
Automatic Selection of Macro-Events for Heuristic-Search Temporal Planning

Alessandro La Farciola, Alessandro Valentini, Andrea Micheli
Fondazione Bruno Kessler, Trento, Italy

alafarciola@fbk.eu, alvalentini@fbk.eu, amicheli@fbk.eu

Abstract

One of the major techniques to tackle temporal planning
problems is heuristic search augmented with a symbolic rep-
resentation of time in the states. Adding composite actions
(macro-actions) to the problem is a simple and powerful ap-
proach to create “shortcuts” in the search space, at the cost of
increasing the branching factor of the problem and thus the
execution time of a heuristic search planner. Hence, it is of
paramount importance to select the right macro-actions and
minimize their number to optimize the planner performance.
In this paper, we introduce “macro-events”: a simple, yet
powerful, “shortcut” model similar to macro-actions for the
case of temporal planning. Then, we present a novel ranking
function to extract and select a suitable set of macro-events
from a dataset of valid plans. In our ranking approach, we
consider an estimation of the hypothetical search space for a
blind search under four different exploitation schemata. Fi-
nally, we experimentally demonstrate that the proposed ap-
proach yields a substantial performance improvement for a
state-of-the-art temporal planner.

Introduction
Automated temporal planning is the problem of synthesiz-
ing a course of actions to achieve a desired goal, given a
formal model of the system to be controlled when time and
temporal constraints are relevant. Despite a long history of
research, scalability is still a major limiting factor for the ap-
plicability of domain-independent temporal planners: real-
world scenarios are often out of reach for current systems.

One possibility to attack this problem is to specialize tem-
poral planners for a domain of interest: if domain knowledge
is provided to planners, the synthesis process can be acceler-
ated. Among the proposed methods to automatically achieve
this specialization (which nowadays is mostly focused on the
synthesis of search heuristics using machine learning, e.g.,
(Chen, Thiébaux, and Trevizan 2024)), learning small por-
tions of plans that the planner can use together with basic
actions to form a complete plan is a simple and effective
approach that is well-studied for the case of classical plan-
ning. These “shortcuts” in the search space are usually called
“macro-actions” (or sometimes just “macro”) and in classi-
cal and numeric planning (where actions are assumed to be

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

instantaneous) they usually are sequences of actions that can
be exploited to reduce the distance to the goal. In temporal
planning, actions instances are intervals that can overlap in
time, and sequencing durative actions is insufficient to cap-
ture many interesting temporal plans (Cushing et al. 2007).

In this paper, we tackle the problem of automatically
learning structures similar to macro-actions for heuristic-
search temporal planning. By assuming that the plan-
ner we specialize uses heuristic-search with time repre-
sented symbolically (like e.g. POPF (Coles et al. 2010),
TAMER (Valentini, Micheli, and Cimatti 2020) and many
others), we define a simple, yet effective, model of macros
for temporal planning as sequences of actions with a seman-
tics allowing for the representation of any concurrent tem-
poral plan. The basic idea is to represent a totally-ordered
sequence of events by only indicating the ID of the action
to progress. We call these “macro-events” and in this paper
we provide a formal, context-dependent semantics: for ex-
ample, a sequence a; b; a; b could mean “start a, then start
b, then end a, then end b” in a state where not a nor b are
running, but the same macro-action could mean “end a, then
start b, then start a new instance of a, then end b” in a state
where a was started, but not ended, and b is not running.
In general, macro-events cannot be encoded as normal du-
rative actions, but they can be easily exploited by a heuris-
tic search planner as additional domain knowledge provided
in input. After formalizing this concept, we describe four
different ways in which the same set of macro-events can
be exploited by a temporal planner and then we discuss a
novel statistics-based algorithm focused on extracting a suit-
able set of macro-events from a database of valid plans.
Our selection approach estimates (under some simplifying
assumptions) the search states expanded in the worst case
by a blind-search planner equipped with a certain set of
macro-events for each of the four exploitation schemata we
propose. We then use this estimation to automatically se-
lect the most promising set of macro actions to be used at
planning time. Finally, we experimentally show that our ap-
proach yields very good results on the two case-study prob-
lems used in (Micheli and Valentini 2021).

Background
Temporal Planning with ICE We start by formalizing
the temporal planning problems we tackle by adapting the

The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

26579

ground model of (Valentini, Micheli, and Cimatti 2020).
Definition 1. A timing τ is an expression that is either
START + k or END − k with k ∈ Q≥0.
Intuitively, a timing is interpreted relatively to an action in-
stance starting and ending times (by substituting START with
the actual starting time and similarly END) and indicates an
instant of time during an action.
Definition 2. A temporal planning problem P is a tuple
⟨F,A, I,G⟩, where:
• F is a set of fluents, each f ∈ F with a domain Dom(f);
• A is a set of actions, each having a duration constraint; a

set of timed effects of the form [τ]f := v with τ being a
timing, f ∈ F and v ∈ Dom(f); and a set of conditions
of the form [τ1, τ2]ϕ where τ1 and τ2 are timings and ϕ is
an arbitrary boolean combination of atoms over F .1

• I is the initial total assignment of values to fluents; and
• G is the goal condition expressed as an arbitrary boolean

combination of atoms over F .
Basically, our planning model allows to specify a set of flu-
ents (i.e., variables changing their value in time according to
the selected actions) with arbitrary types. Moreover, it en-
compasses Intermediate Conditions and Effects (ICE), al-
lowing the user to specify effects and conditions at arbitrary
points during actions.
Definition 3. A temporal plan π for a problem ⟨F,A, I,G⟩
is a set of tuples {⟨a1, t1, d1⟩, . . . , ⟨an, tn, dn⟩}, where each
ai ∈ A is an action, ti ∈ Q≥0 is its start time, and di ∈ Q>0

is its duration.
For brevity, we do not formalize the semantics of this

planning model (details can be found in (Valentini, Micheli,
and Cimatti 2020) and in (Gigante et al. 2022)), but intu-
itively one can simulate a temporal plan by considering all
the effects induced by the action instances in the plan and
their timings: each effect changes the value of its fluent at
that time and other fluents are left unchanged. The plan is
valid if in the simulation, each condition of every plan action
is satisfied and the goal is reached at the end of the trace.

As recognized by Gigante et al. (2022), one important se-
mantical difference in temporal planning is self-overlapping,
that is whether two instances of the same ground action are
allowed or disallowed to overlap in time. The authors show
that allowing self-overlapping makes the problem undecid-
able in general, while disallowing self-overlapping makes
it PSPACE-complete. In this paper, we adopt the non-self-
overlapping semantics, because it is almost never used in
practice (Fox and Long 2007) and it will allow a much sim-
pler representation of our macro-events. Formally, we dis-
regard any plan π in which ⟨a, t1, d1⟩ ∈ π, ⟨a, t2, d2⟩ ∈ π
(with the same ground action a) and there exist a time t′ s.t.
t1 ≤ t′ ≤ t1 + d1 and t2 ≤ t′ ≤ t2 + d2.

Heuristic-Search for Temporal Planning One popular
technique (but not the only one) to solve temporal planning
problems is heuristic-search coupled with a symbolic repre-
sentation of time. Introduced in Crikey (Coles et al. 2009)

1For this paper, the precise relations allowed in conditions are
unimportant, our planner allows linear real arithmetic and equality.

and adopted by many other planners (e.g., POPF, TAMER
and others), the core idea of the approach is to decompose
each action in its events to search in the space of ordering of
events, using a symbolic representation of the timing con-
straints to check for temporal feasibility.

Definition 4. Given an action a ∈ A, an event e is either:
• the start (START(a)) or ending (END(a)) of a;
• an effect x (EFF(x, a)) of a; or
• the starting (START(c, a)) or ending (END(c, a)) of a con-

dition c of a.

In the simpler setting of PDDL2.1 level 3 an event (also
called “happening”) is either the start or the end of a du-
rative action; when ICE is allowed, events include effects
and conditions starting and ending points during actions as
well. Each concrete planning technique differs in the way
it represents the search space and the temporal constraints
and in the heuristic it employs; however, for the sake of this
paper we can abstract these differences and consider high-
level pseudo-code in Algorithm 1 (considering only the parts
in black). Also, we do not need to further formalize events:
we assume we can refer to an event of an action (writing
action(e) for the action e belongs to) and that given a state
s, we can check the applicability of the event in s (line 9)
and compute the state resulting from the application of an
event e in s (line 10). Given an event e and a state s, we
indicate with e(s) the state resulting from applying e in s.

Without loss of generality, we assume that given an action
a ∈ A, its events are totally ordered; i.e., we can define a list
of events events(a) = ⟨ea1 , . . . , ean⟩. As noted in (Valen-
tini, Micheli, and Cimatti 2020), if this is not the case in the
original problem, it suffices to add appropriate copies of an
action splitting on the possible durations in order to avoid
non-total orders. By exploiting our assumption of non-self-
overlapping, given a state s and an action a we can define
the next event of a in s (written next(a, s)) as either ea1 (that
is, the start of a) if a is not running in s, otherwise as the
unique event in events(a) after the last event of a in the
path leading to s (GETNEXTEVENT at line 8).

One important note is that, unlike in classical or numeric
planning, we do not check for already visited states, because
in temporal planning states that have an identical assign-
ment of the fluents might differ in terms of timings due
to the path that has been followed to generate them, and
checking equivalence of temporal states is a hard problem
(Coles and Coles 2016). Therefore, this kind of planning
algorithm usually explores a tree of states. Some tempo-
ral planners do check for state equivalence in some special
cases, but this does not pose particular issues for our ap-
proach so we disregard this detail. Finally, the differences in
terms of total/partial orderings in the symbolic time repre-
sentation (e.g., POPF uses a partial ordering while TAMER
uses a total ordering) are not relevant for what follows.

Planning with Macro-Events
We now formalize what we mean by “macro-events” and
describe how to exploit them in heuristic search temporal
planning. We assume a problem P = ⟨F,A, I,G⟩ is given.

26580

Algorithm 1 Prototypical Heuristic-Search Algorithm for
Temporal Planning (with Macro-Events)

1: procedure SOLVETEMPORALPLANNING(P, M, ℵ)
2: init← INITIALSTATE(P)
3: Q← HEURISTICPRIORITYQUEUE; PUSH(Q, init)
4: while NOTEMPTY(Q) do
5: s← POP(Q)
6: if ISGOAL(s, P) then return GETPLAN(s, P)
7: for all a ∈ A do
8: e← GETNEXTEVENT(a, s,P)
9: if ISAPPLICABLE(e, s) then

10: s’← APPLYEVENT(e, s)
11: if CHECKTEMPORALCONSTRAINTS(s’) then
12: PUSH(Q, s’)
13: for all m ∈ M do
14: ToAdd ← ∅; b← s; steps← 0
15: for all a ∈ m do
16: e← GETNEXTEVENT(a, s,P)
17: if ISAPPLICABLE(e, s) then
18: b’← APPLYEVENT(e, b)
19: if CHECKTEMPORALCONSTRAINTS(b’) then
20: steps← steps + 1
21: if ℵ ∈ {FA+, PA+} ∧ steps ≥ 2 then
22: ToAdd ← ToAdd ∪ {b′}
23: b← b’
24: else break
25: else break
26: if ℵ ∈ {PA+, PA−} ∨ steps = |m| then
27: if steps ≥ 2 then
28: ToAdd ← ToAdd ∪ {b}
29: PUSHALL(Q, ToAdd)
30: return “No plan exists”

Definition 5. A macro-event (or more briefly macro) is a
sequence of actions m = ⟨a1, . . . , a|m|⟩, where ai ∈ A and
|m| is the length of m.
Given a macro-event m, we indicate with m≤i the prefix-
macro-event ⟨a1, . . . , ai⟩, with m≥i the suffix-macro-event
⟨ai, . . . , a|m|⟩ and with m[i] the i-th element of m.

The key intuition behind a macro-event is that, given a
search state, one only needs to know which action has to
be advanced. If an action is not started, advancing means
starting it, if instead it is started, advancing means applying
its next event. More formally, given a macro m and a state s,
the successor state m(s) is the state obtained by iteratively
applying the next event of each action in m:

m(s) =

{
next(a, s)(s) if m = ⟨a⟩
m≥2(next(m[1], s)(s)) otherwise

Note that this is different from the classical notion of
macro-action, where multiple (instantaneous) actions are
summarized in a single, new action of the problem. A macro-
event is more low-level: it describes a class of shortcuts in
the search space of the problem when explored by a heuris-
tic search planner. In general, a macro-event cannot be ex-
pressed as a macro-action at the planning level because it is
context-dependent (its conditions and effect depend on the
state it is applied into) and allows for arbitrary overlappings
of different durative actions.

In order to exploit macro-events during planning, we need
to define when a macro-event is considered applicable.

Definition 6. A macro-event m = ⟨a1, . . . , a|m|⟩ is fully-
applicable (FA) in s if next(a1, s) is applicable in s and
next(ai,m

≤i−1(s)) is applicable in m≤i−1(s) for all i ∈
{2, . . . , |m|}.
Definition 7. A macro-event m is partially-applicable (PA)
in s if m≤2 is fully-applicable in s. The order of m in s
(written o(m, s)) is the maximum length of a prefix-macro-
event of m fully-applicable in s.
Intuitively, a macro-event is fully-applicable if, starting from
state s, it is completely executable, while it is partially-
applicable if it is executable until a certain point.

Another dimension that can be considered when exploit-
ing macro-events is whether to search on states that are gen-
erated while evaluating prefixes of a macro or not.
Definition 8. We define a search with macro-events to be
with intermediate nodes (+) if when applying a macro-event
it adds each intermediate state in the search queue. Other-
wise, we define it to be without intermediate nodes (−) if it
only adds the last state when applying a macro-event.

The following table summarizes the four resulting ap-
proaches for exploiting macro-events during planning, while
the red part of Algorithm 1 extends the basic heuristic-search
pseudo-code to implement all these approaches (depending
on the parameter ℵ) for a given set of macros M .

without i.n. with i.n.
fully-applicable FA- FA+

partially-applicable PA- PA+

The pseudo-code generates the intermediate states to eval-
uate each macro in addition to the normal search performed
when expanding a state. We define a set of states ToAdd (line
14) that is initially empty and is filled by the intermediate
states expanded while evaluating a macro in the FA+ and
PA+ cases (line 22) and by the final state b in the other cases
(line 28). Then, if all the events entailed by the macro are
satisfied (steps = |m|, line 26) or we are in the PA cases, we
enqueue all the generated states in ToAdd in the search queue
(line 29), otherwise we discard these states as the macro is
not deemed applicable. One minor note is that we disregard
states generated after one step of a macro, because these are
already enqueued by the basic search algorithm (lines 21 and
27). We highlight that the semantics usually adopted with
macro-actions in the context of classical and numeric plan-
ning, and also in (De Bortoli et al. 2023) for temporal plan-
ning, coincides with the FA- case, as a macro-action is ap-
plied only if all its components are applicable in sequence.
The other cases are novel and specific to macro-events as
they impact the specific internal behavior of a planner. The
key idea of exploring other approaches is to exploit a macro-
event even in states where it would be inapplicable under
FA-. For longer macro-events, PA can use meaningful pre-
fixes even if later events become inapplicable, reducing the
impact of imprecisions during learning or selection.

Learning Macro-Events
In this section, we discuss how to extract and select macro-
events from a given database of valid plans. We do not as-
sume optimality: we just need a set of valid plans on the

26581

same domain for planning instances sharing the same object
names2. This paper focuses on ground macro-events, that is
we learn events on specific object instances without trying to
generalize: we regard the synthesis of lifted macro-events as
future work. We start by formalizing the extraction of events
from a given plan by creating an ordered list of events it
could be constructed from by using heuristic-search.
Definition 9. The timed set of events (written te(π)) of a
plan π = ⟨⟨a1, t1, d1⟩, . . . , ⟨an, tn, dn⟩⟩ is such that:
• for each ⟨ai, ti, di⟩, ⟨ti, START(ai)⟩ ∈ te(π) and ⟨ti +
di, END(ai)⟩ ∈ te(π);

• for each ⟨ai, ti, di⟩ and for each effect x = [τ]f := v
of ai, ⟨tτ , EFF(x, ai)⟩ ∈ te(π) where tτ is the value of τ
computed by setting START = ti and END = ti + di;

• for each ⟨ai, ti, di⟩ and each condition c = [τ1, τ2]ϕ of ai,
⟨tτ1 , START(c, ai)⟩∈ te(π) and ⟨tτ2 , END(c, ai)⟩∈ te(π).

Definition 10. Given a temporal plan π, its sequence of
events is ev(π) = ⟨ei | ei ∈ te(π)⟩ sorted so that if ei
precedes ej , then ⟨ti, ei⟩, ⟨tj , ej⟩ ∈ te(π) and ti ≤ tj .

To learn macro-events, we can forget about the specific
events and simply transform the sequence of events of a plan
in the sequence of actions each event belongs to.
Definition 11. Given a temporal plan π, the plan-macro-
event is a macro event µ(π) = ⟨action(e) | e ∈ ev(π)⟩.

From here on, we assume that a set of valid plan-macro-
events Π is given, and we focus on the problem of extracting
useful macro-events from this database. Concretely, we want
to select a set of macro-events M that would increase the
performance of a planner on a planning instance drawn from
the same distribution as the ones represented in Π.

The first step consists in counting the frequencies (called
utilities) of sub-strings inside Π: we assume a given maxi-
mum length ℓmax for macro-events is chosen by the user and
we count the frequencies of each sub-string of each plan-
macro-event in Π. We also define the utility of a macro with
respect to a set of macros M to only count the indices in
which the macro is the longest one that is applicable in M .
Definition 12. A macro m appears in a plan-macro-event
µ(π) at position j ∈ N (written at(m,µ(π), j)) if ∀1 ≤ i ≤
|m| . m[i] = µ(π)[i+ j].
The utility of m in µ(π) is uπ

m = |{j | at(m,µ(π), j)}|.
The utility of m in µ(π) relative to M is uπ

m(M) = |{j |
at(m,µ(π), j)∧ ̸ ∃m′ ∈ M.|m′| > |m|∧at(m′, µ(π), j)}|.
We define the set of Candidate Macro-Events (CME) as the
set of all macro-events that appear at least once in the dataset
Π: CME = {m | |m| ≤ ℓmax and

∑
µ(π)∈Π uπ

m > 0}.
At this point, we need a way to select a subset of CME

to use during planning. The basic idea of our approach is to
estimate, taking into consideration the planning approach ℵ,
the number of states an heuristic-search algorithm would ex-
pand given a certain set of macros M . Using such a measure
we could then select, among all the possible M ⊆ CME, the
one that is expected to have the best impact.

2Planning instances might differ in the number of objects, but
we assume a schematic naming of objects of the same type to make
ground actions for one instance, potentially applicable to others.

Definition 13. Given a problem P , a plan π, a (possibly
empty) set of macro-events M , and a planning approach ℵ,
we define ES(M,ℵ, P, π) as the number of expanded states
by the planning approach ℵ to find µ(π). We define the im-
pact I(M,ℵ, P, π) of M as the gain in terms of expanded
states: ES(∅, no macros, P, π)− ES(M,ℵ, P, π).
Note that I(M,ℵ, P, π) > 0 iff M positively impacts the
planning process, meaning that the total number of expanded
states is reduced compared to planning without macros.

Definition 14. The optimal set of macro-events
M∗(ℵ, P, π) for a problem P , plan π and planning
approach ℵ is the subset of CME with the highest impact:

M∗(ℵ, P, π) = argmax
M⊆CME

I(M,ℵ, P, π).

Clearly, the exact number of expanded states is heavily
influenced by the planning algorithm characteristics and the
chosen heuristic. However, we can present the following
general result concerning the PA+ planning approach that
holds irrespectively of the chosen algorithm and heuristic.

Proposition 1. Let m1 be a macro and m2 a prefix of m1,
(i.e. ∃k such that m1

≤k = m2) then for all P and π,
I({m1}, PA+, P, π) ≥ I({m1,m2}, PA+, P, π).

Proof. (Sketch) Note that thesis follows if and only if
ES({m1}, PA+, P, π) ≤ ES({m1,m2}, PA+, P, π). Let
s be any state. The case in which both macros are not ap-
plicable in s is trivial. If m1 is fully-applicable in s (and so
also m2), thanks to partial applicability definition, the plan-
ner would expand states {m1

≤j(s) : 2 ≤ j ≤ |m1|} ∪
{m2

≤i(s) : 2 ≤ i ≤ |m2|}. Since one is a prefix of
the other, the second element of the union is also equal to
{m1

≤i(s) : 2 ≤ i ≤ k}. Therefore, possible paths to
find plan-macro-event µ(π) are the same if we consider the
union of two previous sets or just the first element. Finally,
a similar argument follows also in the case in which m1 is
partially-applicable of order o(m1, s) < |m1|.

We now switch to theoretical arguments to evaluate the
impact of a single macro and the combined effects of a set
of macros for a planner. We assume an abstraction of a real
planner execution in which every action is applicable in ev-
ery search state and the planner is blind (i.e. no heuristic
is used). This is of course not how a real heuristic search
planner works, but we use these assumptions to compare the
theoretical number of states expanded by each approach in
these abstract conditions. We will then use this estimation to
select a set of macros from CME.

Definition 15. Given an abstract problem P , a set of macros
M and a plan π, we define the following notation.
• N(P): number of ground actions in problem P .
• Lπ: length of µ(π).
• T (M,ℵ, P): search-space when using macros in M .
• A(M,ℵ, P): branching factor (or arity) of T (M,ℵ, P).
• D(M,ℵ, P, π): min depth of T (M,ℵ, P) to find µ(π).

In our abstract setting, ES(M,ℵ, P, π) coincides with the
cardinality of T (M,ℵ, P), i.e. the total number of nodes of

26582

a complete tree of depth D(M,ℵ, P, π) and branching factor
A(M,ℵ, P)3. Hence, we have that:

ES(M) =

DM∑
j=0

Aj
M =

(AM)
DM+1 − 1

AM − 1
. (1)

Variables in the latter formula depend on the planning ap-
proach, but equation (1) still remains valid. The following
table lists variables values in the four approaches we con-
sider, and in the following paragraphs we give more details
on how we obtained such results. We highlight that thanks
to our assumptions (i.e., every action is always applicable),
there are no differences in terms of applicability or depth
between fully- and partially-applicable macros: we indicate
with A±

M the branching factor and with D±
M the depth of the

search tree in cases FA+, PA+ and FA-, PA-, respectively.
AM DM

no macros N Lπ

FA-, PA- N + |M | Lπ −
∑

m∈M uπ
m(M)(|m| − 1)

FA+, PA+ N − |M |+
∑

m∈M |m| Lπ −
∑

m̂∈M̂ uπ
m̂(M̂)(|m̂| − 1)

No macros This is the case where M = ∅, and AM coin-
cides with the total number of ground actions of problem P .
To find µ(π) we need to explore the tree until depth Lπ .

FA-, PA- In this case, every macro expands exactly one
state independently, i.e. different macros expand different
states. Therefore, the branching factor of the search-space is
augmented by the number of macro-events in M . Its depth
depends on the length of every macro and on its utility in the
plan-macro-event relative to M (i.e. uπ

m(M)).

FA+, PA+ During search, expanded states are always dif-
ferent; hence, to compute branching factor and depth in this
case, we can use the following result.
Theorem 1. Let P be an abstract problem, M a set of
macros, and π a plan. Consider the union set M̂ :=⋃

m∈M

{
m≤j | 2 ≤ j ≤ |m|

}
, and the disjoint union set

M̃ :=
⊔

m∈M

{
m≤j | 2 ≤ j ≤ |m|

}
. Then, (i) A+

M = A−
M̃

and (ii) D+
M = D−

M̂
hold.

Proof. (Sketch) Since each macro is assumed to be appli-
cable and we consider all intermediate nodes, for every
m we expand all the intermediate states related to m≤j ,
with 2 ≤ j ≤ |m|, counting them with repetitions. Then,
A+

M = A−
M̃

follows directly.
For the second identity, we observe that all prefixes can be

used in order to pursue the plan-macro-event. However, in
this computation, it is necessary to count each prefix as one.
That’s why the identity follows with M̂ instead of M̃ .

An immediate consequence is that for planning approach
with intermediate nodes, the following hold:
• AM = N + |M̃ | = N − |M |+

∑
m∈M |m|;

• DM = Lπ −
∑

m̂∈M̂ uπ
m̂(M̂)(|m̂| − 1) .

3For simplicity, from now on we drop the full dependencies of
each variable unless necessary; reducing N(P) to N , A(M,ℵ, P)
to AM , D(M,ℵ, π, P) to DM , and ES(M,ℵ, P, π) to ES(M) .

Let us make a small example to clarify what has been
presented so far. Suppose to have a problem with ground
actions {a, b, c, x}, a plan-macro-event ⟨a, b, x, a, b, c⟩, and
candidate macros CME = {⟨a, b⟩, ⟨a, b, c⟩}. Then, A∅ =
4, D∅ = 6, and so ES(∅) = 5461. Moreover, we obtain:

M A−
M D−

M ES(M)− A+
M D+

M ES(M)+

{⟨a, b⟩} 5 4 781 5 4 781
{⟨a, b, c⟩} 5 4 781 6 3 259

{⟨a, b⟩, ⟨a, b, c⟩} 6 3 259 7 3 400

The set that maximizes the impact is the one that mini-
mizes column ES(M)− and ES(M)+ respectively. Hence,
M∗(ℵ−) = {⟨a, b⟩, ⟨a, b, c⟩}, and M∗(ℵ+) = {⟨a, b, c⟩}.

Estimation of the Abstract Impact
In the rest of the section, we aim at computing good estima-
tors for the abstract impact defined above, in order to rank
candidate macro-events and select the best set M∗.

Considering all utilities relative to every possible set of
macros M ⊆ CME would cost a huge computational effort.
For this reason, for our estimations, we make the strong (but
not restrictive) assumption to fix for any macro m its utility
always equal to the base case: uπ

m(M) ≡ uπ
m.

Now, let us define a total order between candidate macros.
In particular, for the approaches FA- and PA-, we say that
m1 < m2 if the impact of {m1} is less than the impact of
{m2}. Then, a key theorem for macros selection holds.
Theorem 2. Let ℵ− ∈ {FA-, PA-} and M1, M2 ⊆ CME
such that |M1| = |M2| and m1 < m2 ∀m1 ∈ M1, ∀m2 ∈
M2. Then, I(M1,ℵ−, P, π) < I(M2,ℵ−, P, π).

Proof. Let n = |M1| = |M2|; the thesis follows from:

(N + n)
DM1

+1 − 1

N + n− 1
>

(N + n)
DM2

+1 − 1

N + n− 1
. (2)

Moreover, equation (2) is true iff DM1
> DM2

. But, DMi
=

Lπ −
∑

mi∈Mi
uπ
mi

(|mi| − 1), for i = 1, 2. Then,

DM1 > DM2 ⇔
∑

m1∈M1

uπ
m1

(|m1|−1) <
∑

m2∈M2

uπ
m2

(|m2|−1)

because m1 < m2 ⇔ uπ
m1

(|m1|−1) < uπ
m2

(|m2|−1).

An immediate consequence of previous theorem is that, in
the approach without intermediate nodes, if we consider the
set of candidates macros ordered according to previous or-
der, i.e. CME = {m1 > m2 > . . . > mK}, then for any
integer 2 ≤ n ≤ K:

argmax
{M⊆ CME : |M |=n}

I(M,ℵ−, P, π) = {m1, . . . ,mn} .

This means that fixed any cardinality of macros sets, the best
one (i.e., the set with the highest impact value) is composed
of macro-events with the highest single impact. That has a
clear relevance for implementation, exponentially limiting
the number of sets to take into account. We now consider the
empirical means over the database of valid plans (Π) and the
dataset of problems (P) for the quantites defined above:
• N̄ = 1

|P|
∑

P∈P N(P); • L̄ = 1
|Π|

∑
π∈Π Lπ;

• ūm = 1
|Π|

∑
π∈Π uπ

m, for any m ∈ CME.

26583

Equation (1) gives us a general formula to compute the
abstract number of expanded states where we can use previ-
ous estimators for branching factor and depth of the space-
search tree. In particular, the estimation changes depending
on the macro-events schema we are interested in. To over-
come the influence of the strong assumption made at the
beginning of the paragraph, we estimate DM as the maxi-
mum between value obtained from estimators and the mini-
mum depth reachable with macros M , which corresponds to
L̄/lmax, where lmax = max{|m| : m ∈ M}.

The abstract setting described above only discriminates
the ± cases. What differentiates the FA vs PA cases is the
estimation of the depth of the search-space tree. In the first
case, for each macro m, we reduce the depth of the tree with-
out macros of the quantity ūm(|m| − 1). In the second case,
given the definition of partial applicability, we estimate such
quantity as a convex combination of its prefixes, weighted on
their utility: given a macro-event m, we use the expression∑|m|

i=2 λi

(
ūm≤i(|m≤i| − 1)

)
, where λi :=

ū
m≤i−ū

m≤i+1

ū
m≤2

if

i ≤ |m− 1| and ūm

ū
m≤2

if i = |m|.
Finally, we obtained complete procedures to find the opti-

mal set M∗ for any usage case. We estimate for every candi-
date macro the impact it provides alone (i.e. assuming only
this one macro is passed to the planner), for the cases of full
applicability using its utility, for the case of partial appli-
cability using its weighted utility. Then, we sort our CME
according to such computed value. Now, in the case without
intermediate nodes, we construct sets of macros by adding
candidates one by one according to the sorted list and com-
paring the impacts of such sets. With this procedure we are
guaranteed to find the optimal set thanks to Theorem 2. Con-
versely, in the case with intermediate nodes, we must eval-
uate the impact of all possible combinations. Since this is
an exponential effort, we provide an anytime algorithm that
considers subsets according to the sorted list and we inter-
rupt the search with a timeout using the best set reached. At
the end, we check that the optimal set has a positive impact.

Related Work
Macro-actions are well-known in classical planning. Some
authors focused on generating macro-actions during the
planning process, like in the case of the Marvin planner
(Coles and Smith 2007), which identifies plateaus in the
search-space and learns how to escape from them thanks to
suitable “shortcuts” based on heuristic values; then, it tries
to replicate them in similar scenarios. Another on-line proce-
dure is the YAHSP planner (Vidal 2004, 2011), which com-
putes relaxed sequences of actions and tries to apply them in
the search states (and to repair it if needed), adding the last
state reachable in the expansion if the whole relaxed plan is
inapplicable. Such lookahead strategy is similar in some as-
pects to our PA- approach, even if in our case we consider
events and valid plans (instead of actions and relaxed plan).
Most existing approaches aim at learning macro-actions off-
line using training problems. One seminal work in this direc-
tion is the MACRO-FF planner (Botea et al. 2005), which
extracts macros from either solution plans or from static
problem analysis. Another off-line technique is (Newton

et al. 2007), which employs a genetic algorithm in order to
explore macros occurring in successful plans ranking them
in terms of time gained solving more difficult problems.
Other works extend or generalize previous approaches, like
composing sequences of macro-actions (Botea, Müller, and
Schaeffer 2007), or building a library of potentially useful
macros for Marvin (Coles, Fox, and Smith 2007). More re-
cently, (Dulac et al. 2013) introduced a domain-independent
approach extracting statistical information from valid plans
based on a n-gram analysis and using them to filter use-
ful macros. Chrpa, Vallati, and McCluskey (2014) try to
maximize macros utilities learning relations between plan-
ning operators and predicates (called entanglements), while
Castellanos-Paez et al. (2018) use data mining techniques on
frequent sequences in order to select macros.

Very few works concern macro-actions for temporal plan-
ning. One critical difficulty in this context is the insuffi-
ciency of the usual sequential model for macro-actions for
dealing with the temporal semantics of languages such as
PDDL 2.1 (Fox and Long 2003) or ANML (Smith, Frank,
and Cushing 2008). (Wullinger, Schmid, and Scholz 2008),
(Hansson 2018) and the very recent work (De Bortoli et al.
2023) all try to encapsulate sequences of durative actions by
constructing macro-operators. In particular, De Bortoli et al.
insist on guaranteeing, while using such temporal macros,
the sequential applicability of original actions avoiding un-
necessary suppression of other concurrent actions.

What we present in this paper is considerably different.
First, we do not construct macro-actions in the usual sense,
with summarized conditions and effects; instead, we intro-
duce the novel concept of macro-event as a sequence of ac-
tions that is dependent on the path context. Moreover, our
discussion on the four exploitation approaches of macros
in planning is completely novel, with the usual concept of
applicability of a macro converging to the fully-applicable
case. Finally, our selection schema based on expanded state
estimation is also novel to the best of our knowledge.

Experimental Evaluation
We implemented a heuristic-search temporal planner sup-
porting macro-events in Python using the Unified Planning
library (Micheli et al. 2025) as modeling framework. Our
planner relies on TAMER for the definition of the search
space and optionally takes in input a set of macro-events to
use and the planning approach to follow, implementing Al-
gorithm 1. Moreover, we implemented the estimators for the
different planning approaches defined in the previous sec-
tion in Python, taking in input a list of plan-macro-events
Π and the approach ℵ and producing the estimated opti-
mal set of macros. To construct the dataset Π, we employ
the Reinforcement Learning approach described in (Micheli
and Valentini 2021) recording all the solutions found during
learning. In this way, we do not depend on a specific heuris-
tic and the entire approach can be fully automated given a
set of temporal planning instances. We considered the two
benchmark domains in (Micheli and Valentini 2021) (enlarg-
ing the problem instances to make the problems more chal-
lenging). MAJSP consists of scheduling a fleet of agents to
transport items between machines; Kitting requires a robot

26584

MAJSP

fold
(testing size: 123)

No Macros Using Macro Events

hadd hff
hadd hff

FA- FA+ PA- PA+ FA- FA+ PA- PA+
1 27 87 37 (26) 43 (25) 73 (66) 35 (20) 92 (69) 94 (63) 84 (51) 96 (72)
2 38 93 28 (8) 40 (13) 54 (41) 40 (15) 88 (49) 98 (61) 83 (48) 97 (63)
3 26 82 22 (15) 40 (28) 54 (48) 34 (18) 87 (69) 87 (44) 79 (55) 91 (74)
4 21 80 33 (26) 39 (22) 69 (62) 29 (13) 86 (66) 86 (54) 83 (52) 87 (57)

all 112 342 120 (75) 162 (88) 250 (217) 138 (66) 353 (253) 365 (222) 329 (206) 371 (266)
Kitting

fold
(testing size: 121)

No Macros Using Macro-Events

hadd hff
hadd hff

FA- FA+ PA- PA+ FA- FA+ PA- PA+
1 48 57 57 (49) 39 (37) 54 (50) 54 (25) 58 (49) 58 (49) 53 (37) 58 (22)
2 54 66 64 (51) 44 (38) 58 (53) 43 (37) 64 (54) 71 (59) 71 (39) 71 (58)
3 51 60 57 (45) 37 (32) 57 (51) 44 (36) 61 (52) 62 (46) 62 (31) 61 (50)
4 54 54 52 (39) 32 (25) 60 (55) 65 (37) 57 (44) 59 (51) 51 (19) 53 (37)

all 207 237 230 (184) 152 (132) 229 (209) 206 (135) 240 (199) 250 (205) 237 (126) 243 (167)

Table 1: Coverage results: for each fold and each planning approach we report the number of solved instances and in parentheses
the number of cases where the macro approach is faster than baseline using the same heuristic.

M
A

JS
P

hff hadd hff

K
itt

in
g

hff hadd hff

Figure 1: Plots of the results. The scatter plots consider the best performing solver against the baseline with the same heuristic.

to gather components from various warehouse locations to
assemble a kit and deliver it in sync with a human oper-
ator. For each domain, we perform a 4-fold splitting of the
instances using the training part to construct the plan-macro-
events and the testing part to evaluate our planner equipped
with the selected set of macros against the baseline TAMER
planner without macros. We chose as maximum length of
candidates macro-events ℓmax = 5. The size of the extracted
CME is 23619 for Kitting and 61378 for MAJSP. The aver-
age (wrt the 4-folds) time of execution for macros selection
is 5s (Kitting) and 13s (MAJSP) in case FA-, 54s (Kitting)
and 355s (MAJSP) in case PA-; in cases with intermediate
nodes we allocated 30 minutes for the anytime algorithm.
We run our experiments on a server with 4 AMD EPYC
7413 processors and 528GB of RAM, we allocated 4 cores
for each planning run with a timeout of 600s and a mem-
ory limit of 40GB (the maximum memory used in the ex-
periments was 6.4GB). Benchmarks, code and all the scat-
ter plots are available at https://github.com/fbk-pso/step-rl.
Table 1 shows the coverage results using the hadd and hff

heuristics provided by TAMER. In all cases, one of the ap-
proaches using macro-events is faster than the baseline with-
out macros. The performance difference is also very signif-
icant, as highlighted by the cactus plots in Figure 1: macro-
based approaches always dominate both for coverage and
for instances where an approach is faster than the baseline.

Conclusions
In this paper, we present a novel representation for macros
tailored to heuristic-search approaches for temporal plan-
ning. We discuss how to extract and select this kind of
macros from a dataset of valid plans and experimentally
show the effectiveness of the technique using a fully unsu-
pervised approach for the generation of training plans.

For future work, we want to lift the learned macro-events
(i.e., make the macro-events independent of the problem ob-
jects) and study empirical estimators (e.g., by using rein-
forcement learning) specialized to a specific planner, to esti-
mate the number of states explored by the real planner.

26585

Acknowledgments
This work has been supported by the STEP-RL project
funded by the European Research Council under GA n.
101115870. This work has been carried out while Alessan-
dro La Farciola was enrolled in the Italian National Doctor-
ate on Artificial Intelligence run by Sapienza University of
Rome in collaboration with Fondazione Bruno Kessler.

References
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI Planning with Automati-
cally Learned Macro-Operators. Journal of Artificial Intel-
ligence Research, 24: 581–621.
Botea, A.; Müller, M.; and Schaeffer, J. 2007. Fast Planning
with Iterative Macros. In Veloso, M. M., ed., Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence, IJCAI 2007, 1828–1833.
Castellanos-Paez, S.; Pellier, D.; Fiorino, H.; and Pesty, S.
2018. Mining useful Macro-actions in Planning. CoRR,
abs/1810.09145.
Chen, D. Z.; Thiébaux, S.; and Trevizan, F. W. 2024.
Learning Domain-Independent Heuristics for Grounded and
Lifted Planning. In Wooldridge, M. J.; Dy, J. G.; and Natara-
jan, S., eds., Thirty-Eighth AAAI Conference on Artificial In-
telligence, AAAI 2024, 20078–20086. AAAI Press.
Chrpa, L.; Vallati, M.; and McCluskey, T. L. 2014. MUM: A
Technique for Maximising the Utility of Macro-operators by
Constrained Generation and Use. In Chien, S. A.; Do, M. B.;
Fern, A.; and Ruml, W., eds., Proceedings of the Twenty-
Fourth International Conference on Automated Planning
and Scheduling, ICAPS 2014. AAAI Press.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artificial Intelligence, 173(1):
1–44.
Coles, A.; Fox, M.; and Smith, A. 2007. Online Identifica-
tion of Useful Macro-Actions for Planning. In Boddy, M. S.;
Fox, M.; and Thiébaux, S., eds., Proceedings of the Seven-
teenth International Conference on Automated Planning and
Scheduling, ICAPS 2007, 97–104. AAAI Press.
Coles, A.; and Smith, A. 2007. Marvin: A Heuristic Search
Planner with Online Macro-Action Learning. Journal of Ar-
tificial Intelligence Research, 28: 119–156.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Brafman,
R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A., eds., Pro-
ceedings of the 20th International Conference on Automated
Planning and Scheduling, ICAPS 2010, 42–49. AAAI Press.
Coles, A. J.; and Coles, A. I. 2016. Have I Been Here Be-
fore? State Memoization in Temporal Planning. In Coles,
A. J.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and San-
ner, S., eds., Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling, ICAPS
2016, 97–105. AAAI Press.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is Temporal Planning Really Temporal? In

Veloso, M. M., ed., Proceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI 2007,
1852–1859.
De Bortoli, M.; Chrpa, L.; Gebser, M.; and Steinbauer-
Wagner, G. 2023. Enhancing Temporal Planning by Sequen-
tial Macro-Actions. In Gaggl, S. A.; Martinez, M. V.; and
Ortiz, M., eds., Logics in Artificial Intelligence - 18th Euro-
pean Conference, JELIA 2023, Proceedings, volume 14281
of Lecture Notes in Computer Science, 595–604. Springer.
Dulac, A.; Pellier, D.; Fiorino, H.; and Janiszek, D. 2013.
Learning Useful Macro-actions for Planning with N-Grams.
In 25th IEEE International Conference on Tools with Artifi-
cial Intelligence, ICTAI 2013, 803–810.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Fox, M.; and Long, D. 2007. A note on concurrency and
complexity in temporal planning. In PlanSIG 2007.
Gigante, N.; Micheli, A.; Montanari, A.; and Scala, E. 2022.
Decidability and complexity of action-based temporal plan-
ning over dense time. Artificial Intelligence, 307: 103686.
Hansson, E. 2018. Temporal Task and Motion Plans: Plan-
ning and Plan Repair: Repairing Temporal Task and Motion
Plans Using Replanning with Temporal Macro Operators.
Micheli, A.; Bit-Monnot, A.; Röger, G.; Scala, E.; Valen-
tini, A.; Framba, L.; Rovetta, A.; Trapasso, A.; Bonassi, L.;
Gerevini, A.; Iocchi, L.; Ingrand, F.; Köckemann, U.; Pa-
trizi, F.; Saetti, A.; Serina, I.; and Stock, S. 2025. Unified
Planning: Modeling, Manipulating and Solving AI Planning
Problems in Python. SoftwareX. Forthcoming.
Micheli, A.; and Valentini, A. 2021. Synthesis of Search
Heuristics for Temporal Planning via Reinforcement Learn-
ing. In Proceedings of the Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, 11895–11902.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning Macro-Actions for Arbitrary Planners and Do-
mains. In Boddy, M. S.; Fox, M.; and Thiébaux, S., eds.,
Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling, ICAPS 2007, 256–
263. AAAI Press.
Smith, D.; Frank, J.; and Cushing, W. 2008. The ANML
language. In KEPS 2008.
Valentini, A.; Micheli, A.; and Cimatti, A. 2020. Temporal
Planning with Intermediate Conditions and Effects. In Pro-
ceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, 9975–9982. AAAI Press.
Vidal, V. 2004. The YAHSP planning system: Forward
heuristic search with lookahead plans analysis. In Proceed-
ings of the Fourth International Planning Competition 2004.
Vidal, V. 2011. YAHSP2: Keep It Simple, Stupid. In Pro-
ceedings of the Seventh International Planning Competition
2011, 83–90.
Wullinger, P.; Schmid, U.; and Scholz, U. 2008. Spanning
the Middle Ground between Classical and Temporal Plan-
ning. In Proceedings of the 22nd Workshop on Planen,
Scheduling und Konfigurieren, Entwerfen (PuK 2008).

26586

