The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

Temporal Task and Motion Planning with Metric Time for Multiple Object
Navigation

Elisa Tosello, Alessandro Valentini, Andrea Micheli

Fondazione Bruno Kessler, Trento, Italy
etosello@fbk.eu, alvalentini @fbk.eu, amicheli @fbk.eu

Abstract

Integrating metric time into Task And Motion Planning
(TAMP) is challenging, especially with simultaneous ob-
ject motion. Existing work focuses on classical and numeric
TAMP, not considering deadlines, motions overlapping in
time, and other temporal constraints. In this paper, we fill
this gap by formalizing Temporal Task and Motion Planning
(TTAMP) for multi-object navigation. We propose a novel in-
terleaved planning technique for this problem, which lever-
ages incremental Satisfiability Modulo Theory to ensure effi-
cient reasoning on deadlines and action duration coupled with
a motion planner supporting simultaneous object motion. Ge-
ometric data on encountered obstacles prunes unreachable
symbolic regions, while temporal bounds limit the geomet-
ric search space. For multiple moving objects, our algorithm
contextualizes the conflicts learned from the motion planner
on overlapping actions so that entire classes of temporal plans
are pruned from the search space of the task planner, ensur-
ing the eventual termination of the interplay. We provide a
comprehensive benchmark suite and demonstrate the effec-
tiveness of our solver in leveraging these scenarios.

Code — https://github.com/fbk-pso/tampest.git

Introduction

Planning for multiple objects moving simultaneously is
highly complex, requiring the integration of task planning
(what actions to take to achieve a goal), temporal reasoning
(scheduling activities to meet constraints), and motion plan-
ning (how to move the system). Consider a fleet of ware-
house robots delivering orders within specific time windows.
The task planning model defines available actions (e.g., mo-
tion and task allocation) and initial and final configurations
of robots and items, with the aim to find a course of ac-
tions to achieve the goal. Temporal planning includes du-
rations, time constraints (e.g., delivery deadlines), and po-
tential overlaps (parallel execution). The motion planner en-
sures motion actions feasibility by checking collision avoid-
ance with static and dynamic obstacles (e.g., other robots)
while ensuring sufficient time for their physical execution.
Despite advances in Task and Motion Planning
(TAMP) (Garrett et al. 2021; Dantam 2020) and Tem-
poral Planning (Shin and Davis 2005; Coles et al. 2021;

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

26716

Valentini, Micheli, and Cimatti 2020), their integration
is still unexplored. Current TAMP approaches generate
feasible task-motion plans, but overlook action durations
and overlaps. Temporal planners manage time constraints
but lack motion integration and fail to consider trajectory
impacts, like navigating narrow passages to meet deadlines
despite moving through open spaces. The challenge lies in
combining them, involving durative and overlapping motion
actions, thus intertwining temporal and spatial reasoning to
manage concurrent, potentially conflicting movements.

To this end, this paper introduces Temporal Task and Mo-
tion Planning (TTAMP), formalizes the TTAMP problem of
concurrent multi-object navigation, and enhances the open-
source modeling tool from (Tosello, Valentini, and Micheli
2024) with metric time and simultaneous motion support.

We designed and implemented a new interleaved TTAMP
solver, named T-TAMPEST (Temporal Task and Mo-
tion Planning by Encoding into Satisfiability Testing),
which leverages incremental Satisfiability Modulo The-
ory (SMT) (Barrett et al. 2009) to incorporate reasoning
on deadlines and actions duration, coupled with a motion
planner supporting simultaneous object motion. For mo-
tion planning, we use a sampling-based algorithm from the
Open Motion Planning Library (OMPL) (Sucan, Moll, and
Kavraki 2012), while the collision checker handles object-
specific obstacles to accommodate robots with diverse ge-
ometries and dynamics. Our solver uses an interleaved ap-
proach, where the SMT solver generates candidate plans
and a refiner checks motion constraints. Geometric data pro-
duced by the motion planner prunes those regions of the
symbolic space that are unreachable due to obstacles, as
in (Tosello, Valentini, and Micheli 2024). For single-object
scenarios, time constraints limit the motion path search to
areas reachable within the maximum action duration. The
motion planner then supplies the task planner with the ac-
tual action duration to aid in state space pruning. For mul-
tiple objects, T-TAMPEST incorporates contextual informa-
tion about the conflicts learned from the motion planner on
overlapping actions. If the motion planner fails, new tempo-
ral constraints are imposed at the task level, pruning classes
of temporal plans and ensuring the end of the interplay.

Finally, we provide a comprehensive benchmark suite for
TTAMP and a detailed assessment of T-TAMPEST, show-
casing its performance in leveraging such constraints.

Related Work

Integrating temporal planning with motion information re-
mains an open challenge due to the complexity of inter-
leaving task and motion data while accounting for metric
time and overlapping actions. Efforts have been made to
transition from domain-specific (Srivastava et al. 2014; Gar-
rett, Lozano-Pérez, and Kaelbling 2018; Toussaint 2015)
to domain-agnostic (Garrett, Lozano-Perez, and Kaelbling
2020; Tosello, Valentini, and Micheli 2024) TAMP ap-
proaches, as well as from classical and numeric planning
to temporal planning. For example, PDDL2.1 Level 3 (Fox
and Long 2003) supports durative actions, continuous re-
sources, and time windows, with several temporal planners
available (Shin and Davis 2005; Coles et al. 2021; Valen-
tini, Micheli, and Cimatti 2020). However, combining mo-
tion and time has primarily focused on equipping motion
planning problems with deadlines (Ho et al. 2022), rather
than extending standard TAMP problems to temporal do-
mains by linking PDDL2.1 Level 3 with motion planning
in both space and time. Details follow.

There are motion planners that incorporate specifications
given by Linear Temporal Logic (LTL) (Ho et al. 2022;
Lahijanian et al. 2016; McMahon and Plaku 2014). (DeCas-
tro and Kress-Gazit 2013), for example, uses LTL for con-
troller synthesis. (Kress-Gazit, Fainekos, and Pappas 2009)
generates a hybrid controller that ensures a robot can achieve
its task, given its geometric model, admissible environ-
ments, and a high-level task in LTL. (Muhayyuddin, Akbari,
and Rosell 2017) enhances LTL planning with ontologies for
task reasoning and physics-based motion planning for object
manipulation, demonstrated with a mobile robot in scenar-
ios requiring object removal to fulfill tasks. LTL, however,
cannot express time durations, only the order of events.

Signal Temporal Logic (STL) (Maler and Nickovic 2004)
extends LTL to allow time windows. However, STL plan-
ners (Raman et al. 2014; Lindemann and Dimarogonas
2017) follow an optimization formulation to incorporate
nonlinear constraints and system dynamics that is computa-
tionally expensive due to the NP-hardness of mixed integer-
linear programs. Although (Takano, Oyama, and Yamakita
2021) presents an optimization-based TAMP approach us-
ing STL for robotic pick-and-place tasks, applying STL
to systems with complex dynamics remains ineffective. To
overcome this limitation, (Saha and Julius 2018) lever-
ages Metric Temporal Logic (MTL) to synthesize control in-
puts for robotic manipulators, enabling them to execute spe-
cific manipulation actions while optimizing performance.
(Edelkamp et al. 2018) addresses multigoal motion planning
with time windows. It uses temporal planning to sequence
goals on a roadmap of the free workspace and pairs this with
a motion planner that samples points to expand the motion
tree within discrete regions. (Faroni et al. 2024) presents a
TAMP approach for optimizing task sequencing and execu-
tion under temporal and spatial variability. The framework
decouples tasks and actions, where actions represent geo-
metric realizations of tasks. At the task level, timeline-based
planning handles temporal constraints and duration variabil-
ity, while motion planning manages the motion online. All of
these approaches are domain specific and lack standardiza-

26717

tion, failing to effectively integrate temporal planning with
metric time and motion planning for feasible task execution,
adherence to deadlines and overlapping actions.

In our case, we lift a standard TAMP problem (Dantam
2020) to the temporal case, linking PDDL 2.1 Level 3 (Fox
and Long 2003) with motion planning in space and time.
We formally define this extension as TTAMP and provide
a tool for modeling it. Our solver is domain-agnostic for
multi-object navigation, and efficiently uses task and motion
data to prune the search space. It also incorporates temporal
details on conflicts from overlapping actions, ensuring the
eventual termination of the task-motion interplay.

Problem Statement

Consider two mobile robots tasked with delivery items (al-
ready on top of them) from one room to another, separated
by a closed door, within a specific time window (see Fig-
ure 1). We classify robots and door as movable objects as
they can change position. The planner must assign destina-
tions and eventually ask for parallel motion to ensure timely
deliveries. To reach their destinations, robots must open the
door and move across it while synchronizing parallel mo-
tions to avoid collisions. This means avoiding fixed obsta-
cles (the walls) and movable ones (the door in its various
configurations and the other robot). Obstacles may be static
(when one robot remains stationary while the other moves)
or dynamic (if in motion). We define this problem as a
TTAMP problem, with its formal definition provided below.

Definition 1 A Temporal Task and Motion Planning prob-

lem is a tuple ¢ = (O, W, C, U, V, I, 4, G) such that:

* O is a set of movable objects, where each object o € O is

characterized by a certain geometric model.

W C RN (N=2orN=23)isthe workspace, that is the

physical volume of all end point positions reachable by

the objects in O. We define Wy, as the subset of W that
is free from fixed obstacles.

U is a map that assigns to each object o € O a mo-

tion model U, that is a mathematical representation of

the kinematic and dynamic laws that allows the object to

evolve within W.

C is the configuration space, where C, C (C is that

subset of C that represents the joint configurations that

0 € O may assume given its motion model. In this context,

oce(o,q) C Wrree is the set of points in Wy occupied

by o when in configuration q € C,.

YV =A{f1,.., fr} is afinite set of variables (or fluents) f €

YV, each with a finite or infinite domain Dom/(f).

I is the initial task state, which assigns a value I(f) €

Dom(f) to each f € V at the start timing.

A is the set of durative actions a = {(dur,, cond,, eff,,

mot,) such that:

— dur, is the duration interval [l,u] for a, withl € Q¢
and u € Qs being the lower and upper bound on the
action duration.

— cond, is the set {condy,, cond.,, condy,} of start,
overall, and end conditions. They are boolean combi-
nations of atoms f = v, with f € V andv € Dom(f).

Topological refinement

Temporal refinement

[& ¢
qf q>
Idoor
G
qisB q1

X,
& 8
¢S) IIdoor qs
2

Blocking obstacles: {door}
Unreachable locations: { qf R qg }

duration(r;)) ——

i

duration(z;) —

wait(z,) 3

7 L I3

Figure 1: Two robots are tasked with delivering two parcels from ¢7 and ¢5 to ¢ and ¢S, respectively. On the first attempt,
the motion planner informs the task planner, via Topological Refinement, that the door is blocking the two target locations and
must be opened. Once the door is opened, Temporal Refinement ensures the robots coordinate their timing to pass through the
door without collision. To achieve this, the second robot waits for the first to pass through the door before proceeding, allowing
both robots to reach their respective destinations efficiently and on time.

— eff, is the set {effi-q, effua} of start and end effects,
each of the form [:= v, with f € V, v € Dom(f).

— mot, is the motion constraint to be fulfilled during
dur,. It can be either L (to indicate that no motion con-
straint is present) or a tuple (04, G5 ,qS, S, D,), where
04 € O is the involved movable object, while q3 € C,,
and ¢ € C,, are its start and goal configurations.
S, C 29%C s a function that maps objects that are
stationary during dur, (static obstacles) to their con-
figurations, which o, must avoid. D, C 2°%€, with
{0] (0,q) € Sa A (0,q") € Dy} =, is a function that
maps objects possibly moving during dur, (dynamic
obstacles) to their configurations at the beginning of
the action, which o, must avoid.

* G is the goal condition, being a boolean combination of
atoms of the form f = v, with f € ¥ and v € Dom(f).

The decisions made over time to solve this problem, in-
cluding start times and durations, forms a plan. The fol-
lowing definition extends standard temporal plans (Fox and
Long 2011) by including trajectories for motion constraints.

Definition 2 A time-triggered Task and Motion Planning
plan 7 is a sequence ({ty, a0, do,T0)s- -, (tns Gnydn, Tn)),
with a; € A the action to be started, t; € (> its starting
time (with t; < t;y1), d; € Q> its duration and 7; is either
L if a; has no motion constraint or a trajectory defined as
7 0 [0,di] — Co,, s.t. Ti(0) = g5 and 7;(d;) = qS. We
write [i] for the i-th element of T.

We omit the full semantics of the task planning problem:
m is valid if, starting from the initial state (7) and execut-
ing the actions of 7, with effects on ¥ at the specified times
and for the chosen durations, all action conditions are satis-
fied and all goal conditions are satisfied after the last action
terminates (Gigante et al. 2022). We focus, instead, on the
motion validity of 7, considering those action instances in 7
with motion constraints. Two of these instances are directly

26718

motion-parallel if their execution times overlap. Extending
this relationship through its transitive closure, we define the
resulting relation as motion-parallel. Both relations are sym-
metric and irreflexive by construction. Formally:

Definition 3 Given a plan w, two distinct elements 7[i]
and 7[j] of 7 are directly-motion-parallel if mot,, # 1,
motaj # Land3t e Rit; <t < ti—i-di/\tj <t< t]‘ —|—dj.
w[i] and 7[j] are motion-parallel (written = [i]||7[j]) if they
are directly-motion-parallel or there is a 7 [k| that is motion-
parallel with both [i] and 7[j).

For a plan to be valid, only dynamic objects in the D spec-
ifications of actions may be in parallel (this can be enforced
at the task-planning level using non-overlapping conditions
and additional fluents, but here we treat it as a semantic con-
straint, leaving enforcement to the planner).

Definition 4 A plan 7w is motion-well-formed if for every
7li]||7[j], 00, € Da, and oq; € Dy,.

To define validity, we can now isolate the groups of action
instances in a plan that are motion-parallel, because we need
to enforce parallel constraints only among these. This is be-
cause our model does not impose absolute movable object
configuration persistence, it is possible by means of an effect
to change the configuration of a movable object in the task
planning space. Hence, we need separate checks for each
maximal set of action instances that are motion-parallel.

Definition 5 Given a plan 7, a parallel-motion-group of ™
is a maximal subset of motion-parallel elements of w. The set
of all parallel-motion-groups of 7 is denoted as PM G ().

To compare parallel trajectories in the plan, we extend
them by persisting the initial and final configurations.

Definition 6 Given an element «[i] of a plan w, we define

Algorithm 1: T-Tampest

Algorithm 3: Checking motion constraints in a given plan

procedure SOLVE(Y, tp,)
cache < 0 > Cache for successful motion constraints
mc + () > Database of new motion constraints
while True do
7 <— SOLVEWITHCONSTRAINTS(%), mc)
if T # () then
Sfound, mc¢’ < CHECKMOTIONS(m, mc, cache, tp)
if found then

| return (m, cache)
else

‘ mc < mc Umc’

1
2
3
4
5
6
7
8
9

> Return plan and paths
10
11
12
13
14

else
tp <ty * 2
mc < 0

> Increase motion planning time
> Reset the constraints

Algorithm 2: Finding a valid plan with motion constraints

procedure SOLVEWITHCONSTRAINTS(%), mc)
W' < refine-problem(1), mc)
m < task-plan(y)")

1
2
3
4 return

its extended trajectory as a trajectory &;(t) such that:

7:(0) ift <t
Li(t) =Smi(t—to) ifts <t<t;+d;

We can define the plan validity as follows.

Definition 7 A plan ~ is valid if:

e 7 is motion-well-formed and valid from the task-planning
perspective.

o Foreach G € PMG(r), each w[i] € G for each {0,q) €

Sa; and for all t € R, occ(o, q) N occ(o;, & (t)) = 0.

For each G € PMG(w), each 7[i] € G for each (o,q) €

D, such that there is no 7[j] € G with o; = o, and for

all't € Rxq, occ(o, q) Nocelo;, &i(t)) = 0.

For each G € PMG(r), each distinct pair of elements

wli],7[j] € G and for all t € Rxq, occ(o;,&(t)) N

ocelo;, (1)) = 0.

The second constraint ensures action trajectories avoid

static obstacles, the third extends this to dynamic obstacles

outside the same parallel-motion group as 7[¢], treating them

as static, and the fourth ensures non-collision between tra-

jectories of actions within the same parallel-motion group.

T-Tampest

To solve the TTAMP problem 1), we developed T-TAMPEST
(Temporal Task and Motion Planning by Encoding into Sat-
isfiability Testing), which interleaves an incremental SMT
solver with a sampling-based motion planner. The SMT
solver manages temporal constraints such as deadlines and
action durations, ensuring that all temporal requirements are
satisfied. The motion planner handles simultaneous object
motion, ensuring that the spatial aspects of the plan are fea-
sible. This section outlines T-TAMPEST and explains how

26719

rocedure CHECKMOTIONS(, mc, cache, timeout)
found < True > Final validity of the plan

for each G € PMG(7) do
Mot « {mot,, | 7[i] € G}
tmin < min({t; | 7[i] € G})
Delay < {a; : t; — tmin | 7[i] € G}
if not find(cache, G, Delay) then
if {n[i]} = G then
| u < upper-bound(a;)
else
‘ u < None
7, X, Q) < motion-plan(Mot, Delay, u, timeout)
if 7 then
cache[(G<, Delay)] < 7
Dur < () > Action durations in trajectory
Wait < () > Action waiting times from ¢,,:n
for each 7[i] € G do
d' < duration(7[a;])
Dur[a;] + d’
Wait[a;] < waiting-time(7[a;])
if d’ > d then
‘ found <— False > Requiring more time
if not found then
| mc[(G<, Delay)]+—(@, 0, Dur, Wait)

P

> One object moving

O 00 N N N R W N =

—_
—_

else

found +— False

mc[(G <, Delay)] + (3, Q, 0, 0)
return found, mc

geometric and temporal constraints are integrated to ensure
the successful termination of the planning process.

General framework. In Algorithm 1, we show the pseudo-
code of our general framework. The procedure SOLVE iter-
atively attempts to solve the TTAMP problem . It keeps a
cache of successfully validated motion constraints and their
trajectories (line 2), and a database mc of new constraints
(line 3). The process begins by calling SOLVEWITHCON-
STRAINTS (line 5), which refines) based on the current
constraints in mc and invokes the task planner to generate
a potential task plan 7 (see Algorithm 2). Initially, mc is
empty, meaning that motion constraints are disregarded and
1) is reduced to a traditional task-planning problem. If a valid
plan 7 is found, SOLVE proceeds to its validation by invok-
ing CHECKMOTIONS (line 7). This function validates the
plan against both new constraints and those stored in the
cache (see Algorithm 3). Since we use a sample-based mo-
tion planning algorithm, which may not terminate if no path
exists, we set a timeout ¢,, to each invocation of the motion
planner. If all motion constraints for 7 are found to be re-
alizable by the motion planner, SOLVE returns the plan 7
along with the cache of validated motion constraints and as-
sociated trajectories (line 9). Otherwise, mc is updated with
the new constraints mc’ obtained from CHECKMOTIONS
(line 11). If SOLVEWITHCONSTRAINTS fails to find a plan
m, it could indicate that the problem is unsolvable or that
the motion planner could not find a path within the allotted
time. Thus, we double the timeout ¢, of the motion planner

(line 13), reset our refinements (line 14), and restart the al-
gorithm. We preserve the cache to retain valid motion plans
and enhance the efficiency of our algorithm.

Constraints generation. The set mc of constraints from
CHECKMOTION explains why the motion planner failed to
find feasible trajectories for the motion actions in 7. It fails
either because no collision-free path exists or the path’s ex-
ecution time exceeds the duration set by the task planner.
Thus, an element of mc has the form (2, Q, Dur, Wait),
where X lists obstacles blocking actions a with mot, # L
in 7, and () contains the corresponding unreachable con-
figurations. Essentially, we collect the same information as
(Tosello, Valentini, and Micheli 2024) but split it by each
parallel movable object. For an action a with mot, # L,
Dur contains the duration duration(t[a]) required to exe-
cute the trajectory 7[a], that we assume is the lower bound
for the duration of this action in the parallel group it is in.
Wait collects the time the object involved in the motion 7[a)
has to wait before starting to move (see Figure 1).

In Algorithm 3, CHECKMOTIONS finds the set PMG(7)
of parallel-motion-groups in 7 and iterates over each group
G. Snap actions in G are defined as

snaps(G) = {{a;, start, t;) | w[i] € G}U
{{ai,end, t; + d;) | 7[i] € G}

where each snap action has the form (a;, z,t), with a; the
action, x € {start, end} its start orend, and ¢t € {¢;,t;+d;}
the timing. G is ordered, with its order defined as

G< = ((a,z) | (a,z,t) € snaps(G))

such that if (a;,z) precedes (a;,y), then (a;, z,t;),
(aj,y,t;) € snaps(G) and t; < t;.

For each group, CHECKMOTIONS extracts the motion
constraints imposed by the problem (Mot), determines the
start time of the earliest action (Z,,,;,,), and calculates the de-
lays (Delay) for all actions relative to this reference time
(lines 4-6). It then checks if a trajectory for G and its delays
is already cached. If no trajectory is found and only one ob-
ject is moving, the algorithm extracts the upper time bound u
of the action (line 8), limiting the search of the motion plan-
ner to areas reachable within this time. For multiple objects
moving, u is ignored. Indeed, a single object’s motion might
exceed the action’s upper bound not because no trajectory
fits within it, but because it is infeasible given the context
of search: temporal constraints are dependent on the order
G < of parallel actions within each group G and the set of
delays Delay associated with each action relative to the start
time of the sequence. We then have to investigate the cause
of infeasibility based on this context.

Given the motion constraints (Mot), delays (Delay), and
optionally the upper bound w, the system invokes the mo-
tion planner to generate a feasible motion plan 7 within the
assigned timeout (line 12). If 7 exists, it is cached, the al-
gorithm verifies the duration of all motions involved (Dur)
(line 18), and computes the waiting times (Wait) relative to
the start of the first motion (line 20). If any motion dura-
tion exceeds what was planned by the task planner, the plan
is invalid, indicating that the action requires more time than

26720

allocated. This invalidity, along with the identified timing is-
sues (Dur and Wait) is stored in mec, aiding the task planner
pruning entire temporal regions of the search space (line 24).

If 7 is not found, 7 is invalid. The information from the
motion planner about blocking obstacles 2 and unreachable
positions 2 (line 12) is stored in mc and used to refine the
task problem by pruning all symbolically defined geometric
regions identified as unreachable (line 27). As shown in Al-
gorithm 3, such geometric constraints are globally defined
and derived from analyzing each action in isolation, inde-
pendently of action order, overlap, or duration.

Constrained solving. Once the new mc is computed, we
re-solve the problem taking into consideration this new in-
formation. As mentioned earlier, we distinguish between
single-object and multi-object movement scenarios.

In the single-object scenario, only one motion action is
executed at a time, and the new constraints are limited to un-
reachable targets and occluding obstacles, or updated lower
bounds for the action duration. We can apply the approach
outlined in Algorithm 2: SOLVEWITHCONSTRAINTS re-
fines v based on the newly identified constraints stored in
mc and then invokes the task planner to search for a new plan
7. While geometric constraints learning follows (Tosello,
Valentini, and Micheli 2024), temporal learning focuses on
refining action durations based on the feedback of the mo-
tion planner. This refinement is planner-independent and can
be applied to any planner utilizing our framework.

In the multi-object case, geometric explanations are han-
dled as before, but temporal constraints depend on the order
G < of events and their delays Delay. Off-the-shelf temporal
planners cannot handle this type of constraints, so we resort
to a direct encoding on top of a standard SMT-based plan-
ning approach (Panjkovic and Micheli 2023). At each step
k, the encoding is augmented by the following formulae.

Given an order of events G< = (eq, ..., e,), we define
the start sub-sequence G as the list of events in G< that are
action starts. We indicate the i-th element of G, as G[i]

and the i-th element of G< as G<[i]. Slightly changing the
notation of (Panjkovic and Micheli 2023), we indicate with
a@j the boolean variable deciding if action a is started in
step ¢, t@Qs indicate the absolute time of step ¢, and d,@j;
indicates the duration of action a started at step <.

For each (G<, Delay) — (0,0, Dur, Wait) € me, we
generate a constraint of the form:

k=IO k—|GKI+1
A @xmei = A (GREGR
Ji=t ja=j1+1

IG<l

()\ (time(G<,i) > time(G<,i— 1))) — LEARNED)...))

LEARNED =

A

a:Gg[i]eG;
(t@Qj; — tQj1 > Delayla] + Wait[a] + §)V
(t@j; — tQj; < Delayla] — €))

((da@j; > Dur[a])V

with:

.) t@j, if G<[i] = G%[v)]
time(G,1)= {t@jqﬁrda@jv if G<[i] is the end of a =G [v]
Given the first start G, [1] at time j;, the second start G*[2]
at time jo, and all other start events at their timing, if the task
planner wants to use the order G'<, it should either extend the
action durations to the learned values in Dur[a], postpone
the starting of the actions to at least Delay[a] + Wait[a]
(making it possible to satisfy the duration constraints, in
principle), or anticipate the start of the actions. In this for-
mulation, we use two constants § and € to ensure the pro-
gression of the algorithm: it is otherwise possible to find in-
finitely many candidate plans with the same order differing
by smaller and smaller amounts of time. These constraints
added to the SMT encoding of (Panjkovic and Micheli
2023), implement a bounded planner capable of exploit-
ing what learned from CHECKMOTIONS to avoid candidate
plans that are guaranteed to be infeasible (assuming the mo-
tion planner had enough time to find a motion plan).

Theoretical guarantees. Our algorithm is sound: the candi-
date plans are valid by construction for the task planner, and
trajectories found by the motion planner are also valid by
construction, adhering to all timing constraints. We believe
that the approach is incomplete: temporal planning is unde-
cidable (Gigante et al. 2022), and combining it with motion
planning adds further complexity. A thorough investigation
of the completeness of our approach is left for future work.

Modeling and Benchmarking

Besides formulating the TTAMP problem of Definition 1
and developing a suitable solver, we extended the modeling
tool from (Tosello, Valentini, and Micheli 2024) to support
this class of problems and created a set of benchmarks that
includes simultaneous durative motion actions. Below is an
overview of our implementation and benchmark suite.

Following (Tosello, Valentini, and Micheli 2024), a set of
Movable Objects adopt specific Configuration Objects (e.g.,
poses) within an Occupancy Map. We support fluents that
map a Movable Object to its Configuration Object within
the Occupancy Map. Besides Instantaneous Motion Actions,
the Durative Motion Action is a durative action from tem-
poral planning enhanced with motion constraints that apply
throughout its duration. A motion constraint of an action a
has the form path(oa, q3, 45, {0 : ¢ ¥(0,9) € Sa U D,}),
with {o | (0,q) € S, A (0,¢') € D,} = 0, as per Defi-
nition 1. It constraints the path of the object o, between ¢
and [qf] to avoid obstacles in S, and D, . Objects in S, are
static throughout a, while the pose of those in D,, is known
at the start but changes during a.

We propose five TTAMP benchmarks, based on crite-
ria from (Lagriffoul et al. 2018) and inspired by the tem-
poral domains of the International Planning Competition
and (Micheli and Valentini 2021). They task robotic agents
with navigating through 2D black-and-white maps, with
black areas denoting fixed obstacles. They must avoid or
remove moving or movable obstacles under metric time.
Agents are modeled as 2D polygons with a Reeds-Shepp

26721

motion model and a car-like control model (v, 6), with v €
{VUmin, Umaz } the vehicle’s velocity and 6 € {0,in, Omaz }
its steering angle. Further descriptions follow.

* Timed doors. A fleet of n robots must navigate through
m closed doors to reach their destinations. Robots can
move between locations, avoiding collisions with fixed
and moving obstacles (walls, doors, and other robots),
with durations based on robot speed and the euclidean
distance to be traveled. They can open doors if in front
of them by instantly changing their configurations from
closed to open (as if pushing buttons). x random locations
in the free space expand the task space.

Driverlog. A set of n trucks delivers m packages to m
destinations, initially secured by closed doors. Trucks can
move if the door ahead is open and a driver is aboard. The
x drivers can drive trucks, walk between locations, and
handle loading and unloading packages. To open a door,
a truck must be in front of it. All actions have durations,
and driving includes motion constraints to avoid collisions
with doors, walls, drivers, and other trucks.

Kitting. A group of n robots assembles x kits by mov-
ing, loading, and unloading m materials. The x locations
storing materials are initially secured by doors that robots
must open to access. Actions have durations, with motion
actions constrained to avoid collisions. Robots, powered
by batteries, can only act if they have sufficient energy,
with actions consuming battery power.

MAJSP. This job-shop scheduling problem involves n
robots transporting x products between m machines for
treatment. Processed products are placed on pallets for
collection. Locations with machines are initially secured
by doors. Robots navigate these locations, open doors,
load and unload items, and transport products for treat-
ment. Actions have durations, motion constraints to avoid
obstacles, and each robot has a limited battery.

Floortile. A fleet of n robots uses ¢ colors to paint x floor
tiles, m of them occupied by movable objects. Robots
and objects can move in four directions (up, down, left,
right), with motion constraints to avoid collisions with
each other. Robots paint one tile at a time using one
color, changing spray guns when needed, and can only
paint tiles directly in front (up) or behind (down). Mov-
ing, painting, and changing color takes time.

Experimental Evaluation

In this section, we evaluate the effectiveness of T-TAMPEST.

As temporal refinements are essential for soundness, we
examine how geometric refinements affect performance and
coverage by varying CHECKMOTION explanations. All-
Refinements uses the full algorithm, sending back to the
Task Planner information on both unreachable locations and
blocking obstacles. Only-Reachables sets Q@ = {S, | a €
7}, giving information only on unreachable locations. Only-
Obstacles sets X = {q$ | a € n}, returning only block-
ing obstacles, marking the target as unreachable, and ignor-
ing the state of all other configurations. No-Refinements sets
Y={¢¢|acn}tand Q= {S, | a € 7}, removing only
the violated constraints (i.e., the blocked location). Bench-
marks and solvers are available open source (check Code).

Planner Timed Doors (tot. 48) Driverlog (tot. 36) Kitting (tot. 108) MAJSP (tot. 36) Floortile (tot. 180)

| Trun G ty) # | Trun Goty) # | Trun G ty) # | Trun Goty) # | Trun G ty)
T-TAMPEST(None) 29 351.09 s (59%) 12 | 464.755(44.93%) | 33 | 516.86s(38.97%) | 14 | 615.795s(76.16%) | 64 | 623.23s(10.93%)
T-TAMPEST(Only-Reachable) | 31 136.07 s (85.16%) 9 114.64 5 (65.06%) | 22 | 894.87s(31.60%) | 15 | 379.335(68.98%) | 63 705.84 s (9.06%)
T-TAMPEST(Only-Obstacles) 27 | 299.415(88.88%) | 11 | 312.10s(46.91%) | 35 | 481.73s(37.92%) | 13 | 560.83 s (68.25%) | 60 565.67 s (9.24%)
T-TAMPEST(All) 32 | 134.98 s (84.83%) 10 | 122.10s(65.23%) | 26 | 728.07s(27.80%) | 15 | 352.545(63.51%) | 53 | 500.70s (11.10%)

Table 1: Overall performance of our solver across four configurations: None (no geometric refinement), Only-Reachable (avoids
unreachable targets), Only Obstacles (considers only obstacles that occlude targets), and Full (the combination of the two). For
each domain, we report the number of instances solved (#), average running time on solved instances (£,), and the percentage

of running time dedicated to the motion planner (% t,).

—— No-Refinements
—— Only-Reachables

—— All-Refinements
—— Only-Obstacles

0 20 40 60 80 100

Instances solved

120 140

Figure 2: Overall performance across all benchmark in-
stances and planners using different topological refinements.

Our test cases follows.

* Timed doors. We consider n € [1, 2, 3] robots and m €
[1,2,3,4] blocking doors. There are either 0 (z = [(0,
0)]) or 10 extra configurations, distributed as either fully
reachable (c = [(10,0)]), fully unreachable (c = [(0, 10)]),
or split equally between both (n. = [(5,9)]).

* Driverlog. We evaluate n € [1,2,3] trucks with m €
[1,2,3,4] packages, each located in an area closed by a
door, and z = [1, 2, 3] human drivers available.

* Kitting. We examine n € [1,2,3] robots assembling
x € [1,2,3] kits, with m € [1,2,3,4] materials to be
subdivided and distributed across m locations closed by
doors. Robots start with a fully charged battery (100%),
with each action consuming 1%.

* MAJSP. We analyze n € [1,2,3] robots, z € [1,2,3]
pallets, and m € [1,2, 3,4] treatments, located in areas
closed by doors. The battery is defined as above.

* Floortile. We have n € [1,2, 3] robots, z € [1,2,4,6, 8]
tiles to be colored in a 4x4 floor, m € [1,2,3,4] tiles
occupied by obstacles, and ¢ € [1, 2, 3] available colors.
We set the incremental horizon of our SMT planner to

hmaz = 100, use Space-Time Rapidly-exploring Random
Tree Star (ST-RRT*) as the motion planner (Grothe et al.
2022), and implement a collision checker to verify if the
2D robot’s footprint intersects obstacles. ST-RRT* inte-
grates spatial and temporal aspects, enabling planning in
unbounded time spaces through incremental time-bound ex-
tensions. It is also optimized for space-time planning, with
features like conditional sampling and simplified rewiring.

26722

Results. Figure 2 shows the impact of using topological re-
finements across all instances and domains, with the x-axis
indicating solved instances and the y-axis showing computa-
tion time. All approaches solve 140-150 instances, with No-
Refinements and Only-Reachables performing ~10% bet-
ter than All-Refinements and Only-Obstacles. However, All-
Refinements reduces overall running time by ~20%. Ta-
ble 1 supports these findings: while the number of solved
instances is similar across approaches, in motion-critical do-
mains like Timed Doors (t, > 80%, with ¢, the motion
planning time) and MAJSP (t, > 60%), incorporating ex-
planations for unreachable goals and blocking obstacles sig-
nificantly improves performance, halving the total running
time. For Timed Doors, T-TAMPEST without refinements
(None) achieves an overall running time ¢,.,,,, = 351.09 s for
= 29 instances solved. With all refinements enabled (All),
it improves to t,.,, = 134.98 s, solving # = 32 instances.
For MAJSP, T-TAMPEST(None) achieves trun = 615.79 s
for # = 14 instances, while T-TAMPEST(A/l) improves to
trun = 352.54 s for # = 15 instances. In domains like
Kitting and Floortile, which involve many non-geometric
actions such as color selection or directional painting, our
solver excels on simpler instances but struggles to scale due
to the SMT component’s limitations. As plan size grows,
the increasing parameter complexity slows resolution. De-
spite this, our analysis shows that as the very first TTAMP
approach, T-TAMPEST already solves a significant number
of instances in complex scenarios.

Conclusion and Future Work

This paper addressed the challenge of Temporal Task and
Motion Planning (TTAMP) for simultaneous multi-object
navigation with metric time. We formalized the problem
and extended an existing modeling tool to handle metric
time and concurrent motion. We proposed T-TAMPEST, a
novel TTAMP planner that interleaves incremental SMT
with sampling-based motion planning to generate plans, re-
fine them based on time constraints, and prune unreach-
able regions. Our results demonstrate the effectiveness of T-
TAMPEST and show that our geometric refinements reduce
running time, particularly in motion-critical domains.

Future work includes enhancing our solver with optimiza-
tion techniques from (Panjkovic and Micheli 2023), extend-
ing formalization to manipulation actions, integrating re-
planning for non-determinism, and testing in simulated and
real-world robot scenarios.

Acknowledgments

This work has been partially supported by the Al4Work
project funded by the EU Horizon 2020 research and innova-
tion program under GA n. 101135990, the STEP-RL project
funded by the European Research Council under GA n.
101115870, and by the Interconnected Nord-Est Innovation
Ecosystem (iNEST) funded by the European Union Next-
GenerationEU (Piano Nazionale di Ripresa e Resilienza
(PNRR) — mission 4 component 2, investment 1.5 — D.D.
1058 23/06/2022, ECS00000043).

References

Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2009. Satisfiability Modulo Theories. In Biere, A.; Heule,
M.; van Maaren, H.; and Walsh, T., eds., Handbook of Sat-
isfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, 825-885. I0S Press. ISBN 978-1-58603-
929-5.

Coles, A.; Coles, A.; Fox, M.; and Long, D. 2021. Forward-
Chaining Partial-Order Planning. Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, 20(1): 42-49.

Dantam, N. T. 2020. Task and Motion Planning, 1-9. Berlin,
Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-
41610-1.

DeCastro, J. A.; and Kress-Gazit, H. 2013. Guaranteeing
reactive high-level behaviors for robots with complex dy-
namics. In 2013 IEEE/RSJ International Conference on In-
telligent Robots and Systems, T749-756.

Edelkamp, S.; Lahijanian, M.; Magazzeni, D.; and Plaku,
E. 2018. Integrating Temporal Reasoning and Sampling-
Based Motion Planning for Multigoal Problems With Dy-
namics and Time Windows. IEEE Robotics and Automation
Letters, 3(4): 3473-3480.

Faroni, M.; Umbrico, A.; Beschi, M.; Orlandini, A.; Cesta,
A.; and Pedrocchi, N. 2024. Optimal Task and Motion
Planning and Execution for Multiagent Systems in Dynamic
Environments. [EEE Transactions on Cybernetics, 54(6):
3366-3377.

Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to
PDDL for expressing temporal planning domains. Journal
of artificial intelligence research, 20: 61-124.

Fox, M.; and Long, D. 2011. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. CoRR,
abs/1106.4561.

Garrett, C. R.; Chitnis, R.; Holladay, R.; Kim, B.; Silver, T;
Kaelbling, L. P.; and Lozano-Pérez, T. 2021. Integrated Task
and Motion Planning. Annual Review of Control, Robotics,
and Autonomous Systems, 4(1): 265-293.

Garrett, C. R.; Lozano-Perez, T.; and Kaelbling, L. P. 2020.
PDDLStream: Integrating Symbolic Planners and Blackbox
Samplers. In International Conference on Automated Plan-
ning and Scheduling (ICAPS).

Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2018.
FFRob: Leveraging symbolic planning for efficient task and
motion planning. The International Journal of Robotics Re-
search, 37(1): 104—136.

26723

Gigante, N.; Micheli, A.; Montanari, A.; and Scala, E. 2022.
Decidability and complexity of action-based temporal plan-
ning over dense time. Artificial Intelligence.

Grothe, F.; Hartmann, V. N.; Orthey, A.; and Toussaint, M.
2022. ST-RRT*: Asymptotically-Optimal Bidirectional Mo-
tion Planning through Space-Time. In 2022 International
Conference on Robotics and Automation (ICRA), 3314—
3320.

Ho, Q. H.; Ilyes, R. B.; Sunberg, Z. N.; and Lahijanian, M.
2022. Automaton-Guided Control Synthesis for Signal Tem-
poral Logic Specifications. In 2022 IEEE 61st Conference
on Decision and Control (CDC), 3243-3249.

Kress-Gazit, H.; Fainekos, G. E.; and Pappas, G. J. 2009.
Temporal-Logic-Based Reactive Mission and Motion Plan-
ning. IEEE Transactions on Robotics, 25(6): 1370-1381.

Lagriffoul, F.; Dantam, N. T.; Garrett, C.; Akbari, A.; Sri-
vastava, S.; and Kavraki, L. E. 2018. Platform-Independent
Benchmarks for Task and Motion Planning. IEEE Robotics
and Automation Letters, 3(4): 3765-3772.

Lahijanian, M.; Maly, M. R.; Fried, D.; Kavraki, L. E;
Kress-Gazit, H.; and Vardi, M. Y. 2016. Iterative Tempo-
ral Planning in Uncertain Environments With Partial Satis-

faction Guarantees. IEEE Transactions on Robotics, 32(3):
583-599.

Lindemann, L.; and Dimarogonas, D. V. 2017. Robust Mo-
tion Planning employing Signal Temporal Logic. CoRR,
abs/1703.02075.

Maler, O.; and Nickovic, D. 2004. Monitoring Temporal
Properties of Continuous Signals. In Lakhnech, Y.; and
Yovine, S., eds., Formal Techniques, Modelling and Anal-
ysis of Timed and Fault-Tolerant Systems, 152—-166. Berlin,
Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-540-
30206-3.

McMahon, J.; and Plaku, E. 2014. Sampling-based tree
search with discrete abstractions for motion planning with
dynamics and temporal logic. In 2014 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 3726—
3733.

Micheli, A.; and Valentini, A. 2021. Synthesis of Search
Heuristics for Temporal Planning via Reinforcement Learn-
ing. In Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 11895-11902. AAAI Press.

Muhayyuddin; Akbari, A.; and Rosell, J. 2017. Physics-
based Motion Planning with Temporal Logic Specifications.
CoRR, abs/1710.00419.

Panjkovic, S.; and Micheli, A. 2023. Expressive Optimal
Temporal Planning via Optimization Modulo Theory. In
AAAL

Raman, V.; Donzé, A.; Maasoumy, M.; Murray, R. M.;
Sangiovanni-Vincentelli, A.; and Seshia, S. A. 2014. Model
predictive control with signal temporal logic specifications.
In 53rd IEEE Conference on Decision and Control, 81-87.
Saha, S.; and Julius, A. A. 2018. Task and Motion Planning
for Manipulator Arms With Metric Temporal Logic Specifi-
cations. IEEE Robotics and Automation Letters, 3(1): 379—
386.

Shin, J.-A.; and Davis, E. 2005. Processes and continuous
change in a SAT-based planner. Artificial Intelligence.

Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.

In 2014 IEEE international conference on robotics and au-
tomation (ICRA), 639—-646. IEEE.

Sucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. [EEE Robotics & Automation
Magazine, 19(4): 72-82. https://ompl.kavrakilab.org.

Takano, R.; Oyama, H.; and Yamakita, M. 2021. Continuous
Optimization-Based Task and Motion Planning with Signal
Temporal Logic Specifications for Sequential Manipulation.
In 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), 8409-8415.

Tosello, E.; Valentini, A.; and Micheli, A. 2024. A Meta-
Engine Framework for Interleaved Task and Motion Plan-
ning using Topological Refinements. arXiv:2408.05795.

Toussaint, M. 2015. Logic-geometric programming: an
optimization-based approach to combined task and motion
planning. In Proceedings of the 24th International Confer-
ence on Artificial Intelligence, IJICAT’ 15, 1930-1936. AAAI
Press. ISBN 9781577357384.

Valentini, A.; Micheli, A.; and Cimatti, A. 2020. Temporal
Planning with Intermediate Conditions and Effects. In AAAL

26724

