
Expressive Optimal Temporal Planning via Optimization Modulo Theory

Stefan Panjkovic1, 2, Andrea Micheli1

1 Fondazione Bruno Kessler, Trento, Italy
2 University of Trento, Trento, Italy
{spanjkovic, amicheli}@fbk.eu

Abstract

Temporal Planning is the problem of synthesizing a course
of actions given a predictive model of a system subject to
temporal constraints. This kind of planning finds natural ap-
plications in the automation of industrial processes and in
robotics when the timing and deadlines are important. Find-
ing any plan in temporal planning is often not enough as it
is sometimes needed to optimize a certain objective function:
particularly interesting are the minimization of the makespan
and the optimization of the costs of actions. Despite the im-
portance of the problem, only few works in the literature tack-
led the problem of optimal temporal planning because of the
complicated intermix of planning and scheduling.
In this paper, we address the problem of optimal temporal
planning for a very expressive class of problems using a re-
duction of the bounded planning problem to Optimization
Modulo Theory (OMT) a powerful discrete/continuous op-
timization framework. We theoretically and empirically show
the expressive power of this approach and we set a baseline
for future research in this area.

Introduction
Temporal planning is the problem of automatically synthe-
sizing a course of actions to achieve a goal objective given
a model of the system being controlled subject to tempo-
ral constraints. This AI problem is of both theoretical and
practical interest as it can be used to frame interesting ap-
plications ranging from flexible manufacturing (Ruml, Do,
and Fromherz 2005) to robotics (Ingrand and Ghallab 2017).
Having synchronization constraints or deadlines is common-
place, naturally yielding temporal planning problems.

Over the years, several approaches and algorithms for
dealing with temporal planning have been proposed – e.g.
(Shin and Davis 2005; Coles et al. 2008, 2010; Valentini,
Micheli, and Cimatti 2020). However, most of the papers
focus on the problem of satisficing temporal planning, that
is finding a plan as good as possible without giving opti-
mality guarantees. Very few papers tackle the problem of
finding temporal plans that are optimal with respect to an
objective function. This landscape is due to the high compu-
tational complexity of temporal planning that, even without
optimization criteria, is undecidable when time is considered

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dense, EXPSPACE-complete when time is considered dis-
crete and PSPACE-complete when action self-overlapping
is disallowed (Gigante et al. 2022).

The literature in classical and numeric planning (i.e. the
untimed cases) recognizes different kinds of objective func-
tions of interest to be optimized while planning: minimizing
the cumulative action costs, minimizing or maximizing the
final value of a fluent, maximizing the number of optional
goals (so-called ”oversubscription” planning) or optimizing
trajectory preferences. In temporal planning, the only opti-
mization metric that has been studied in depth is the mini-
mization of the ”makespan”, that is finding a plan achieving
the goal in the minimum possible time.

In this paper, we exploit the Optimization Modulo The-
ory (OMT) framework (Sebastiani and Tomasi 2015), a
very general and powerful technique for mixed continu-
ous/discrete optimization. We present the first OMT encod-
ing of optimal temporal planning, capable of optimizing ei-
ther the makespan or the sum of action costs of plans. Our
approach greatly generalizes the work by Leofante et al.
(2020), where the authors propose an OMT encoding for
the numeric planning case, to temporal planning. Our tech-
nique is based on a bounded planning problem formulation
in OMT with a concrete part (essentially a SAT-Plan encod-
ing) and a single abstract step that over-approximates the
reachable states after the end of the plan. In this way, we
can conclude at a certain step that no plans with a better cost
are possible even with the addition of more action instances,
and thus we achieve optimality. More precisely, this paper
makes three major contributions. First, we devise the first
encoding in OMT for optimal temporal planning, that is ca-
pable of finding plans that are optimal with respect to either
the makespan or the sum of action costs. Second, we theo-
retically prove the soundness and completeness of our ap-
proach for temporal planning under the assumption of non-
self-overlapping. We also derive theoretical bounds for ter-
mination. Third, we empirically evaluate the merits of this
approach on a novel set of benchmarks.

Background

SMT and OMT. Given a first-order formula ψ in a back-
ground theory T , the Satisfiability Modulo Theory (SMT)
problem consists in deciding whether there exists a model

This is a pre-print version of the homonymous paper appearing in AAAI 2023.
Copyright (c) 2023 belongs to AAAI Press. 



(i.e. an assignment to the free variables in ψ) that satis-
fies ψ (Barrett et al. 2009). SMT solvers can support dif-
ferent theories such as arithmetic, bit-vectors and arrays. In
this paper, we are interested in Quantifier-Free Linear Real
Arithmetic (QF LRA). A term inQF LRA is of the form∑

i aixi, where every xi is a real variable and every ai is
a rational constant. An atom is either a Boolean variable
or an expression of the form φ ▷◁ c, where φ is a term,
▷◁ ∈ {>,<,≥,≤, ̸=,=}, and c is a rational constant. Fi-
nally, a formula in QF LRA is a conjunction (∧), disjunc-
tion (∨) or negation (¬) of atoms.

Optimization Modulo Theory (OMT) generalizes SMT
with optimization procedures to find a model of ψ that is op-
timal for an objective function f (or a combination of multi-
ple objective functions) under all models of a formulaψ. The
objective function f can be expressed as a term in different
theories, but in this paper we focus on objective functions
expressed asQF LRA terms. Finally, several OMT solvers
(Sebastiani and Trentin 2018; Bjørner, Phan, and Flecken-
stein 2015) can solve Weigthed Max-SMT problems with tai-
lored algorithms, meaning that optimizing the cost over sets
of weighted soft clauses can be efficiently handled.
Notation. Given a QF LRA formula ψ and two terms
t1 and t2 we write ITE(ψ, t1, t2) to indicate the if-then-
else expression meaning “if ψ is true, then take the value
t1, otherwise take the value t2” This term is natively sup-
ported by SMT and OMT solvers (Kim, Somenzi, and Jin
2009). Given three QF LRA terms t1, t2 and t3, we write
t1 ≤ t2 ≤ t3 as a shorthand for t1 ≤ t2 ∧ t2 ≤ t3 (and the
same for <, > and ≥). In this paper we also consider condi-
tions over fluents: we will abuse the terminology saying that
these objects are in QF LRA even if they are not defined
over SMT variables. Given a formula ϕ, we write vars(ϕ) to
indicate the set of variables (or fluents) appearing in ϕ.
OMTPlan. The encoding we present in this paper is inspired
by the one presented in (Leofante et al. 2020) for numeric
planning: here, we summarize this seminal work. A numeric
planning instance Π is a tuple ⟨F,A, I,G⟩, where F is a
set of fluents, A is a set of instantaneous actions, each a
with a set of preconditions prea and a set of effects effa, I
is an initial state and G is a set of goal conditions. The key
idea of the approach is to combine a standard encoding for
bounded planning as satisfiability (Kautz and Selman 1992;
Shin and Davis 2005), which encodes all the plans up to a
given depth h, with an abstract step, which encodes an over-
approximation of all the possible reachable states after h.

Concretely, the encoding defines an SMT variable (with
appropriate typing) fi for every fluent f in the problem and
for every step i ∈ {0, . . . , h}, a Boolean variable ai for ev-
ery action a and for every step i ∈ {0, . . . , h}, a Boolean
variable modf for every fluent f , and a Boolean variable
aabs for every action a. The encoding is: I0∧

∧h−1
i=0 Ti,i+1∧

T abs
h ∧Gabs

h . I0 encodes the initial states by enforcing appro-
priate constraints on variables at step 0. Ti,i+1 indicates the
transition relation, constraining the action and fluent vari-
ables at steps i and i + 1 as usual in planning as satisfia-
bility. The formula T abs

h ∧ Gabs
h represents the abstract part

of the transition relation and the abstract goals. T abs
h is de-

Algorithm 1 Optimal Planning via OMT
1 procedure OMTPLAN(Π)
2 h← 1
3 while True do
4 if Πopt

h is UNSAT then
5 return Π does not admit solution
6 else
7 extract optimal model µ for Πopt

h
8 if µ satisfies the concrete goal then
9 return EXTRACTPLAN(µ)

10 else h← h+ 1

fined as
∧

a∈A(a
abs → (

∧
ϕ∈prea

(ϕh∨
∨

f∈vars(ϕ) modf )))∧∧
f∈F (modf ↔ (

∨
a∈A,f :=e∈effa a

abs)). Intuitively, the first
part of the formula allows the ”starting” of an abstract ac-
tion aabs if either its preconditions are satisfied at step h or
if at least one fluent f appearing in the condition can be ab-
stractly modified (by setting modf to true). The second part
sets a modf variable iff at least one action having some ef-
fect on f is fired in the abstract step.
Gabs

h is defined as
∧

ϕ∈G(ϕh ∨
∨

f∈vars(ϕ) modf ). The in-
tuitive meaning is that the goal can be either satisfied con-
cretely, by the variables at step h, or abstractly by checking
that some fluent f of the goal can be modified abstractly.
The key intuition is that modf variables are used to mark
whether a fluent f can be ”touched” by an effect in the ab-
stract part of the encoding by firing one abstract action, and
abstract actions can be fired if their preconditions are either
supported by the last concrete step or if at least one variable
occurring in the precondition can be abstractly modified.

Leofante et al. assume that each action a has an asso-
ciated cost given by c(a) : S → Q≥1 and use the term∑

a∈A(
∑h−1

i=0 ITE(ai, c(a), 0)) + ITE(aabs, 1, 0) as an ob-
jective for OMT to optimize1. We indicate this OMT encod-
ing as Πopt

h and we report the OMTPLAN procedure in Al-
gorithm 1. The algorithm incrementally augments the bound
h and asks the OMT solver to decide the satisfiability of
Πopt

h . If the formula is unsatisfiable, it means that the goal
is unreachable even in the abstract over-approximation, so
no solution exists. If it is satisfiable and the goal is reached
without using abstract actions, then an optimal model for the
OMT formula yields an optimal plan (it suffices to apply the
sequence of parallel actions where ai is true in the model);
otherwise, the check is inconclusive and we need to expand
the bound. Numeric planning is in general an undecidable
problem, so this procedure is not guaranteed to terminate.

Problem Definition
We formalize our planning problem following the standard
PDDL 2.1 conventions, a complete overview of the seman-
tics of the language is given in (Fox and Long 2003).

Definition 1. A temporal planning problem Π is a tuple
⟨F,A, I,G⟩:
• F is a finite set of Boolean and real fluents.

1A lower-bound on c(a) can be used instead of 1 in the ITE.



• A is a set of actions a of the form2 ⟨prea, effa, dura⟩:
– prea is a set of conditions partitioned in three subsets

pre⊢a, pre↔a, pre⊣a, which consist of start, overall and
end conditions respectively.

– effa is a set of effects partitioned in two subsets eff⊢a,
eff⊣a, which consist of start and end effects respectively.

– dura is a set of duration constraints.
• I : F → {⊤,⊥} ∪ R is the total function describing the

initial value of the fluents.
• G is a set of goal conditions.

Without loss of generality, a condition is a Boolean
QF LRA expression over the fluents and an effect is of the
form f := e where f is a fluent and e is an appropriately-
typed QF LRA expression over the fluents.

Starting from the initial assignment indicated by I , we
can apply any action in A provided that the starting condi-
tions are satisfied and ensuring (possibly by applying other
actions) that the overall and ending conditions will be main-
tained and satisfied, respectively. The state changes either
when an action starts, by applying the starting effects or
when it terminates applying the ending effects.
Definition 2. A time-triggered plan π for Π is a sequence
⟨⟨t1, a1, d1⟩, ⟨t2, a2, d2⟩, . . . , ⟨tn, an, dn⟩⟩, where ti ∈ Q≥0

is the starting time, ai ∈ A is the action to be started, di ∈
Q≥0 is the action duration, and ti ≤ ti+1.

Intuitively, a plan π is valid for a planning problem Π if
by starting from the initial state and by executing the actions
prescribed by the plan at the indicated time and with the cho-
sen durations, all the conditions of every action are fulfilled
and after the end of the last action all the goal conditions are
satisfied. We refer the reader to (Fox and Long 2003) for a
thorough definition of plan validity for temporal planning.
Definition 3. A plan ⟨⟨t1, a1, d1⟩, . . . , ⟨tn, an, dn⟩⟩ has
self-overlapping if there exist i, j ∈ {1, . . . , n} such that
ai = aj and ti ≤ tj < ti + di.

In our encoding, we target a decidable fragment of tempo-
ral planning where we disallow action self-overlapping (Gi-
gante et al. 2022). Moreover, we adopt an ϵ-separation se-
mantics between consecutive timepoints (like in PDDL 2.1).
The encoding can be easily adapted to handle the non-zero
separation case, but this could lead to some problems not ad-
mitting a concrete optimal solution (the optimum could be to
start an action an infinitesimal time after another).
Definition 4. Given a plan π, its makespan is
max⟨t,a,d⟩∈π(t + d). π is makespan-optimal if it is valid
and there is no other valid plan with smaller makespan.

Intuitively, the makespan is the time when the last action
terminates in a valid plan.
Definition 5. Given a map from actions to rational costs
c : A → Q>0, the cumulative action cost of a plan π is∑

⟨t,a,d⟩∈π c(a). π is action-cost-optimal if it is valid and
there is no other valid plan with smaller cost.

In this paper, we want to find makespan-optimal and
action-cost-optimal plans for temporal planning problems.

2For simplicity, we focus on durative actions; instantaneous ac-
tions are durative actions with only starting conditions and effects.

OMT Encoding
We will now describe our OMT encoding for optimal tem-
poral planning (Figure 1). We follow the same procedure
OMTPLAN presented in Algorithm 1, but generalize the
construction of Πopt

h to the temporal case. The main idea is
that the first h − 1 steps represent a standard encoding for
bounded planning (Shin and Davis 2005), while step h is the
abstract step encoding the over-approximation of all reach-
able states (unlike before, we represent concrete steps up to
h− 1, and use h as the abstract step).

We start by defining the variables of our encoding. For
every step i ∈ {0, . . . , h} we use ti to denote the time asso-
ciated to step i; for every fluent f in the problem we define
the variable fi, representing the value of f at step i; for every
action a we define the Boolean variable ai, which indicates
whether action a is started at step i; the variables dai denote
the duration of action a when started at step i. Finally, the
modf variables for each fluent f are used to indicate whether
in the over-approximation f can be potentially modified af-
ter the last concrete step h− 1.

In the following, we will use the notation [e]i, where e
is an expression and i is a step, to denote the expression
obtained by substituting each fluent f ∈ vars(e) with fi.

The overall formula Πopt
h is made of several compo-

nents which encode different aspects of the problem: φINIT

(initial state); φACTIONS
h (actions encoding); φTIME

h (time
monotonicity); φFA

h (frame axiom); φNSO
h (action non-self-

overlapping); φMOD
h (modf variables); φDENS

h (density ax-
iom); φGOAL

h (abstract goals).
The formula φINIT encodes the initial state, simply by set-

ting the values f0 for each fluent f to the initial values, as
defined in the problem.

The formula φACTIONS
h iterates on all the actions a ∈ A

and all the steps s ∈ {1, . . . , h}, adding the implication that
if a is started at step s, then a conjunction of formulas must
hold which enforce the duration constraints of the action and
the proper application of all the action conditions and ef-
fects. φpre⊢a

s,h encodes the start conditions of a, stating that if
the action is started in a concrete step (ts ≤ th−1) then the
condition must hold at that step ([e]s), otherwise if the action
is started in the abstract step (ts > th−1) then the condition
must either hold in the last concrete step ([e]h−1) or at least
one modf variable for a fluent f appearing in e must be true
(the condition can potentially become true in the future). The
overall conditions are encoded by φ

pre↔a

s,h , which enforces
three constraints: if a step p happens between the start and
the end of action a (ts < tp < ts + das ) then the condition
must hold in p ([e]p); in the first step after the end of the ac-
tion the condition must still hold, which handles cases where
the open interval (ts, ts+das) is skipped; finally, if the action
is started in the abstract step, then the overall condition must
either hold at step h − 1 or at least one modf variable for
a fluent f appearing in e must be true. The end conditions
are encoded by φpre⊣a

s,h , stating that the condition must hold
at the first step that happens at or after the end of the action
(tp−1 < ts + das ≤ tp → [e]p) and that if the end of the ac-
tion is scheduled to happen after the last concrete step, then



Πopt
h : φINIT ∧ φACTIONS

h ∧ φTIME
h ∧ φFA

h ∧ φNSO
h ∧ φMOD

h ∧ φDENS
h ∧ φGOAL

h

φINIT :
∧
f∈F

f0 = I(f) φACTIONS
h :

∧
a∈A

∧
s∈{1,...,h}

(
as → φ

pre⊢a

s,h ∧ φpre↔a

s,h ∧ φpre⊣a

s,h ∧ φeff⊢a

s,h ∧ φ
eff⊣a

s,h ∧ φ
dura
s,h

)

φ
pre⊢a

s,h :
∧

e∈pre⊢a

(ts ≤ th−1 → [e]s) ∧

ts > th−1 →

[e]h−1 ∨
∨

f∈vars(e)

modf

 φdura
s,h :

∧
e∈dura

[e]s

φ
pre↔a

s,h :
∧

e∈pre↔a

 ∧
p∈{s,...,h−1}

(ts < tp < ts + das → [e]p) ∧ (tp−1 < ts + das ≤ tp → [e]p) ∧

ts > th−1 →

[e]h−1 ∨
∨

f∈vars(e)

modf


φ

pre⊣a

s,h :
∧

e∈pre⊣a

 ∧
p∈{s,...,h−1}

(tp−1 < ts + das ≤ tp → [e]p) ∧

th−1 < ts + das →

[e]h−1 ∨
∨

f∈vars(e)

modf


φeff⊢a

s,h :
∧

f :=e∈eff⊢a

(fs+1 = [e]s ∨ th−1 < ts) φeff⊣a

s,h :
∧

f :=e∈eff⊣a

 ∨
p∈{s,...,h−1}

(tp = ts + das ∧ fp+1 = [e]p) ∨ th−1 < ts + das


φTIME
h : t0 = 0 ∧ t1 ≥ 0 ∧

∧
i∈{1,...,h−1}

ti + ϵ ≤ ti+1 φNSO
h :

∧
a∈A

∧
i∈{1,...,h−1}

∧
j∈{1,...,i−1}

(
(ai ∧ aj)→ tj + daj ≤ ti

)

φFA
h :

∧
f∈F

∧
i∈{0,...,h−1}

fi ̸= fi+1 →
∨

a∈A s.t.
f :=e∈eff⊢a

ai ∨
∨

a∈A s.t.
f :=e∈eff⊣a

∨
j∈{1,...,i−1}

(
aj ∧ tj + daj = ti

) φGOAL
h :

∧
e∈G

[e]h−1 ∨
∨

f∈vars(e)

modf



φMOD
h :

∧
f∈F

modf ⇐⇒

∨
a∈A

∨
s∈{1,...,h}

∨
f :=e∈eff⊣a

as ∧ ts + das ≥ th−1

 ∨
∨

a∈A

∨
f :=e∈eff⊢a

ah


φDENS
h : ¬φCG

h →
∧

i∈{1,...,h−1}

∨
a∈A

ai ∨ ∨
s∈{1,...,i−1}

(as ∧ ts + das = ti)

 φCG
h :

∧
e∈G

[e]h−1 ∧
∧
a∈A

∧
s∈{1,...,h−1}

(as → ts + das < th−1)

Figure 1: The OMT encoding formulation

the condition must hold at step h−1 or at least one appropri-
ate modf variable must be true. The start and end effects are
encoded by formulas φeff⊢a

s,h and φeff⊣a

s,h respectively, which
enforce that there must be a step p in which the effect is ap-
plied (fp+1 = [e]p) or the effect must be scheduled after
the last concrete step (th−1 < ts and th−1 < ts + das re-
spectively). Finally, φdura

s,h simply enforces that all duration
constraints must hold at step s, when the action is started.
This restricts the values that das can take.

The formula φTIME
h encodes the fact that time is non-

negative (t1 ≥ 0) and strictly increasing (ti + ϵ ≤ ti+1).
The frame axiom (Shanahan 1997) is expressed by φFA

h ,
which allows fluent variables to change only if an effect is
applied to them. For every fluent f , if it changes from one
step to the next (fi ̸= fi+1) that implies that at step i either
an action with a start effect on f is started, or an action with
an end effect on f is ended.

The formula φNSO
h disallows action self-overlapping: if an

action a is started at two steps j and i with j < i, then the
execution which starts at j must conclude before the new
execution starts at i (tj + daj ≤ ti).

The formula φMOD
h controls when modf variables can be

set to true. Given a fluent f , modf is true iff an action with a
start effect on f is started in the abstract step, or if an action
with an end effect on f is started and the end of that action
is scheduled to happen after th−1. The idea is that a true

modf variable represents a necessary condition for f to be
modifiable in the future.

The formula φDENS
h ensures that if the concrete goal φCG

h
is not satisfied by a model of the formula (all goal condi-
tions are satisfied at step h − 1 and no action is left run-
ning), then each step up to h − 1 must be filled with ei-
ther the start or the end of an action. Without this restriction
an OMT solver would be likely to return for each depth h
an optimal solution which leaves most of the concrete steps
empty and applies the necessary abstract actions to reach
the goal in our over-approximation. This formula does not
affect soundness, because a valid solution plan satisfies the
concrete goal, and thus the requirement to fill all concrete
steps does not apply.

Finally, φGOALS
h states that each goal condition must be

either satisfied at step h − 1, or at least one modf variable
for a fluent f appearing in the condition must be true. An
example of our encoding is given in Figure 2.

As mentioned at the beginning, we follow the OMTPLAN

procedure of Algorithm 1. If Πopt
h is unsatisfiable, we return

the fact that Π does not admit any solution. Otherwise, we
extract an optimal model µ from Πopt

h : if we want to mini-
mize the makespan, we specify th−1 as the minimization ob-
jective, while for minimizing the total action cost the objec-
tive is

∑
a∈A

∑h
i=1 ITE(ai, c(a), 0), where c(a) is the cost

of action a. If µ satisfies the concrete goal φCG
h then we ex-



LIGHT(m)

MEND(f0,m)

t0=0

handfree0=⊤
unused(m)0=⊤

light(m)0=⊥
mended(f0)0=⊥
mended(f1)0=⊥
LIGHT(m)0=⊥

MEND(f0,m)0=⊥
MEND(f1,m)0=⊥

d
LIGHT(m)
0 =?

d
MEND(f0,m)
0 =?

d
MEND(f1,m)
0 =?

t1=0

handfree1=⊤
unused(m)1=⊤

light(m)1=⊥
mended(f0)1=⊥
mended(f1)1=⊥
LIGHT(m)1=⊤

MEND(f0,m)1=⊥
MEND(f1,m)1=⊥

d
LIGHT(m)
1 =5

d
MEND(f0,m)
1 =?

d
MEND(f1,m)
1 =?

t2=ϵ

handfree2=⊤
unused(m)2=⊥

light(m)2=⊤
mended(f0)2=⊥
mended(f1)2=⊥
LIGHT(m)2=⊥

MEND(f0,m)2=⊤
MEND(f1,m)2=⊥

d
LIGHT(m)
2 =?

d
MEND(f0,m)
2 =2

d
MEND(f1,m)
2 =?

t3=?

handfree3=⊥
unused(m)3=⊥

light(m)3=⊤
mended(f0)3=⊥
mended(f1)3=⊥
LIGHT(m)3=⊥

MEND(f0,m)3=⊥
MEND(f1,m)3=⊤

d
LIGHT(m)
3 =?

d
MEND(f0,m)
3 =?

d
MEND(f1,m)
3 =?

modhandfree =⊤
modunused(m)=⊥

modlight(m)=⊤
modmended(f0)=⊤
modmended(f1)=⊤

Concrete Encoding Part

Figure 2: Visualization of the encoding model with horizon
h = 3 for a MATCHCELLAR problem. Question marks indi-
cate values that are irrelevant for the plan reconstruction.

tract a plan from µ and return it as an optimal solution for
Π; otherwise, we increment the depth h and repeat the pro-
cedure. To extract a time-triggered plan π from a model µ
(the EXTRACTPLAN(µ) function in Algorithm 1) we simply
look at which variables ai are set to true, and for each of
them we add the tuple ⟨ti, a, dai ⟩ to π.

In the remainder of this section we will prove that the
proposed approach is a sound and complete procedure for
finding makespan-optimal and action-cost-optimal plans for
temporal planning problems. The following definitions of
timepoints and length of a plan will be used in the proofs.

Definition 6. Given a time-triggered plan π =
⟨⟨t1, a1, d1⟩, . . . , ⟨tn, an, dn⟩⟩, we define the set of
timepoints of π to be Tπ =

⋃n
i=1{ti} ∪ {ti + di}, i.e. all

the times at which an action is started or ended.
We define the length of π to be the number of distinct
timepoints of π, i.e. the cardinality of Tπ .

Theorem 1 (Validity and Soundness). For every temporal
planning problem Π, if OMTPLAN (Π) terminates and re-
turns plan π, then π is a valid and optimal solution for Π.

Proof. (Sketch) Suppose that OMTPLAN (Π) returns a
plan π at step h. Let µ be the optimal model of Πopt

h from
which π was extracted. Validity comes from the fact that the
concrete part of the encoding Πopt

h is a valid SMT encoding
of plans of bounded length (Shin and Davis 2005) and
because, since µ |= ϕCG

h , the goals are satisfied at the last
concrete timepoint and no action is left running.

To prove optimality of π, we consider the two optimiza-
tion problems separately. In both cases the intuition is that
if there is a more optimal plan that can be found at a later
step, then a relaxed version of that plan can be found at the

current step, which would be more optimal than the solution
returned by the OMT solver.

Minimum makespan. Let d be the makespan of π. Sup-
pose for the sake of contradiction that there is a solution plan
π′ for Π with length l′ and makespan d′ < d. If l′ ≤ h− 1,
then there exists a model µ′ of Πopt

h from which π′ can be
extracted, but this contradicts the assumption that µ is an
optimal model for Πopt

h . Suppose that l′ > h − 1. From π′

we can construct a plan π′′ with length h− 1 and makespan
d′′, by starting in order the same actions as in π′ until reach-
ing length h−1, and then running an abstract action for each
action that is left. We can observe that π′′ can be extracted
from a model µ′′ of Πopt

h : the preconditions of all the abstract
actions are either already satisfied at step h− 1 or have a re-
quired mod variable set to true, since they were applicable
in the plan π′; moreover, since goal conditions were all sat-
isfied by π′, they will be either satisfied or have a required
mod variable set to true by π′′. Additionally, since π′′ is a
shortened version of π′, we have d′′ < d′ < d. This contra-
dicts the assumption that µ is an optimal model for Πopt

h .
Minimum action cost. The proof in this case is similar to

the previous one. When considering the total action cost of
π′′ we observe that it is less than or equal to the total action
cost of π′, because the cost of an abstract action is always a
lower bound to the cost of the same concrete action.

Next, we prove completeness. The main intuition is that if
the OMT solver keeps returning solutions which rely on the
abstract component of the formulas, the value of the objec-
tive will keep increasing, because φDENS

h enforces the solver
to fill all the concrete steps. Eventually, the value of the ob-
jective will exceed the value of the optimal solution, and the
solver will be forced to return a concrete optimal plan.

Lemma 1. Consider a temporal planning problem Π. LetN
be the number of actions and let dmin be the minimum possi-
ble duration of an action in Π. Suppose π∗ is a solution for
Π with minimum makespan d∗. Let µ′ be an optimal model
for Πopt

h∗ where h∗ =
⌈

d∗

dmin

⌉
·N ·2+1, and let π′ be the plan

extracted from µ′. Then µ′ |= φCG
h∗ and π′ has makespan d∗.

Proof. (Sketch) First, we observe that π∗ has length at most⌈
d∗

dmin

⌉
·N ·2. Given that the makespan is d∗, an upper bound

on the number of timepoints of π∗ can be found by assuming
that all N actions have duration dmin and that all are run in
parallel for d∗

dmin
times. It is not possible to have more than N

actions running in parallel because of the assumption of non-
self-overlapping. Since there could be a timepoint each time
a new action is started or ended, we can conclude that π∗

has at most
⌈

d∗

dmin

⌉
·N ·2 distinct timepoints. Therefore there

exists a model µ∗ of Πopt
h∗ from which π∗ can be extracted, as

h∗ is large enough to encode all the timepoints of π∗. Since
µ′ is an optimal model of Πopt

h∗ , π′ has makespan at most d∗.
Suppose for the sake of contradiction that µ′ ̸|= φCG

h∗ . As
a model of Πopt

h∗ , µ′ satisfies φDENS
h∗ , and therefore at each

step between 1 and h∗− 1 an action must start or end. How-
ever, even assuming that all N actions have duration dmin



and running them all in parallel until all steps are filled, the
makespan would still exceed d∗, given how h∗ is defined.
This contradicts the fact that π′ has makespan at most d∗,
and therefore it must be the case that µ′ |= φCG

h∗ . Hence, π′

is a valid solution plan for Π, and since d∗ is the minimum
makespan for a solution of Π and we already proved that π′

has makespan at most d∗, π′ has makespan exactly d∗.

Lemma 2. Consider a temporal planning problem Π. Let
cmin be the minimum possible cost of an action in Π and
suppose that π∗ is a solution for Π with minimum total ac-
tion cost c∗. Let µ′ be an optimal model for Πopt

h∗ where

h∗ =
⌈

c∗

cmin

⌉
· 2+ 1, and let π′ be the plan extracted from µ′.

Then µ′ |= φCG
h∗ and π′ has total action cost c∗.

Proof. (Sketch) We begin by observing that π∗ has length
at most

⌈
c∗

cmin

⌉
· 2. Given that the total action cost is c∗, an

upper bound on the number of timepoints of π∗ is obtained
by applying c∗

cmin
times the action with cost cmin. As we can

have a new timepoint each time an action is started or ended,
π∗ has at most

⌈
c∗

cmin

⌉
· 2 timepoints. Therefore there exists

a model µ∗ of Πopt
h∗ from which π∗ can be extracted, as h∗ is

large enough to encode all the timepoints of π∗. Since µ′ is
an optimal model of Πopt

h∗ , π′ has total action cost at most c∗.
As in the previous lemma, we can prove that µ′ |= φCG

h∗ ,
because otherwise the requirement to fill each step with an
action start or end would make the total action cost of π′

exceed the value of c∗. It follows that π′ is a valid solution
plan for Π, and similarly to before we can conclude that π′

has total action cost exactly c∗.

Theorem 2 (Completeness). If there exists an optimal so-
lution for Π, then OMTPLAN (Π) will eventually terminate
and return an optimal solution for Π.

Proof. This is a direct consequence of the previous two lem-
mas. If there exists an optimal solution π∗ for Π, then at step
h∗ the obtained model µ′ will satisfy φCG

h∗ so the algorithm
will terminate, and the extracted plan will be an optimal so-
lution for Π. If a plan is returned before step h∗, then by
Theorem 1 it is also an optimal solution for Π.

Encoding Optimizations
We added several extensions and optimizations to the encod-
ing to improve its expressiveness and performance.

First, we added Intermediate Conditions and Effects
(ICE) (Valentini, Micheli, and Cimatti 2020), that is condi-
tions and effects happening at arbitrary points in time during
the execution of an action. This can be captured in the encod-
ing by adding the necessary timing constraints which imply
the application of the event. E.g., if an effect is supposed to
happen 4 units of time after the start of an action, then apply-
ing it at step p means that tp = ts + 4, where s is the step at
which the action is started. The density axiom φDENS

h is also
modified to enforce at each concrete step the starting/ending
of an action or the application of an intermediate event.

A performance optimization for the action-cost case
can be obtained by expressing the objective function as
a Weighted Max-SMT problem: it suffices to rewrite the∑

a∈A

∑h
i=1 ITE(ai, c(a), 0) objective as a set of weighted

soft clauses ¬ai with cost c(a) for each step i and action a.
Finally, major SMT and OMT solvers support incremen-

tality, meaning they can efficiently re-use search artifacts de-
rived from solving a formula ϕ to reason on a formula ϕ∧ψ.
Solvers offer a stack-based interface to add and retract for-
mulas, and perform checks on the conjunction of formulas
in the stack (Barrett et al. 2009). Since the OMTPLAN algo-
rithm needs to solve a sequence of OMT queries by increas-
ing the horizon h, we devised a partially-incremental version
of the encoding that can exploit this feature. We write the en-
coding in two parts (with additional variables to allow this
rewriting): a permanent part that is never retracted from the
solver and a temporary part that is specific to the check with
horizon h. The full incremental encoding with ICE support
is available in (Panjkovic and Micheli 2023).

Related Work
Not many papers address optimal temporal planning. Some
optimal temporal planners are limited to ”conservative”
planning models (Smith and Weld 1999) where action pre-
conditions must hold throughout the whole action execution
and the effects are applied at the end: this model is much
simpler than the full PDDL 2.1 semantics that we address,
because in a conservative model, actions having conflicting
preconditions or effects cannot overlap in time in any way.
CPT (Vidal 2011), TP4 and HSP∗ (Haslum 2006) are three
optimal temporal planners that are limited to conservative
models. (Haslum 2009) presents a technique to use admissi-
ble heuristics for conservative models as relaxations for non-
conservative models, but to the best of our knowledge no
planner currently implements this solution. The only planner
capable of dealing with the full PDDL 2.1 and perform op-
timization is OPTIC (Benton, Coles, and Coles 2012): even
though the main focus of the tool is on satisficing planning,
the planner can generate increasingly better solutions un-
til it is able to prove that no better solution exists. This is
possible thanks to an admissible heuristic used for pruning
in combination with a non-admissible one used for search
with WA∗. In addition, the authors very recently published
a research on a novel merge-and-shrink heuristic (Brandao
et al. 2022). We empirically compare with the OPTIC plan-
ner in the next section. Other optimal temporal planners in-
clude: TPSYS (Tejero and Onaindia 2006), which uses a
graphplan-based technique and is optimal for a fragment
of PDDL2.1; and CPPLANNER (Dinh 2004), which uses a
temporally-expressive proprietary language. SCP2 (Lu et al.
2013) uses an encoding into Weighted Max-SAT for opti-
mizing the makespan as well as action costs. This encoding
assumes a discrete integer time model and requires a copy of
all the fluents at each time, making it extremely sensitive to
the scale of time. Our encoding, instead, uses theQF LRA
theory to model continuous time and we create a copy of all
the fluents for every action start or action termination only.

The use of SMT for temporal planning has been pi-



0 20 40 60 80 100
Instances Solved

0

200

400

600

800

1000

1200

1400

1600
S

ol
vi

ng
tim

e
(s

)
OPTIC

ANMLOMT (OMSAT)

ANMLOMT
INC (Z3)

ANMLOMT (Z3)

ANMLOMT
INC (OMSAT)

10−1 100 101 102 103

ANMLOMT
INC (OMSAT)

10−1

100

101

102

103

O
P

T
IC

MAJSP
MATCH-AC
MATCH-MS
OVERSUB

PAINTER

TO
MO

Figure 3: Result plots: cactus plot (left) for all the approaches and scatter plot (right) for OPTIC and ANMLOMT
INC (OMSAT).

oneered (without considering optimization) by Shin and
Davis (2005) and other optimized temporal planning encod-
ings have been presented (Rintanen 2017). The encoding we
present is a generalization to the temporal planning case of
the one introduced in (Leofante et al. 2020). The generaliza-
tion is very non trivial. First, in temporal planning we need
to deal with ”future commitments”, meaning that if a dura-
tive action is started, we need to ensure its overall and at-end
conditions are respected in subsequent steps and we need to
deal with the case in which these commitments are beyond
the concrete part of the encoding. Moreover, we use OMT to
formulate optimization criteria for both optimal-makespan
and optimal-action-costs problems. Finally, we generalize
and optimize the encoding to support ICE, to be incremental
and to use a more efficient Max-SMT formulation.

Experiments
We implemented the planning algorithm via OMT in a
C++ tool called ANMLOMT, which can read either ANML
(Smith, Frank, and Cushing 2008) or PDDL 2.1 specifica-
tions and can use either OPTIMATHSAT (Sebastiani and
Trentin 2018) or Z3 (Bjørner, Phan, and Fleckenstein 2015)
as OMT solvers. It is also possible to choose whether or
not to use the incremental encoding. We compare our tool
in four different configurations: with or without incremen-
tality (incremental solvers are indicated as ANMLOMT

INC ) and
with either OPTIMATHSAT or Z3 as OMT engines. As a
competitor, we compare against the OPTIC (Benton, Coles,
and Coles 2012) planner as it is the only planner publicly

Domain OPTIC ANMLOMT ANMLOMT ANMLOMT
INC ANMLOMT

INC

OMSAT Z3 OMSAT Z3
MAJSP (80) 0(10) 11 12 12 12
PAINTER (30) 0(4) 14 13 15 12
MATCH-MS (30) 30(30) 27 28 26 28
MATCH-AC (30) 1(30) 25 24 27 24
OVERSUB (30) 10(30) 7 14 30 12
Total (200) 41(104) 84 91 110 88

Table 1: Coverage table. We write X(Y) to indicate that X
instances were proven optimal and Y instances were solved.

available that is capable of dealing with our benchmarks. We
ran the experiments on an Intel Core i9-9900KS workstation
with a 1800s time limit and 20GB of memory limit.

We consider five domains. MAJSP and PAINTER are
industrial-inspired domains taken from (Valentini, Micheli,
and Cimatti 2020), where we optimize the makespan.
MATCH-MS is a classical ”MatchCellar” IPC domain, while
MATCH-AC is a variation of the same domain where
matches have different costs and different burning durations,
and the objective is to minimize the total action cost. OVER-
SUB, instead, is a synthetic problem in which we encode an
oversubscription planning problem as action-cost optimiza-
tion. The benchmarks and the tools used for the experimen-
tal evaluation are available in (Panjkovic and Micheli 2023).

The coverage results are reported in Table 1 while in
Figure 3 we plot the performance of the solvers. With
the notable exception of MATCH-MS where OPTIC per-
forms really well proving the optimum for all the instances,
ANMLOMT

INC (OMSAT) is consistently faster and can solve
many more instances than the other competitors. This is
clearly shown in the scatter plot of Figure 3 where we differ-
entiated the scatter points per-domain. An interesting emerg-
ing fact is that the use of the incremental encoding is very
useful when OMSAT is used, but is detrimental for Z3 .

We report that we experimented with other IPC domains,
but our encoding is inefficient when long, sequential plans
are needed. This is not surprising as SAT/SMT planning en-
codings poorly scale on the number of objects, while grace-
fully dealing with complex constraints. Despite this limita-
tion, our results indicate a strong complementarity in terms
of coverage and performance (see scatter plot in Figure 3).

Conclusions
In this paper, we presented the first OMT encoding for op-
timal temporal planning. Our encoding can optimize either
the plan makespan or the sum of action costs and is proved to
be sound and complete for the non-self-overlapping seman-
tics. We also described three optimizations of the encoding
and we experimentally evaluated the approach.

In the future, we plan to hybridize our approach with (Rin-
tanen 2017) to better tackle IPC domains and with (Cash-
more, Magazzeni, and Zehtabi 2020) for continuous change.



Acknowledgements
This work has been partly supported by the project
“AI@TN” funded by the Autonomous Province of Trento
and by the “AIPlan4EU” project funded by EU Horizon
2020 research and innovation programme under GA n.
101016442.

References
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2009. Satisfiability Modulo Theories. In Biere, A.; Heule,
M.; van Maaren, H.; and Walsh, T., eds., Handbook of Sat-
isfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, 825–885. IOS Press. ISBN 978-1-58603-
929-5.
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In ICAPS 2012.
Bjørner, N. S.; Phan, A.; and Fleckenstein, L. 2015. νZ -
An Optimizing SMT Solver. In Baier, C.; and Tinelli, C.,
eds., Tools and Algorithms for the Construction and Analysis
of Systems - 21st International Conference, TACAS 2015,
Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings, volume 9035 of Lecture Notes in
Computer Science, 194–199. Springer.
Brandao, M.; Coles, A. J.; Coles, A.; and Hoffmann, J. 2022.
Merge and Shrink Abstractions for Temporal Planning. In
Kumar, A.; Thiébaux, S.; Varakantham, P.; and Yeoh, W.,
eds., ICAPS 2022, Singapore (virtual), June 13-24, 2022,
16–25. AAAI Press.
Cashmore, M.; Magazzeni, D.; and Zehtabi, P. 2020. Plan-
ning for Hybrid Systems via Satisfiability Modulo Theories.
J. Artif. Intell. Res., 67: 235–283.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with Problems Requiring Temporal Coordination. In AAAI.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In ICAPS 2010.
Dinh, T. B. 2004. Solution Extraction with the ”Critical
Path” in Graphplan-Based Optimal Temporal Planning. In
Wallace, M., ed., Principles and Practice of Constraint Pro-
gramming - CP 2004, 10th International Conference, CP
2004, Toronto, Canada, September 27 - October 1, 2004,
Proceedings, volume 3258 of Lecture Notes in Computer
Science, 793. Springer.
Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of artificial intelligence research.
Gigante, N.; Micheli, A.; Montanari, A.; and Scala, E. 2022.
Decidability and complexity of action-based temporal plan-
ning over dense time. Artif. Intell., 307: 103686.
Haslum, P. 2006. Improving heuristics through relaxed
search-an analysis of TP4 and HSP* a in the 2004 planning
competition. Journal of Artificial Intelligence Research, 25:
233–267.
Haslum, P. 2009. Admissible makespan estimates for pddl2.
1 temporal planning. In Proceedings of the ICAPS Workshop
on Heuristics for Domain-Independent Planning.

Ingrand, F.; and Ghallab, M. 2017. Deliberation for au-
tonomous robots: A survey. Artif. Intell., 247: 10–44.
Kautz, H. A.; and Selman, B. 1992. Planning as Satisfia-
bility. In Neumann, B., ed., 10th European Conference on
Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7,
1992. Proceedings, 359–363. John Wiley and Sons.
Kim, H.; Somenzi, F.; and Jin, H. 2009. Efficient Term-ITE
Conversion for Satisfiability Modulo Theories. In SAT, 195–
208.
Leofante, F.; Giunchiglia, E.; Ábrahám, E.; and Tacchella,
A. 2020. Optimal Planning Modulo Theories. In Bessiere,
C., ed., Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020, 4128–
4134. ijcai.org.
Lu, Q.; Huang, R.; Chen, Y.; Xu, Y.; Zhang, W.; and Chen,
G. 2013. A SAT-based approach to cost-sensitive temporally
expressive planning. ACM Trans. Intell. Syst. Technol., 5(1):
18:1–18:35.
Panjkovic, S.; and Micheli, A. 2023. Expressive Optimal
Temporal Planning via Optimization Modulo Theory: Ad-
ditional Material. https://es-static.fbk.eu/people/panjkovic/
aaai23. Accessed: 2022-11-28.
Rintanen, J. 2017. Temporal Planning with Clock-Based
SMT Encodings. In Sierra, C., ed., Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, 743–749. ijcai.org.
Ruml, W.; Do, M. B.; and Fromherz, M. P. 2005. On-line
Planning and Scheduling for High-speed Manufacturing. In
ICAPS, 30–39.
Sebastiani, R.; and Tomasi, S. 2015. Optimization Modulo
Theories with Linear Rational Costs. ACM Trans. Comput.
Log., 16(2): 12:1–12:43.
Sebastiani, R.; and Trentin, P. 2018. OptiMathSAT: A Tool
for Optimization Modulo Theories. Journal of Automated
Reasoning.
Shanahan, M. 1997. Solving the frame problem - a math-
ematical investigation of the common sense law of inertia.
MIT Press. ISBN 978-0-262-19384-9.
Shin, J.-A.; and Davis, E. 2005. Processes and continuous
change in a SAT-based planner. Artificial Intelligence.
Smith, D.; Frank, J.; and Cushing, W. 2008. The ANML
language. In KEPS 2008.
Smith, D. E.; and Weld, D. S. 1999. Temporal planning with
mutual exclusion reasoning. In IJCAI, volume 99, 326–337.
Tejero, A. G.; and Onaindia, E. 2006. Domain-independent
temporal planning in a planning-graph-based approach. AI
Commun., 19(4): 341–367.
Valentini, A.; Micheli, A.; and Cimatti, A. 2020. Temporal
Planning with Intermediate Conditions and Effects. In AAAI
2020.
Vidal, V. 2011. CPT4: An optimal temporal planner lost in
a planning competition without optimal temporal track. The
Seventh International Planning Competition: Description of
Participant Planners of the Deterministic Track, 25–28.


