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Abstract

Given the model of a system with explicit temporal con-
straints, optimal temporal planning is the problem of finding
a schedule of actions that achieves a certain goal while opti-
mizing an objective function. Recent approaches for optimal
planning reduce the problem to a series of queries to an Opti-
mization Modulo Theory (OMT) solver: each query encodes
a bounded version of the problem, with additional abstract
actions representing an over-approximation of the plans be-
yond the bound. This technique suffers from performance is-
sues, mainly due to the looseness of the over-approximation,
which can include many non-executable plans.

In this paper, we propose a refined abstraction for solving
optimal temporal planning via OMT by introducing abstract
scheduling constraints, which have a double purpose. First,
they enforce a partial ordering of abstract actions based on
mutual dependencies between them, which leads to a better
makespan estimation and allows to prove optimality sooner.
Second, they implicitly forbid circular self-enabling of ab-
stract actions, which is a common cause of spurious models
that severely affects performance in existing approaches. We
prove the soundness and completeness of the resulting ap-
proach and empirically demonstrate its superiority with re-
spect to the state of the art.

1 Introduction

Automated temporal planning is the problem of finding a
course of actions achieving a desired goal condition start-
ing from a known initial state, for a system involving ac-
tions with durations and subject to temporal constraints. This
problem mixes classical automated planning and schedul-
ing (generalizing both problems) and is relevant in all the
domains where time is an important dimension and par-
allelism between activities is possible. Example applica-
tions are flexible manufacturing (Ruml, Do, and Fromherz
2005) and robotics (Ingrand and Ghallab 2017). Several
approaches to tackle temporal planning have been devised
over the years, using either heuristic search (e.g. TFD (Eye-
rich, Mattmiiller, and Roger 2012), OPTIC (Benton, Coles,
and Coles 2012) and TAMER (Valentini, Micheli, and
Cimatti 2020)), partial-order planning (e.g. EUROPA (Frank
and Jonsson 2003), VHPOP (Younes and Simmons 2003),
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PLATINUM (Umbrico et al. 2018) and FAPE (Dvorak et al.
2014)) and reduction to satisfiability (e.g. ITSAT (Rankooh
and Ghassem-Sani 2015), LCP (Bit-Monnot 2018) and the
encodings of Shin and Davis (Shin and Davis 2005a) and
Rintanen (Rintanen 2017)).

Optimal Temporal Planning (OTP) is the problem of find-
ing a valid plan that optimizes an objective function. Com-
mon objective functions that have been considered in the
literature are makespan minimization, consisting in finding
the plan of minimum duration, and action cost minimiza-
tion, which amounts to associate a cost to each action and
find the plan of minimum cumulated cost. The planning
approaches mentioned above are focused on quickly find-
ing good-quality plans without offering formal guarantees
of eventually finding optimal plans and proving their opti-
mality'. Very few papers tackle the OTP problem and all of
them focus on very specific cost functions. Some authors
(Vidal 2011; Haslum 2006) address a special sub-case of
OTP called “conservative planning” (Smith and Weld 1999),
which is significantly simpler than the general OTP case be-
cause actions having conflicting preconditions or effects are
forbidden to overlap in time. For general OTP, only some
admissible heuristics for makespan minimization have been
designed (Haslum 2009; Brandao et al. 2022). Recently,
Panjkovic and Micheli presented an approach for solving
an expressive class of OTP problems (2023); the technique
exploits Optimization Modulo Theory (OMT) (Sebastiani
and Tomasi 2015), a generalization of Satisfiability Mod-
ulo Theory (SMT) (Barrett et al. 2009) with cost functions.
The basic idea of the approach (reported in Section 3) is to
reduce the OTP problem to a series of queries to an OMT
solver. Each query encodes a bounded version of the prob-
lem, with an additional abstract step representing an over-
approximation of states that are reachable beyond the bound.
If there is an optimal model of the formula that does not use
abstract elements, then a provably optimal plan can be ex-
tracted from such a model. Conceptually, the abstract step
of the OMT encoding is the symbolic analogous to an ad-
missible heuristic, providing an under-estimation of the true
minimal cost to the goal.

In this paper, we tackle a very general (and non-

'An exception is the minimization of plan length, for which
satisfiability reductions are optimal and admissible heuristics exist.
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conservative) OTP model, also supporting numeric features,
and we make two major contributions. First, we refine the
abstraction used in (Panjkovic and Micheli 2023) by en-
coding abstract action schedules. Our improved encoding
tackles two key inaccuracies of the over-approximation step,
namely the self-enabling of abstract actions which are not
truly executable in future steps, and a lack of ordering con-
straints between abstract actions which can largely under-
estimate the makespan of the optimal plan. This allows the
planning procedure to terminate with much smaller bounds,
making it far more efficient. Second, we experimentally
show that our approach is superior to previous works on both
IPC and industrial domains. This paper focuses on providing
a novel abstract step encoding for an OTP via OMT schema,
and is therefore the symbolic analogous to providing a novel
admissible heuristic in the context of search-based planning.

2 Problem Definition

In this section, we formalize the Optimal Temporal Planning
(OTP) problem that we consider. As customary in planning,
we define the syntax of a grounded problem, where a finite
set of fluents with known initial states can be changed by
actions and a formula represents the goal states.

Definition 1. A temporal planning problem 11 is a tuple
(F,A I,G):

e Fis a finite set of Boolean and real fluents.

» Ais a set of actions a of the form (pre, eff,, dur):

— pre, is a set of conditions (Boolean expressions) parti-
tioned in three subsets pre,_,, pre_,,, pre_,, which con-
sist of start, overall and end conditions respectively.

— eff, is a set of effects (assignments to fluents of the
form v = e, where v is a fluent and e is an appropri-
ately typed expression) partitioned in two subsets eff,_,
eff,, which consist of start and end effects respectively.

— dur, is a set of duration constraints.

[ : F — {T,L} UR is the total function describing the
initial value of the fluents.
e G is a set of goal conditions.

In order to define the semantics of the problem, we define
a time-triggered plan as follows.

Definition 2. A time-triggered plan = for 11 is a sequence
<<t17 ai, d1>a <t25 a2, d2>a KN <tna G, dn>>: where t; € RZO
is the starting time, a; € A is the action to be started, d; €
R is the action duration, and t; < t; 1.

A time-triggered plan is valid if each action can be exe-
cuted (all its conditions are satisfied) at the prescribed time
and with the given duration, and if after the end of the last
action all the goal conditions are reached. For the sake of
brevity, we omit the formalization of this semantics that is
analogous to the ones presented in (Fox and Long 2003) and
(Gigante et al. 2022). We adopt the e-separation semantics
(as in PDDL), requiring mutually exclusive events to be sep-
arated by a known amount of time indicated as e.

Also following (Gigante et al. 2022), we need the def-
inition of self-overlapping, because our techniques will be
proven sound and complete assuming a semantics without
self-overlapping. Intuitively, we will assume that two in-
stances of the same ground action cannot overlap in time.
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Definition 3. A plan {({t1,a1,d1),...,{tn,an,d,)) has
self-overlapping if there exist i,j € {1,...,n} such that
a; = aj and t; Stj < t; +d;.

We now define our quality metrics. First, the makespan of
a plan is the time at which the last action terminates.

Definition 4. Given a plan w, its makespan is
Max (s q,dyer(t + d). © is makespan-optimal if it is valid
and there is no other valid plan with smaller makespan.

Second, the action-cost minimization consists in associat-
ing a positive, real-valued cost to each action in a plan and to
minimize the sum of the costs of all the actions in the plan.

Definition 5. Given a map from actions to real costs c :
A — R.y, the cumulative action cost of a plan w is
> (t.a.ayer €(a). T is action-cost-optimal if it is valid and
there is no other valid plan with smaller cost.

3 OMT-based Optimal Temporal Planning

We now provide the needed background on SMT and OMT
and describe previous OMT-based approaches for planning.

SMT and OMT Satisfiability Modulo Theory (SMT) is
the problem of determining whether a first-order formula
1) expressed in some theory T is satisfiable (Barrett et al.
2009). A model of ) is an assignment to the free vari-
ables of 1) that evaluates the formula to true. Several the-
ories are supported by current SMT solvers, such as arith-
metics with real and integer numbers, and data structures
like arrays and bit-vectors. Here we focus on the theory
of Quantifier-Free Linear Real Arithmetic (QF _LR.A), that
supports Boolean and real variables, comparisons with lin-
ear expressions (e.g. Y . a;x; < c), and the Boolean logical
operators (A, V, —). Optimization Modulo Theory (OMT) is
an extension of the SMT problem where we want to find a
model for a given formula ¢ that minimizes or maximizes
an objective function, which is a term expressed in some
theory. Several OMT solvers are available (Sebastiani and
Trentin 2018; Bjgrner, Phan, and Fleckenstein 2015).

OTP via OMT Recently, several approaches for optimal
planning based on OMT have been proposed, both for the
numerical (Leofante et al. 2020; Giunchiglia and Taccchella
2022) and temporal (Panjkovic and Micheli 2023) cases. In
these approaches, the main idea is that the algorithm pro-
ceeds in steps, and at each iteration A it considers a bounded
encoding of the problem of length h — 1, with an extra
step h, called the abstract step, used to represent an over-
approximation of all the states that are reachable beyond the
considered bound. In a numeric planning encoding, a step
corresponds to the application of a set of (instantaneous) ac-
tions. In temporal planning, where actions have explicit du-
rations, each step has an associated time and corresponds to
a set of events, which can either be the start or the end of
an action. The encoded SMT formula is given to an OMT
solver, which returns an optimal model for it, and if this
model does not rely on the abstract step, the solution plan
that corresponds to it is provably optimal. This method is
very similar to other approaches that reduce planning to a
series of queries to a SAT or SMT solver (Kautz and Selman
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1992; Shin and Davis 2005b), but the addition of the ab-
stract step is a key difference. An optimal model for a stan-
dard bounded encoding of a problem (without the abstract
step), represents an optimal solution among all the possible
solutions of that length, but it could be the case that there
exists a longer, more optimal plan, which is not captured by
the current bounded encoding. The purpose of the abstract
step is to be able to represent, using an over-approximation,
all the possible plans beyond the considered bound, so that if
the OMT solver returns an optimal model that is within this
bound, it can be proved that the plan extracted from it is opti-
mal for any possible length. In the following, we summarize
the main technical details of the encoding for optimal tem-
poral planning (Panjkovic and Micheli 2023), which gener-
alizes the purely numeric case of (Leofante et al. 2020).

The encoding defines the following variables: ¢;, for each
step i € {0,...,h}, representing the time of step 4; f;, for
each step ¢ and each fluent f, denoting the value of f at step
i; the Boolean variable a;, for each action a and each step
1, indicating whether a is started at step ¢; df, representing
the duration of the instance of the action a that is started
at step ¢; mody, for each fluent f, denoting whether f is
potentially modified after the last concrete step & — 1 in the
over-approximation. We use the notation [e];, where e is an
expression and ¢ is a step, for the SMT formula obtained by
substituting each fluent f appearing in e with f;. We write
vars(e) for the set of fluents appearing in e.

The formula that is produced at each step A is IT;™", which
is a conjunction of several subformulas that encode the fea-

tures of the problem, among which the actions (@fCTONS),

the mod; variables (¢)OP), the abstract goals (¢§OAS)

and the density axiom (@pENSITY),

The p{CTONS formula controls the execution of the ac-
tions, specifying that if an action a is started at step s, the
conditions and effects of the action are applied properly and
the duration constraints are enforced.

A as— (
a€Ase{l,...,h}

The encoding of the start preconditions of an action a,
started at step s is cpzr%“ defined as follows.

The formula states that if the condition e needs to be checked
in a concrete step (up to h— 1), it is enforced at that step
(ts < tp—1—]e]s); if instead it is scheduled after the last
concrete step h—1 (t5 > t;_1), it must either hold at step h—1
([e]n—1), or be potentially modifiable in the future, meaning
that one of the mod; variables corresponding to fluents f

pre, pre.,
Lps,h, A (fg.su,h,

effi o

A gas,h,

eff 44

A (fgsjz,

pre_ dur
A P * A Sps,ha

s,h

A

e€pre,

h—1V v modf
féEvars(e)

<(t5 <tho1 — [e]s)A <t5 > th_1— ([e]

appearing in the condition must be true <\/ Fevars(e) mod f>.

Other conditions and effects are handled similarly.

The mod; variables are controlled by the p}MOP formula:

(v, v))

The main intuition is that a variable is potentially mod-

/\ mOde V \/ V (15/\f>.+d(57'2t)1,1
feF a€Ase{l,....h} fr=e€eff,
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Algorithm 1: Optimal Planning via OMT

1 procedure OMTPLAN(II)
h+1
while True do
if I is UNSAT then
return IT does not admit solution
else
extract optimal model p for H‘,’lp[
if 1 = 5O then
return EXTRACTPLAN(u)
elseh < h+1

SOV ® NoUm A WR

ifiable in the future (in the over-approximation), if there is
an effect on that variable that is scheduled to happen after
the last concrete step h — 1. The formula states that mod
is true, for a fluent f, if and only if there is an end effect on
f of an action a beyond the concrete part of the encoding
(as Nts +d% > tp_1), or there is a start effect on f of an
action a that is started at the abstract step (ap,).

In the over-approximation, each goal condition is satisfied
if it is true in the last concrete step or if it can potentially
become true in the future, because a variable inside the con-
dition is touched by a future effect. This is expressed by the

‘p%}OALS formula: /\eEG ([6];,4,1 v \/f€vars(e) IIlOdf) :

Finally, the formula ©PENS forbids the solver from leaving
empty concrete steps (where no action is started or ended), if
it returns a model that does not satisfy the goals concretely,
meaning that all the goal conditions are satisfied at step h— 1
and no action is left running (this is expressed with a formula
denoted by 7).

GRS L agp = A V <ai VoV (asAts+dy = ti))
i€{1,...,h—1} ac€A s€{1,i—1}
OGN lelh—1 A A A (as = ts+d2 <thp—1)
ecG a€Ase{l,....h—1}

The density axiom is essential to guarantee the termina-
tion of the overall algorithm: if the solver keeps returning
solutions which rely on the abstract step, the requirement to
fill all concrete steps leads to an increase of the value of the
objective function, which eventually surpasses the value of
the optimal solution, forcing the solver to return it.

With this encoding, it is possible to perform both
makespan and total action cost minimization. When min-
imizing makespan, the objective function that is speci-
fied is t,_1, while for total action cost the objective is
Y aca 2?21 ITE(a;, c(a),0), where c(a) denotes the cost
of action a and ITE(a;, ¢(a), 0) is an if-then-else term (sup-
ported by OMT solvers) that represents the cost of a if it is
started (a; true), otherwise 0.

Algorithm 1 reports the overall procedure. At each step h,
if the OMT solver determines that Hzpl is unsatisfiable, it is
possible to conclude that the problem II is unsolvable, as the
over-approximation encoded in H(;Lpt captures all the states
that are reachable beyond the bound. If the solver returns an
optimal model  for IT)", then if 1 is a valid solution for
IT that does not rely on the abstract step to satisfy the goals
(1 = ¢59) an optimal solution plan can be extracted, other-
wise the bound is increased and the procedure is repeated.
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Figure 2: GANTTSs of old (a) and new (b) OMT models.

4 Scheduling of Abstract Actions

The abstract step approximation of Section 3 has several
sources of inaccuracy that can severely affect performance,
especially for the case of makespan optimization in tempo-
ral planning. First, by specifying t;,_; as the minimization
objective, anything that is applied in the abstract step has
no impact on the overall cost. This fact can be “abused” by
the OMT solver, which can fill the concrete steps with short
actions, and perform all the actions that are necessary for
reaching the goal at the abstract step, without paying any
cost for them. Second, even if we considered the ending
times of abstract actions in the objective (assuming they are
started immediately after ¢;_1), the solver could still par-
allelize all of them, and we would only increment the ob-
jective by the largest duration of an abstract action. Third,
the encoding may allow disjoint groups of abstract actions
to “enable” themselves, producing spurious models corre-
sponding to plans that are not executable. These inaccura-
cies affect both the optimization of the makespan and the
cumulative action cost. The abstraction allows the solver to
return low-cost spurious models, which makes it necessary
to reach very high bounds in the encoding in order to prove
the optimality of a solution.

Example. To illustrate these points, consider the example
depicted in Figure 1. There are 5 locations 1, . . . , 5, a robot
r which is initially in location l1, and 3 packages p1,p2, p3
which are initially in locations 11, 14 and l5, respectively. The
actions available to the robot are: M, lltf with a duration of 4
time units for moving from l  to l; (the two locations must be
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Figure 3: Witness models for removal of self-enabling loops.

adjacent in the figure and the robot must be in ly, as a result
the robot will be in l}); Li, with duration 2 for loading the
package p in location | on the robot (both the package and
the robot must be in location I, as a result the package will
be onboard the robot); and Ull) with duration 2 for unloading
the package p on the robot in location [ (the robot must be
in location | and the package must be onboard the robot, as
a result the package will be in | and no longer on the robot).

Suppose the goal is to have package po in location s,
minimizing makespan. The GANTT in Figure 2a represents
the optimal solution returned by the OMT solver at step
h = 3. In the first two concrete steps, the action M, llzl is
started and ended. In the abstract step, the solver applies
all the actions that are necessary for reaching the goal in

the over-approximation: the action M llj enables the actions
M, ;3 and M llg, which in turn enable the loading of the pack-
4 5

age ( L;“Z ), and the unloading at the desired location ( Ull,g )
which satisfies the goal condition. The OMT objective is to
minimize ty_1, hence the cost of this model is 4. This does
not consider the time spent to perform the abstract actions,
nor whether they must be applied sequentially due to the
causal relationships between them. The optimal valid plan
has makespan 24, but since the abstraction is so loose, the
algorithm is required to reach a very high step h in order to
produce an encoding whose optimal model has cost 24.
Suppose now the goal is to have package ps in location l;.
Figure 3a shows the optimal solution returned by the solver
at step h = 9. In the concrete part of the encoding, the robot
loads and unloads the package py twice, without moving. In
the abstract step, only the actions Li}g and Ulljg are applied,
satisfying the goal condition in the over-approximation. This
model shows a problematic behavior of the encoding: the
package ps is never retrieved from la, but the combination
of Lé}S and U;,g can make it “appear” in ly, because in the

abstraction U, ll is enabled by Ll1 , which places the pack-

age on the robot and Lll3 is enabled by U llg which places
the package on the same location of the robot. With this loop
of self-enabling actions, the solver can effectively “materi-
alize” any package at the current location of the robot in the
abstract step, and can fill the concrete part of the encoding
with the cheapest available actions, achieving cost 8. The
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optimal valid plan with makespan 12 could be encoded at
the current step (Figure 3b), but since the abstraction al-
lows such spurious models to appear, the algorithm needs
more steps to return the optimal plan.

Our goal is to obtain a tighter over-approximation in the
abstract step preventing these issues: we achieve this by in-
troducing abstract scheduling constraints, and setting a new
objective function for the case of makespan minimization.

The main intuition is that for each future condition that is
false at the last concrete step, we require that it is preceded
in time by an enabling future effect, i.e. an effect acting on
a fluent in the condition. In this way, we obtain a more re-
fined abstraction that considers how the future actions are
arranged in time, based on the dependencies between them.

Encoding description For each action ¢ € A, we intro-
duce a variable ¢ representing the time in which a is started
in the abstract step.

We will use the following notation. Given an event ev €
pre, Ueff, of an action a, we use 5" to denote the timing of
ev when a is started at step s. Thus, t5¥ = ¢, if ev is a start
condition, an overall condition or a start effect (£5" = t7
when s = h), and t¢¥ = ¢ + d? if ev is an end condition or
end effect (15" =t} + dj; when s = h).

Formula ¢}HEP (Figure 4) is a conjunction over all ac-
tions @ € A and all steps s € {1, ..., h}. For each precondi-
tion ¢ of a, if it does not hold at the last concrete step h — 1
(= [¢l,_1) and its timing is greater than t;,_1 (£ > t5—1),
there must exist a variable v of ¢ modified (mod, is true) by
an effect of an action b started at step k (b, is true), such that
the effect is applied after step h—1 and before the condition is
checked (tn—1 < t)=°<t?). All the abstract starting times
must follow the time of the last concrete step (t,—1+€ < 7).

With the additional variables representing the starting
times of abstract actions, we can formulate a new objective
for makespan minimization that takes into account the end-
ing times of actions beyond ¢;,_;. We introduce a variable
ton; representing the makespan of the plan, and add the fol-
lowing lower bounds to it:

* the time of the last concrete step (fop; > th—1);

* the ending times of all the actions started in the concrete
part of the encoding (as — top; > ts + d2);

* the ending times of all the actions started at the abstract
step (ap, — top; > 4 + d7).

The minimum value of Lobj that satisfies these lower bounds

will be the last ending time of an action in the plan, i.e. the

makespan of the plan. We can now specify #,; as the objec-

tive to be minimized for the case of makespan optimization.

Note that also the minimization of cumulative action cost

benefits from the superior precision of p3“HEP as will be

explained in the following paragraphs.

We will now show that the inclusion of 3 in the
encoding preserves the soundness and completeness of the
overall approach. We consider the same OMTPLAN pro-
cedure, but the encoding that is produced at each step is
ITP" A 3CHED and we use ¢, as the objective to be mini-
mlzed for the case of makespan optimization. Here we pro-
vide proof sketches for the theorems, while the full details
are included in (Panjkovic and Micheli 2024).

SCHED
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Theorem 1 (Soundness). For every temporal planning
problem 11, if OMTPLAN (II) terminates and returns plan
7, then 7 is a valid and optimal solution for 11.

Proof. (Sketch) Consider the case of makespan optimization
(the case of action cost optimization is proved analogously).
Let d be the makespan of 7, and let i be the step at which 7
was returned by OMTPLAN. Suppose, for the sake of con-
tradiction, that there exists a plan 7’ with a lower makespan
d’ < d.If 7’ can be found at step h/ < h, then the OMT
solver would have returned a model corresponding to that
plan. If instead h’ > h, then a relaxed version 7" of 7’ can
be extracted from a model of TT;™ A ©F°HEP with makespan
d’ < d' < d, which leads to a contradiction because the
OMT solver returned 7 with makespan d at step h. The re-
laxed plan 7" can be obtained from 7’ by starting the same
actions up to step h — 1, and then applying an abstract action
for each action a that is left, with the same starting time ¢$
as in 7. If an action is applied more than once beyond step
h—1inx’, we apply it only once in 7w/ with the first starting
time in which it occurs in 7’ after step h — 1. These starting
times satisfy the timing constraints in ¢3“HEP, because each
condition beyond step h — 1 that is false at h — 1 is preceded
by at least one effect that makes it true in 7/, and this effect
will have the same timing (or lower, if repeated) in 7”/. [

Theorem 2 (Completeness). If there exists an optimal so-
lution for 11, then OMTPLAN (II) will eventually terminate
and return an optimal solution for 1L

Proof. (Sketch) Completeness is a consequence of the den-
sity axiom @PENS| which forces the solver to fill all concrete
steps with an action start or end if it uses the abstract step to
achieve the goal. If the solver returns solutions with abstract
actions at each step, the value of the objective increases un-
til it surpasses the optimal value, at which point the OMT
solver returns the concrete optimal plan. If the solver returns
a concrete plan before this point, it is also an optimal plan

by the soundness theorem.

Discussion The addition of the abstract scheduling con-
straints results in a more refined abstraction, because they
capture the causal and temporal relations between abstract
events. The encoding described in Section 3 does not have a
notion of time beyond the concrete part of the encoding, and
the causality relation between effects and conditions is not
ordered. Therefore, in a model of the formula, the abstract
step contains an unordered set of actions, whose conditions
are either true in the last step, or are touched by an effect
of an action appearing in the set (see gpp o and ¢YOP in

Section 3). With the ¢©3HEP formula, 1nstead, the abstract
step becomes a schedule of actions, where conditions are re-
quired to appear after the first effect that affects them.
Figure 2b shows the optimal solution returned by the
solver with the new encoding at step h = 3. The abstract ac-
tions are now scheduled in time, and the causal relationships
are used to apply some actions in sequence rather than in
parallel, leading to a better makespan estimation (e.g. M llf is

applied after M l;, because the start precondition of M, llj that
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Figure 4: The ©3“MEP formula

the robot must be in /3 is enabled by the end effect of M ll;).
Note that the abstract step is still an over-approximation,
because we only require for each abstract condition to be
“touched” by an effect. For example, in Figure 2b there is

no Mll; action once po is loaded, and Mllf can appear as
B3

soon as Mllj ends. Still, the makespan estimation is much
more precise than before (16 compared to 4), and in practice
this means that the optimal solution can be found with fewer
steps, as shown in the experimental evaluation.

An additional advantage of the abstract scheduling con-
straints is that they prevent models where the abstract ac-
tions are self-enabling (see Figure 3a). The issue of loops
of self-enabling actions has already been identified in (Leo-
fante et al. 2020) for the case of optimal numeric planning
via OMT. They handled the problem by introducing loop
formulas, which require that for each loop of self-enabling
actions there is an action external to the loop that enables
an action inside the loop. However, the number of additional
constraints may be exponential in the size of the problem.
Level ordering constraints are introduced in (Giunchiglia
and Taccchella 2022), for the case of numeric planning,
which disallow these loops and are also polynomial in size.
Our encoding of the abstract step breaks the self-enabling
loops polynomially as a side-effect of the abstract times that
we introduce, without “artificial” variables or constraints.

. VPSR Ly rh
Consider the situation in Figure 3a and let (¢,"*,d, ") and
Upy Ul S .
(t,”,d,"*) denote the abstract starting times and durations
of the actions L;}S_ and Uzl)g respectively. If both actions are

started at the abstract step, the ©3HEP constraints require
that the start preconditions of both actions are preceded in
time by an effect which enables them. For both actions, their
start condition regarding the position of p3 can only be en-

abled by the end effect of the other action, so the ¢} HEP
Iy l1 51
formula will enforce the constraints: tg” +d,” < ti”
Lh Lh Ul
and t,” +d," < t,"*. This leads to a contradiction:

L 1 L L 1 1 L
Therefore, the self-enabling of these two actions is disal-
lowed by the new encoding, and the algorithm actually ter-
minates at step h = 9 and returns the optimal plan shown
in Figure 3b. Note that the new encoding does not select the
concrete prefix of Figure 3a, because it becomes more costly
than the optimal plan, as shown in Figure 3c.

In general, 3 “HED disallows loops of abstract actions that
support each other’s conditions with their effects, without
having external enabling actions, or actions inside the loop
which are applicable at i — 1: the precedence constraints
between the conditions and effects of these actions identify
a sequence of timings which are strictly decreasing, leading
to a contradiction when a loop is considered.
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Finally, we highlight that abstract action scheduling is
also helpful for action cost minimization. Consider Figure 3
pretending action costs are set equal to the durations. The
OMT model (a) would cost 12, but is forbidden by the new
encoding; (b) costs 12 and is the optimal plan; while (c) costs
16. With the same reasoning as above, the new algorithm
would terminate with the correct plan at step 9.

5 Experiments

Implementation and setup We implemented the pre-
sented approaches in C++ using the Z3 OMT solver
(Bjgrner, Phan, and Fleckenstein 2015). Analogously to the
approach in (Panjkovic and Micheli 2023), we implemented

an incremental (indicated as 23%%11) and a monolithic (in-

dicated as Z3°UR) version of the encoding. We compare
against the solvers presented in (Panjkovic and Micheli
2023) (indicated as Z3FMand Z3™ for the incremental and
monolithic versions, respectively) and against the OPTIC
planner (Benton, Coles, and Coles 2012).

Our implementation embodies two technical optimiza-
tions. The first improvement avoids the cost of optimiza-
tion for bounds where no plan exists, relying on a classical
SATPIlan-like encoding instead, and then switching to the
full OMT encoding after the first plan is found. This has the
positive side-effect of generating a valid plan before start-
ing the optimization search. We experimented with a ver-
sion of our solver without this optimization and performed
an ablation study; the solvers without this feature are indi-
cated as Z3%%and 73°° (00 means “optimization only”)
for the incremental and monolithic cases, respectively. The
second technical optimization augments the objective crite-
rion passed to the OMT solver with a secondary objective,
consisting of minimizing the number of mod variables set
to true. OMT solvers such as Z3 support lexicographic op-
timization, that is finding models that minimize a primary
objective function and among these return a model that mini-
mizes a secondary objective. In this way, we force the OMT-
PLAN algorithm to terminate as soon as possible if mul-
tiple equi-optimal models are present. Without this lexico-
graphic constraint, the solver may be free to choose between
a model using abstract “mod” variables and a concretizable
model. We indicate with ZSﬁ,SCand Z3NS (NS means no-
secondary”) the planners without this optimization using in-
crementality or being monolithic, respectively.

We experiment on Temporal IPC domains from the IPC-
14 competition, and consider two versions for each domain,
one with makespan and the other with action cost mini-
mization. We also included the benchmark set that was used
in (Panjkovic and Micheli 2023). We executed all the ex-
periments on a cluster of identical machines equipped with
Xeon E5-2440 2.4GHz and running Ubuntu Linux 20.04.
We used a timeout of 3600s and a memory limit of 20GB.
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Domain | opric | Zz3"™ z3PM | Z3°° z3Q2  z3Ms 30Ny | z3°UR  z3QR
DriverlogActionCost 0(11) 0 0 1 1 1(7) 1(5) 1(7) 1(5)
DriverlogMakespan 1(15) 0 0 0 0 1(7) 1(5) 1(7) 1(5)
FloortileActionCost 10(14) 1 1 3 3 3(11) 3(7) 3(11) 3(7)
FloortileMakespan 5(20) 1 1 2 1 2(11) 2(7) 3(11) 2(7)
Majsp 0(10) 0 0 23 23 22(76) 23(75) 23(76) 23(74)
MajspSimplified 0(10) 12 12 19 18 20(76) 19(72) 19(76) 20(72)
MatchActionCost 8(40) 19 19 23 23 23(40) 23(40) 23(40) 23(40)
MatchCellarActionCost 2(9) 3 4 3 3 3(6) 4(6) 4(6) 4(6)
MatchCellarMakespan 309) 3 3 3 3 3(6) 3(6) 3(6) 3(6)
MatchMakespan 37(40) 0 0 25 25 25(40) 25(40) 25(40) 25(40)
OptionalGoals 10(30) 25 12 30 30 30(30) 30(30) 30(30) 30(30)
Painter 0(4) 14 13 11 12 13(16) 11(13) 12(16) 11(13)
ParkingActionCost 0(19) 0 0 0 0 0(19) 0(8) 0(19) 0(8)
ParkingMakespan 13(16) 0 0 0 0 0(19) 0(8) 0(20) 0(8)
Satellite ActionCost 1(15) 0 0 0 0 1(6) 0(3) 1(6) 1(3)
SatelliteMakespan 0(15) 0 0 0 0 0(6) 0(3) 0(6) 0(3)
TurnAndOpenActionCost | 0(10) 0 0 0 0 0(0) 0(0) 0(0) 0(0)
TurnAndOpenMakespan 0(10) 0 0 0 0 0(0) 0(0) 0(0) 0(0)
Total \ 90(297) \ 78 65 \ 143 142 147(376) 145(328) \ 148(377) 147(327)

Table 1: Coverage table. For capable solvers, we write X(Y) indicating that X instances have been optimally solved and for Y
instances only plans not proven optimal have been returned within the experimental limits.
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Figure 5: Cactus plot (left) of the cumulated solving time of the solvers compared with solved instances, sorted by time. Scatter
plots for Z30URvs Z3PM Scatter plot comparison of runtime (right) and terminating bound (center) for Z30URvs 23 MO

and TO denote memory out and time out cases respectively.

The solver and benchmarks are available in (Panjkovic and proves it significantly; this is then reflected in the runtime of
Micheli 2024). the whole procedure (which heavily depends on the bound)
as shown by the scatter plot on the right in Figure 5.

Results Table 1 reports the coverage results for the con-

sidered approaches and Figure 5 (left) shows a cactus plot 6 Conclusions

of the experiments (excluding the ablation study solvers to
avoid cluttering the plot). It is evident that, while OPTIC per-
forms quite well on some IPC benchmarks, the presented ap-
proaches perform very well in general and are consistently
superior to the encoding of (Panjkovic and Micheli 2023).
We regard this as a very strong result, because satisfiability-
based planners are notoriously very weak on IPC instances
compared to heuristic-search approaches, like OPTIC . The
ablation study results show that the two “technical” im-
provements described above are useful, but that the vast
majority of the speedup is gained because of the abstract

scheduling encoding. The scatter plot in the center of Fig- encoding as an informative heuristic in a search schema, and
ure 5 compares the bound at which the optimal plan is

OUR will compare the performance of OMT solvers with Mixed

PM 1 e
proven by Z3jc"and Z3jc. It is evident that the new en- Integer Linear Programs solvers on our encoding.
coding never worsens the bound and in many cases it im-

In this paper, we presented a novel encoding of the abstract
step for Optimal Temporal Planning via OMT, which is the
symbolic analogous of devising a new admissible heuristic
for optimal planning in a search-based approach. Our ab-
stract encoding is much more precise, allows to find opti-
mal plans with fewer encoding step, and we formally proved
its soundness and completeness. We empirically demon-
strated the effectiveness of the approach compared to previ-
ous OMT encodings and state-of-the-art tools, and we also
performed a detailed ablation study.

As future work, we will investigate the use of the abstract
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