annual IEEE Symposium on Logic in Computer Science,
IEEE, 2005, pp. 188–197.

[46] Masood Feyzbakhsh Rankooh, Gholamreza Ghassem-Sani, ITSAT: an efficient SAT-based temporal planner, J. Artif. Intell. Res. 53 (2015) 541–632, https://
doi .org /10 .1613 /jair.4697.

[47] Jussi Rintanen, Complexity of planning with partial observability, in: Proc. of the 14th International Conference on Automated Planning and Scheduling,
AAAI, 2004, pp. 345–354.

[48] Jussi Rintanen, Complexity of concurrent temporal planning, in: Proc. of the 17th International Conference on Automated Planning and Scheduling,
2007, pp. 280–287.

[49] Jussi Rintanen, Models of action concurrency in temporal planning, in: Qiang Yang, Michael J. Wooldridge (Eds.), Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, AAAI Press, 2015, pp. 1659–1665, http://
ijcai .org /Abstract /15 /237.

[50] Enrico Scala, Patrik Haslum, Sylvie Thiébaux, Miquel Ramírez, Interval-based relaxation for general numeric planning, in: Proc. of the 22nd European
Conference on Artificial Intelligence, in: Frontiers in Artificial Intelligence and Applications, vol. 285, IOS Press, 2016, pp. 655–663.

[51] Ji-Ae Shin, Ernest Davis, Processes and continuous change in a sat-based planner, Artif. Intell. 166 (1–2) (2005) 194–253.
[52] Mauro Vallati, Lukas Chrpa, Marek Grześ, Thomas Leo McCluskey, Mark Roberts, Scott Sanner, et al., The 2014 international planning competition:

progress and trends, AI Mag. 36 (3) (2015) 90–98.
[53] Peter van Emde Boas, The convenience of tiling, in: Andrea Sorbi (Ed.), Complexity, Logic and Recursion Theory, in: Lecture Notes in Pure and Applied

Mathematics, vol. 187, Marcel Dekker Inc., 1997, pp. 331–363.
[54] David Wang, Brian Charles Williams, tBurton: a divide and conquer temporal planner, in: AAAI, AAAI Press, 2015, pp. 3409–3417.
[55] Jiacun Wang, Timed Petri Nets: Theory and Application, vol. 9, Springer Science & Business Media, 2012.
20

http://refhub.elsevier.com/S0004-3702(22)00026-1/bib2EBDC7FA59F375E2AF925CB7F2C8F9D8s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibD770B28049FD1CCA86C59D54A4E3ACDCs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibC54D29AFCD1167ECF7AE2300E62D53E9s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibC54D29AFCD1167ECF7AE2300E62D53E9s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib741F37C836DE603E5D7D30BFCDB444A6s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib741F37C836DE603E5D7D30BFCDB444A6s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib599DCFFA61C3BD29A619A77AA4D9D975s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib599DCFFA61C3BD29A619A77AA4D9D975s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib6D7FCC7C5F7152FB34F15725A16A7D17s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib6D7FCC7C5F7152FB34F15725A16A7D17s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibEAC7A90544C18145D43F2B84A5B07CC6s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibEAC7A90544C18145D43F2B84A5B07CC6s1
https://doi.org/10.1006/inco.1995.1041
https://doi.org/10.1006/inco.1995.1041
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib9032A55446DC80AF5AF30235637D18A1s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib9032A55446DC80AF5AF30235637D18A1s1
https://doi.org/10.1613/jair.505
https://doi.org/10.1016/S0004-3702(02)00378-8
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024
https://doi.org/10.1145/347476.347480
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibB4581065FFC340BD0EE01D093A40D7CEs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibB4581065FFC340BD0EE01D093A40D7CEs1
https://doi.org/10.1613/jair.4697
https://doi.org/10.1613/jair.4697
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib6CDEF573EEE2DAE9D21E97D8E58E7C08s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib6CDEF573EEE2DAE9D21E97D8E58E7C08s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib4D7869408161A583E62AA1AD97DF2370s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib4D7869408161A583E62AA1AD97DF2370s1
http://ijcai.org/Abstract/15/237
http://ijcai.org/Abstract/15/237
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib7D0CC34238BC76E19CD7EFD9B63188DEs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib7D0CC34238BC76E19CD7EFD9B63188DEs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib63B1F0D55DE548E36FCC5354EF246350s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibABF9DF4B1C379AC75826A27E9DED4F30s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bibABF9DF4B1C379AC75826A27E9DED4F30s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib8A35F63076C3815D7392AF341B009F90s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib8A35F63076C3815D7392AF341B009F90s1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib39B7BC0793AC07A920BA188914573EDEs1
http://refhub.elsevier.com/S0004-3702(22)00026-1/bib7D4B47D93F51FD843C209ED003667035s1

